

Configuration Manual of Research Project

MSc Research Project Data Analytics

Prajwal Shashidhara

Student ID: x22209077

School of Computing National College of Ireland

Supervisor: Dr. Bharat Agarwal

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Prajwal Shashidhara
Student ID:	x22209077
Programme:	Data Analytics
Year:	2024
Module:	MSc Research Project
Supervisor:	Dr. Bharat Agarwal
Submission Due Date:	16/09/2024
Project Title:	Configuration Manual of Research Project
Word Count:	371
Page Count:	12

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Prajwal Shashidhara
Date:	14th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).	
Attach a Moodle submission receipt of the online project submission, to	
each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for	
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	
a copy on computer.	

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual of Research Project: Predictive Modelling for Cost Estimation in Construction Projects Using Machine Learning Algorithms

Prajwal Shashidhara x22209077

1 Introduction

The given configuration manual corresponds to the different configuration steps used that generate the results for the study "Predictive Modelling for Cost Estimation in Construction Projects Using Machine Learning Algorithms". The following states all the configuration techniques, software and libraries used to build the code and achieve state-of-the-art results

2 System specifications

- Device name DESKTOP-FRQ155L
- Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
- Installed RAM 20.0 GB (19.9 GB usable)
- System type 64-bit operating system, x64-based processor
- Edition Windows 11 Pro Version 23H2

3 Software Requirements

- Anaconda 3
- Python 3.10
- Jupyter Notebook

4 Python Libraries

Major libraries used in the research are:

- Numpy
- Pandas
- Seaborn
- Matplotlib
- Plotly
- Sklearn
- StatsModel
- Keras
- SHAP

Libraries

```
[1]: import numpy as np
import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import plotly.express as px
        import shap
        %matplotlib inline
        import scipy.stats as stats
        import statsmodels.formula.api as smf
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.impute import MissingIndicator, SimpleImputer
from sklearn.preprocessing import PolynomialFeatures, KBinsDiscretizer, FunctionTransformer
        from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler
        from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer, OrdinalEncoder
from sklearn.feature_selection import RFE,SelectKBest,f_classif
        from sklearn.linear_model import LogisticRegression, LinearRegression, ElasticNet, Lasso, Ridge
        from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import BaggingClassifier, BaggingRegressor,RandomForestClassifier,RandomForestRegressor
from sklearn.ensemble import GradientBoostingClassifier,GradientBoostingRegressor, AdaBoostClassifier, AdaBoostRegressor
        from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB
        from sklearn.svm import LinearSVC, LinearSVR, SVC, SVR
from sklearn.neural_network import MLPClassifier, MLPRegressor
        from keras.models import Sequential
from keras.layers import Dense
        warnings.filterwarnings('ignore')
        from imblearn.over_sampling import SMOTE
        from collections import Counter
        from sklearn.model_selection import train_test_split,GridSearchCV
        from sklearn import metrics
        from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, precision_score, recall_score, f1_score,classification_report
        from statsmodels.stats.outliers_influence import variance_inflation_factor
        from patsy import dmatrices
        from keras.models import Sequential
        from keras.layers import Dense
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_squared_error
        import statsmodels.formula.api as smf
        from sklearn.metrics import mean_absolute_error
```

Figure 1: Library import

5 Data Import

Data was imported using the panda's package, as shown in Figure 2

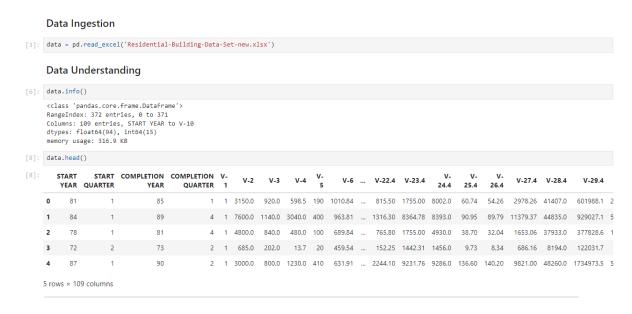


Figure 2: Data Import

6 Data filtering

All the important features are selected in the research based on the business problem, as shown in Figure 3

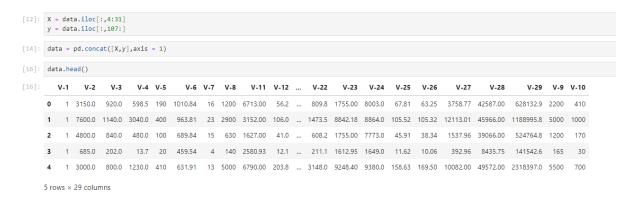


Figure 3: Filtering

7 Statistical Data Analysis and EDA

This section includes exploratory data analysis on the review columns. The distribution of topics across years is displayed in Figure 4.

retu	rn pd.Se	x.std(), x.qu	x.var(), x antile(0.10 x.quantile(, 'NMISS',	ll().sum(), x.sum(), x.mean(), x.median(), x.min(), x.quantile(0.85), le(0.90),x.quantile(0.81), x.quantile(0.85), le(0.90),x.quantile(0.95), x.quantile(0.99),x.max()], 'SUM', 'MEAN', 'MEDIAN', 'SID', 'VAR', 'MIN', 'PI', le(','P25','P56','P75','P96','P95','P99','P99','MAX'])										
		nuous_var_summ			670	VAR		P1	P5	240	Pas	P50	P.7.5	
V- 1 372.0	0.0	3.619000e+03	MEAN 9.73	MEDIAN 8.00	STD 6.56	4.308000e+01	MIN 1.00	1.00	1.00	P10 2.00	P25 4.00	8.00	P75	
V- 2 372.0	0.0	6.432045e+05	1729.04	1220.00	1802.37	3.248543e+06	200.00	258.40	370.00	451.00	720.00	1220.00	2100.00	32
V- 3 372.0	0.0	1.585145e+05	426.11	300.00	490.08	2.401750e+05	60.00	80.00	100.00	120.00	190.00	300.00	490.50	
V- 4 372.0	0.0	1.219803e+05	327.90	164.70	563.54	3.175822e+05	3.70	8.43	20.22	32.40	67.80	164.70	366.05	
V- 5 372.0	0.0	6.068000e+04	163.12	140.00	112.60	1.267974e+04	10.00	10.00	30.00	40.00	80.00	140.00	230.00	
V- 6 372.0	0.0	2.062442e+05	554.42	522.45	275.11	7.568329e+04	193.08	202.63	273.83	305.40	391.68	522.45	667.90	
V- 7 372.0	0.0	2.331000e+03	6.27	6.00	2.10	4.400000e+00	2.00	3.00	4.00	4.00	5.00	6.00	7.00	
V- 8 372.0	0.0	4.047800e+05	1088.12	805.00	995.83	9.916698e+05	40.00	97.10	170.00	220.00	440.00	805.00	1300.00	2
V- 11 372.0	0.0	1.566491e+06	4211.00	3629.00	1776.65	3.156468e+06	1562.00	1580.00	2028.00	2264.00	2841.75	3629.00	6024.25	6
V- 12 372.0	0.0	3.512720e+04	94.43	74.90	62.89	3.955330e+03	12.10	12.53	20.72	29.64	45.60	74.90	137.40	
V- 13 372.0	0.0	3.275478e+04	88.05	79.28	49.36	2.436830e+03	10.03	11.12	23.12	30.08	51.63	79.28	125.83	
V- 14 372.0	0.0	1.341180e+03	3.61	3.25	1.62	2.610000e+00	0.92	0.92	1.34	1.72	2.47	3.25	4.72	
V- 15 372.0	0.0	2.384935e+08	641111.64	445458.35	542163.77	2.939415e+11	38193.64	40197.17	67670.67	92923.07	183726.00	445458.35	1059966.20	1612
V- 16 372.0	0.0	1.787666e+06	4805.55	3819.00	3947.16	1.558004e+07	287.20	324.40	643.28	1163.30	1979.00	3819.00	6622.50	10
V- 17 372.0	0.0	3.670815e+04	98.68	87.05	73.02	5.331250e+03	13.60	14.27	21.63	25.89	39.70	87.05	117.40	
V- 18 372.0	0.0	6.770479e+04	182.00	162.75	110.71	1.225701e+04	17.03	23.99	52.20	60.35	93.00	162.75	242.27	
V- 19 372.0	0.0	7.016423e+06	18861.35	10445.60	21313.73	4.542752e+08	154.40	220.38	732.40	1622.28	3622.15	10445.60	21723.40	54

Figure 4: Statistical Summaries

The Y-variable was transformed using log transformation for the OLS method.

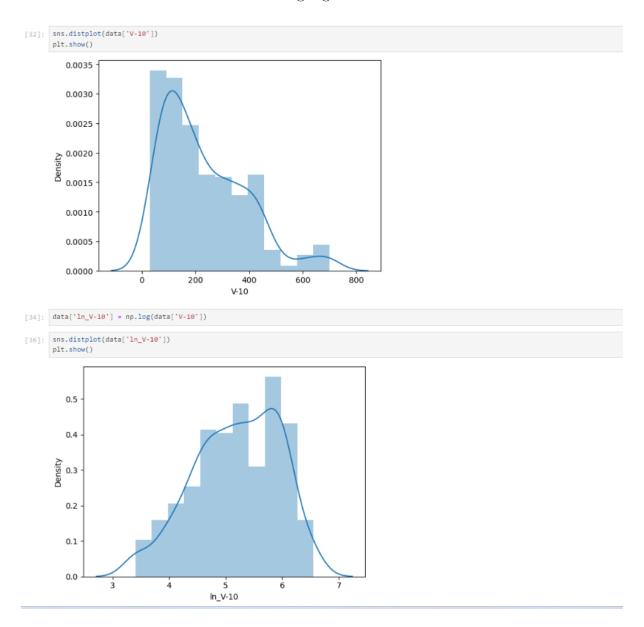


Figure 5: Y-Variable Distribution

8 Model Building – Statistical Approach

The first model built in the research was the OLS model.

				y least s					
======== Model:		OLS			R-square		0.979		
Dependent Varia	bla:		10	AIC:	K-Square		-388.7449		
Date:			_10 -08-10 21				-281.9244		
Date: No. Observation			-08-10 21		ikelihoo		224.37		
No. Observation Df Model:		29			tistic:				
Df Residuals:		230					2.69e-182		
							0.011782		
R-squared: 		0.98		Scale					
			Std.Err.			_	5 0.975]		
Intercept							8 2.4770		
							8 -0.0014		
							5 0.0028		
V_11							0.0020		
_							0.0045		
_							1 0.0042		
							1 0.0173		
V_15							0.0000		
V_16							0.0001		
_							8 -0.0006		
							8 0.0002		
							0.0000		
V 2							0 0.0001		
V_20							8 0.0801		
							6 -0.0002		
V 22							1 0.0004		
V_23							0.0000		
V 24							0.0001		
V 25	0.03	250	0.0083	2.9945	0.0030	0.008	5 0.0414		
							7 0.0025		
V_27							0.0000		
V 28	0.00	999	0.0000	2.3587	0.0192	0.000	0.0000		
V_29							0.0000		
V 3	-0.00	991	0.0001	-1.4355	0.1525	-0.000	2 0.0000		
V_4	-0.00	991	0.0000	-1.9765	0.0493	-0.000	2 -0.0000		
	-0.00	321	0.0005	-4.5185	0.0000	-0.003	0 -0.0012		
V_6	0.00	915	0.0001	17.2774	0.0000	0.001	3 0.0017		
V_7							8 0.0370		
V_8	-0.00	991	0.0001	-0.8861	0.3765	-0.000	2 0.0001		
V_9							0.0001		
Omnibus:				Durbin-W			2.016		
Prob(Omnibus):		0.0		Jarque-B			309.417		
Skew:		0.0		Prob(JB)		-	0.000		
Kurtosis:		8.3		Conditio			53385943		
=========									
Notes:									
Notes: [1] Standard Er	rors	assiii	me that +	he covari	ance mat	rix of	the		
errors is corre									
					7. This				

Figure 6: Summary of OLS Method

As the results were not satisfactory, a new model was built using fewer attributes.

```
[78]: lm1 = smf.ols( formula = model_param_1, data = train ).fit()
[80]: print(lm1.summary2())
                      Results: Ordinary least squares
      ______
      Model: OLS Adj. R-squared: Dependent Variable: ln_{\nu}10 AIC:
                                                              0.975
                                                               -359.2639
      Date: 2024-08-10 21:28 BIC: No. Observations: 260 Log-
                                 Log-Likelihood:
F-statistic:
                                                              192.63
      Df Model:
                         12
                                                              851.0
                                         Prob (F-statistic): 2.97e-193
Scale: 0.014005
                        247
      Df Residuals:
                         0.976
      R-squared:
      .....
                     Coef. Std.Err. t P>|t| [0.025 0.975]
      Intercept 2.0296
                               0.1639 12.3802 0.0000 1.7067
                                                                   2.3525
                               0.0021 -1.3735 0.1708 -0.0069
                    -0.0028
      V_1
                                                                   0.0012
                   0.0025 0.0003 8.5067 0.0000 0.0019 0.0000
0.0000 0.0000 1.4241 0.1557 -0.0000 0.0000
0.0478 0.0110 4.3468 0.0000 0.0261 0.0695
                              0.0003 8.5067 0.0000 0.0019
      V_10
      V_15
      V_20
      V_21
                    -0.0003
                               0.0001 -4.5898 0.0000 -0.0005 -0.0002
                   0.0000 0.0000 3.5909 0.0004 0.0000 0.0000
0.0184 0.0013 14.4341 0.0000 0.0159 0.0210
0.0000 0.0000 0.3218 0.7479 -0.0000 0.0000
      V_23
      V_25
      V_28
                    -0.0001 0.0000 -1.9547 0.0517 -0.0001 0.0000
-0.0031 0.0004 -8.3108 0.0000 -0.0038 -0.0023
      V_4
                    0.0016 0.0001 19.5324 0.0000 0.0015 0.0018
      V_7
                     0.0245 0.0051 4.7588 0.0000 0.0143 0.0346
                                   Durbin-Watson:
                       31.271
0.000
      Omnibus:
                                                               2,062
      Prob(Omnibus):
                                       Jarque-Bera (JB):
                                                               105.989
                          -0.428 Prob(JB):
                                                               0.000
                          6.008
                                       Condition No.:
                                                               18598948
      [1] Standard Errors assume that the covariance matrix of the
      errors is correctly specified.
      [2] The condition number is large, 1.86e+07. This might indicate
      that there are strong multicollinearity or other numerical
```

Figure 7: Summary of OLS Method-2

Predicting The values

```
[83]: # predict the values on training and testing
train_predict_lr = np.exp(lml.predict(train))
test_predict_lr = np.exp(lml.predict(test))

Evaluating the model

[86]: MSE_train_ols = mean_squared_error(train.V_10,train_predict_lr).round(2)
MSE_test_ols = mean_squared_error(test.V_10,test_predict_lr).round(2)

RMSE_train_ols = np.sqrt(MSE_train_ols).round(2)
RMSE_test_ols = np.sqrt(MSE_test_ols).round(2)

# print the values of MAPE for train and test
print('MSE of training data: ', MSE_train_ols, ' | ', 'MSE of testing data: ', MSE_test_ols)

# print the values of MAPE for train and test
print('RMSE of training data: ', RMSE_train_ols, ' | ', 'RMSE of testing data: ', RMSE_test_ols)

MSE of training data: 1387.54 | MSE of testing data: 1923.91
RMSE of training data: 37.25 | RMSE of testing data: 43.86

[88]: MAE_train_ols = mean_absolute_error(train.V_10,train_predict_lr).round(2)
MAE_test_ols = mean_absolute_error(test.V_10,train_predict_lr).round(2)
# print the values of MAPE for train and test
print('MAE of training data: ', MAE_train_ols, ' | ', 'MAE of testing data: ', MAE_test_ols)

MAE of training data: 18.05 | MAE of testing data: 24.2
```

Figure 8: Evaluation of the OLS Method

9 Model Building – ML Based Approach

The next phase of the study uses machine learning models on the same dataset for a comparative analysis. As there are insignificant variables, the first RFE was done.

RFE

Figure 9: RFE

Random Forest

Figure 10: Random Forest

Evaluation

```
MSE_train_rf = mean_squared_error(train_y,train_pred_rf).round(2)

MSE_test_rf = mean_squared_error(test_y,test_pred_rf).round(2)

RMSE_train_rf = np.sqrt(MSE_train_rf).round(2)

RMSE_test_rf = np.sqrt(MSE_test_rf).round(2)

# print the values of MAPE for train and test

print('MSE of training data: ', MSE_train_rf, ' | ', 'MSE of testing data: ', MSE_test_rf)

# print the values of MAPE for train and test

print('RMSE of training data: ', RMSE_train_rf, ' | ', 'RMSE of testing data: ', RMSE_test_rf)

MSE of training data: 139.92 | MSE of testing data: 799.93

RMSE of training data: 11.83 | RMSE of testing data: 26.64

130]:

MAE_train_rf = mean_absolute_error(train_y,train_pred_rf).round(2)

# print the values of MAPE for train and test

print('MAE of training data: ', MAE_train_rf, ' | ', 'MAE of testing data: ', MAE_test_rf)

MAE of training data: 7.68 | MAE of testing data: 18.87
```

Figure 11: Evaluation of Random Forest

One ANN model was also built in the research for the comparative analysis of machine learning with deep learning.

ANN



Figure 12: ANN

Evaluation

```
MSE_train_ANN = mean_squared_error(train_y,np.round(abs(train_pred_ann))).round(2)
MSE_test_ANN = mean_squared_error(test_y,np.round(abs(test_pred_ann))).round(2)

RMSE_train_ANN = np.sqrt(MSE_train_ANN).round(2)

RMSE_test_ANN = np.sqrt(MSE_test_ANN).round(2)

# print the values of MAPE for train and test
print('MSE of training data: ', MSE_train_ANN, ' | ', 'MSE of testing data: ', MSE_test_ANN)

# print the values of MAPE for train and test
print('RMSE of training data: ', RMSE_train_ANN, ' | ', 'RMSE of testing data: ', RMSE_test_ANN)

MSE of training data: 1295.05 | MSE of testing data: 1690.45
RMSE of training data: 35.99 | RMSE of testing data: 41.12

[151]: MAE_train_ANN = mean_absolute_error(train_y,np.round(abs(train_pred_ann))).round(2)

# print the values of MAPE for train and test
print('MAE of training data: ', MAE_train_ANN, ' | ', 'MAE of testing data: ', MAE_test_ANN)

MAE of training data: 28.54 | MAE of testing data: 32.27
```

Figure 13: Evaluation of ANN

10 XAI

The study has incorporated SHAP for the Explainability of features

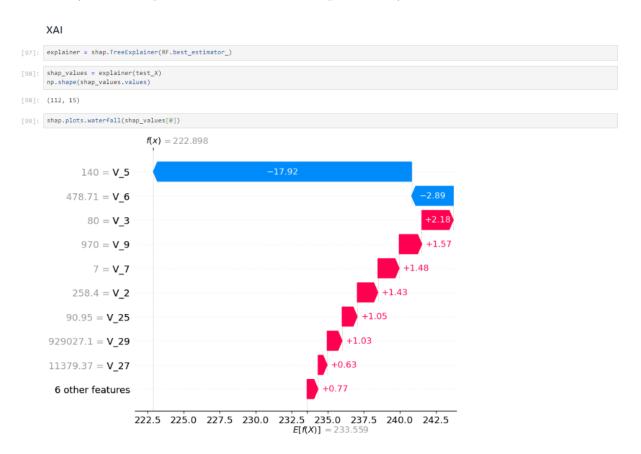


Figure 14: SHAP Values of Features

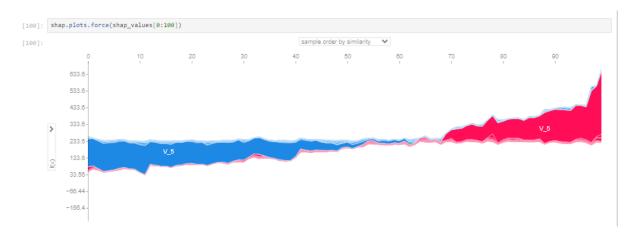


Figure 15: SHAP Summary Plot

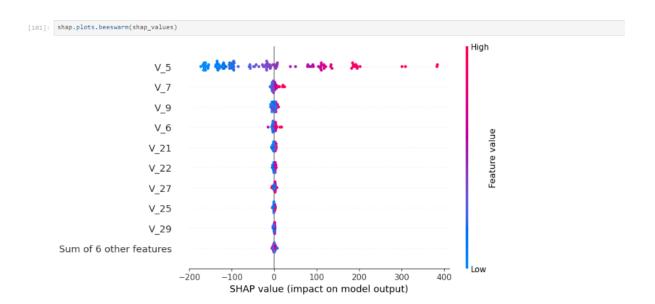


Figure 16: SHAP Summary Dot- Plot