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Abstract—The rise of security concerns in cloud-shared

infrastructures has introduced significant challenges for

maintaining privacy in data processing. Although standard

encryption methods provide robust protection for data at rest and

during transmission, vulnerabilities arise when data must be

decrypted for processing, exposing sensitive raw information to

potential privacy risks. This issue is particularly pronounced in

sectors governed by stringent regulatory requirements, such as

healthcare, genomics, smart government, and finance, among

many others, where protecting confidential data is critical.

Homomorphic Encryption (HE) cryptosystems are solutions to

address privacy concerns by providing encrypted data

computations. HE allows a non-trustworthy third-party resource

to process encrypted information without disclosure. However, the

main challenge toward deploying lattice-based HE schemes in

Convolutional Neural Network (CNN) models lies in overcoming

the high computational costs associated with these cryptosystems.

Efficient cryptographically compatible methods become

imperative for designing a privacy-preserving CNN with HE 

(CNN-HE). This paper proposes a method to improve the

performance of CNN-HE using the Residual Number System

(RNS)-based Cheon-Kim-Kim Song (CKKS) HE scheme, which

enables approximate arithmetic over encrypted real numbers. The

CNN-HE with CKKS-RNS enables encrypted inputs to be

decomposed into several parts and propagated homomorphically

and independently in parallel across the model. The RNS

representation enables parallel processing in our models,

significantly reducing processing time. Experimental analysis on

the MNIST optical character recognition benchmark dataset 

demonstrates that the proposed CNN-HE-RNS models reduce

classification latency concerning state-of-the-art CNN-HE 

solutions without compromising security and accuracy.

Keywords—cloud security, homomorphic encryption, neural 

networks, polynomial approximation, privacy-preserving, residual 

number system decomposition 

I. INTRODUCTION

A significant limitation to the widespread adoption of cloud 
computing for Machine Learning (ML) tasks involving sensitive 

information is the inadequate safeguarding of data privacy [1]. 
The access of the ML model to the raw data can create potential 
privacy risks because data are in the shared infrastructure, 
particularly in sectors where confidentiality is paramount, such 
as healthcare, genomics, smart government, and finance, among 
many others.  

Conventional encryption algorithms, such as the Advanced 
Encryption Standard (AES), successfully protect data at rest and 
during transmission, preventing third parties from accessing 
them. However, data processing implies a decryption process for 
data value extraction, falling into the problem of data 
vulnerability. Data must be computed securely [2]. 

Homomorphic Encryption (HE) can solve these problems by 
allowing computations on encrypted data [3], [4]. HE is a form 
of encryption that allows algebraic operations to be performed 
on ciphertexts without requiring access to the secret key. Its 
correctness relies on the homomorphism concept, a structure-
preserving transformation where two groups in different spaces 
can be mapped, e.g., polynomial rings, Galois fields, etc. In this 
case, a homomorphic function applied to ciphertexts provides 
the same result (after decryption) as applying the function to the 
original unencrypted data. In a nutshell, HE enables blind two-
party non-interactive processing of sensitive data [5]. 

An open problem in this field is the design of privacy-
preserving Convolutional Neural Network (CNN) models for 
classifying encrypted information using these lattice-based HE 
cryptosystems [6]. However, the main challenge toward 
deploying a privacy-preserving CNN with HE (CNN-HE) is 
overcoming the high computational costs associated with these 
HE cryptosystems. Computing ciphertexts with state-of-the-art 
schemes represents a slowdown of 4-6 orders of magnitude 
compared to performing on unencrypted data [7]. Efficient 
encrypted data processing is an important research area in the 
CNN-HE domain.  

In this paper, we present a method to improve the 
performance of CNN-HE using the Residual Number System 
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(RNS)-based Cheon-Kim-Kim Song (CKKS) HE scheme, 
which enables approximate arithmetic over encrypted real 
(complex) numbers, thereby allowing for privacy-preserving 
computations on sensitive data in the domain of continuous 
values. Our CNN-HE model with CKKS-RNS enables 
encrypted inputs to be decomposed into several parts and then 
propagated homomorphically and independently across the 
model. 

 Experimental analysis on the MNIST optical character 
recognition benchmark dataset demonstrates that the proposed 
CNN-HE-RNS models reduce classification latency concerning 
state-of-the-art CNN-HE solutions without compromising 
security and accuracy. CNN-HE-RNS safety is guaranteed by 
using CKKS-RNS, whose security is based on the hardness of 
the Ring Learning with Errors (RLWE) problem. RLWE is 
known to be as hard as worst-case lattice problems, which are 
currently considered secure against quantum computer attacks. 
Additionally, RNS representation, a widely known variation of 
finite-ring isomorphism, enables parallel processing, resulting in 
a significant improvement in processing time. 

The paper is structured as follows. Section II introduces 
homomorphic encryption schemes and presents the primitives of 
the CKKS-RNS scheme. Section III presents privacy-preserving 
convolutional neural networks with homomorphic encryption. 
Section IV discusses related work. Section V defines the 
experimental setup. The experimental results are presented in 
Section VI. Finally, we conclude in Section VII.  

II. CKKS-RNS HOMOMORPHIC ENCRYPTION SCHEME 

 Homomorphic Encryption (HE) is a form of encryption that 
allows algebraic operations to be performed on encrypted data 
without requiring access to the secret key. The information is 
public without representing a risk of a data breach, as the results 
of the calculated operations remain encrypted. Its correctness 
relies on the homomorphism concept, a structure-preserving 
transformation where two groups in different spaces can be 
mapped, e.g., polynomial rings, Galois fields, etc. Therefore, a 
homomorphic function applied to ciphertexts provides the same 
result (after decryption) as using the function to the original 
unencrypted data. HE enables blind, two-party, non-interactive 
processing of sensitive data (see Figure 1). 

 Let ��  be the message � in plaintext, ��  a secret key for 
decryption, and ��  a public key for encryption. The 
corresponding ciphertext ��  of ��  is generated by the 
encryption operation �� � Encrypt���, ��� . Recovering the 
information in an additively HE from a ciphertext ��  is 
performed by the decryption operation and the secret key as 
�� � Decrypt���, ��� , where �� � Add���, ���  contains the 
result of the homomorphic addition between ��  and �� . 
Analogously, for multiplication �� � Mult��� , ���  in a 
multiplicative HE. The HE schemes obtain ciphertexts �� and 
��, without knowing �� and ��. Ciphertexts �� and �� cannot 
be computed with standard encryption without the decryption of 
�� and ��. Each HE scheme defines a conventional public-key 
scheme with basic operations to generate secret and public keys, 
encrypt and decrypt messages, and perform homomorphic 
addition and multiplication operations.  

Cheon-Kim-Kim Song (CKKS), also known as 
Homomorphic Encryption for Arithmetic of Approximate 
Numbers (HEAAN), is a lattice-based HE scheme whose 
security is based on the hardness of the Ring Learning with 
Errors (RLWE) problem. The CKKS scheme performs 
approximate arithmetic on encrypted real (complex) numbers, 
allowing for privacy-preserving computations on sensitive data 
in the domain of continuous values. This capability of the CKKS 
scheme is crucial for complex and demanding applications, such 
as privacy-preserving NN models. Given plaintext messages �� 
and ��, it allows secure computing encryptions of approximate 
values of �� � ��  and ����  with a prefixed precision. The 
main characteristic of CKKS is that it treats the inserted noise of 
the RLWE problem as part of an error occurring during 
approximate computation. 

In CKKS, after the selection of parameters such as degree � 
of the polynomial ring and a modulo  , real numbers are 
encoded into plaintext polynomials. The ��  is a randomly 
generated polynomial. The ��  is created using �� , chosen 
parameters, and some randomness. The plaintext polynomial is 
encrypted using the ��  and noise to increase security. After 
operations, rescaling is performed to reduce noise and preserve 
the ciphertext. The ciphertext is decrypted using �� to obtain an 
approximated version of the original plaintext polynomial 
decoded into a real or complex resulting number. 

  

 

Fig. 1. Overview of privacy-preserving processing in a cloud environment
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 Let the polynomial ring for a power-of-two �  be  " �
ℤ$%&/�%( � 1�  and "* � ℤ*$%&/�%( � 1�  be a modulo-   

residue ring of ". Polynomial coefficients of "* are bounded by 

the modulo   and the degree of polynomials %( � 1. Let + be a 
level parameter that indicates the maximum multiplicative 
depth. Modulo  �  , ∙  . ∙ … ∙  0 is defined as the product of 

co-prime moduli  ,, …  0, where  ℓ � 2ℓ ∙  , for 1 ≤ ℓ ≤ +. 

The distribution 4567 � HW�ℎ� outputs a polynomial from 

"*  of ;±1=-coefficient having ℎ  non-zero coefficients, where 

HW�ℎ� denotes the set of signed binary vectors in ;±1=( whose 
Hamming weight is ℎ ∈ ?� . 46@A  and 46BB  denote discrete 
Gaussian distributions with some predefined standard deviation. 

CD"*E  refers to a uniform distribution over the ring "* . 

Moreover, for � � ∑ �G%G(H.GI, ∈ ℝ$%&/�%( � 1� , then ⌊�⌉ �
∑ ⌊�G⌉%G ∈ "(H.GI, , where ⌊∙⌉ returns the nearest integer of a real-
number input, rounding upwards in case of a tie [8]. 

CKKS encodes real values using a called canonical 

embedding M: ℝ$%&/�%( � 1� → ℂ(/Q, where a plaintext vector 

�RR⃗ � D�,, … , �(/QE  is transformed into MH.��RR⃗ � ∈ ℝ$%&/
�%( � 1� and then rounded to an integer-coefficient polynomial 
using a scaling factor ∆ , i.e., ⌊∆ ∙ MH.��RR⃗ �⌉ . The parameter ∆ 
affects the accuracy of the computation in CKKS.  

Let us discuss the main primitives of the CKKS scheme:  

• KeyGen ��,  , +� →  ��, ��, W� : Sets �� � �1, �� , where 
� ← 4567 . Sets �� � �Y, �� ∈ "*Z

Q , where Y � −�� �
W �mod  0�, � ← C�"*Z�, and W ← 46BB. The evaluation key 

is set as W� � �Y^, �′� ∈ "*Z ̀
Q , where Y^ � −�^� � W^ �

 0�Q �mod  0Q�, �′ ← C�"*Z̀ � and W′ ← 46BB. 

• Encrypt ��RR⃗ , ∆, ��� →  � : For a plaintext vector of real 
(complex) numbers �RR⃗ , it encodes � � ⌊∆ ∙ MH.��RR⃗ �⌉ ∈ " , 
and provides the ciphertext � � a ∙ �� � �� �
W,, W.� �mod  0�, where a ← 46@A and W,, W. ← 46BB. 

• Decrypt ��, ∆, ��� →  �RR⃗ : For a ciphertext � � ��,, �.� ∈
"*ℓ

Q , decodes the message as � � �, � �. ∙ � ��bc  ℓ�, and 

outputs a plaintext vector  �RR⃗ � ∆H. ∙ M���. 

• Add ��., �Q� →   �� : Add two ciphertexts �., �Q ∈ "*ℓ
Q . It 

returns ciphertext �� � �. ⊕ �Q � �. � �Q �mod  ℓ�. 

• Mult ��., �Q, W�� →   �� : For two ciphertexts �. �
D�.,,, �.,.E , �Q � D�Q,,, �Q,.E ∈ "*ℓ

Q , let �c,, c., cQ� �
D�.,,�Q,,, �.,,�Q,. � �.,.�Q,,, �.,.�Q,.E . It returns ciphertext 

�� � �. ⊗ �Q � �c,, c.� � ⌊ 0H. ∙ cQ ∙ W�⌉ �mod  ℓ�. 

• Rot ��, g� →   �′ : Given an encryption �  of �RR⃗ �
D�,, … , �(/QE , outputs �′  that encrypts the left-rotated 

vector �RR⃗ � D�h , … , �(/Q, �,, … , �hH.E by g positions.  

Because each �RR⃗  is scaled, the plaintext of � ← Mult ��., �Q� 
is ∆ ∙ �.�Q , which results in the exponential growth of 
plaintexts. To deal with such a problem, CKKS introduces the 
so-called rescaling procedure: 

• Resc ��� →   �′ : For a ciphertext � ∈ "*ℓ
Q , outputs �^ �

⌊ ℓj/ ℓ⌉ ∙ � �mod  ℓj�.\ 

 Since the CKKS scheme requires somewhat large integers, 
the original implementation relies on a multi-precision library, 
which leads to higher computational complexity. To mitigate 
this complexity, a variant known as the Residue Number System 
(RNS)-CKKS scheme [9] was introduced. The application of 
RNS allows homomorphic operations to be performed in 
parallel and reduces the complexity of calculations, leading to a 
significant improvement in processing time. 

 In CKKS-RNS, large integers are decomposed into several 
smaller integers, such that addition and multiplication 
operations on the original large integers are performed as 
component-wise operations on their smaller counterparts (see 
Figure 2). In this paper, RNS-CKKS was employed as the 
underlying HE cryptosystem. 

For more detailed information and additional considerations 
on the CKKS and CKKS-RNS schemes, including the 
correctness and security analysis, refer to [8] and [9], 
respectively. 

III. PRIVACY-PRESERVING CNN-HE WITH CKKS-RNS  

This section explores the design of privacy-preserving NN-
HE as a natural extension of conventional non-encrypted NN 
models. 

A. Homomorphic neuron 

The neuron is the fundamental unit in an artificial NN, 
processing inputs through weighted transformations and 
producing outputs via a nonlinear activation function. A NN 
architecture defines a set of neurons organized in layers with 
connections between them.   

The methodology for designing a CNN-HE model involves 
applying HE to the inputs and homomorphically propagating the 
data across the network. However, its implementation faces 
limitations, as not all functions for processing NN have direct 
homomorphic counterparts [10]. To ensure secure computation, 
the internal structure of the model must be adapted, typically by 
replacing non-homomorphic functions with suitable 
approximations. 

Let us define the homomorphic neuron in a CNN-HE as 

 kl ← mn op �qrG ⊗ �G� �n  s̅
u 

GI.
v, (1) 

where w denotes the number of ciphertext inputs �G  with weights 

qrG. Bias s̅ is also a ciphertext, and the activation function mn is a 
polynomial approximation that only consists of homomorphic 
operations ⊕ and ⊗ (see Section II). kl is the encrypted output 
of the neuron.  

 The weighted sum in (1) consists of additions and 
multiplications between the encrypted inputs and their 
corresponding synaptic weights, enabling its homomorphic 
computation. 

However, an open problem in the CNN-HE domain is the 
definition of cryptographically compatible nonlinear 
components. State-of-the-art activation functions are not 
polynomials and use operations that HE does not support. To 
overcome this limitation, we adopt polynomial self-learning 
activation functions [10], [11], [12]. 
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B. Self-learning activation functions 

Based on the definition of a homomorphic neuron outlined 
in Section III.A, we adopt the Self-Learning Activation 
Functions (SLAF) approach [11], approximating the nonlinear 
activation function at each neuron independently using a 
polynomial with trainable coefficients. That is, CNN-HE 
activation functions are defined as 

 mxn � �,x ⊕ �.xy ⊕ �QxyQ ⊕ … ⊕ �uxyu (2) 

where �,x , �.x , … , �ux  denote the trainable coefficients of the 

polynomial mxn  at neuron � . Our CNN-HE considers w � 1 
trainable polynomial coefficients �,, �., … , �u  initialized by 
zero.  

The homomorphically computable SLAF allows us to find 
an adequate function shape using knowledge from the training 
data [13]. SLAF coefficients are learned together with the model 
parameters using the backpropagation learning algorithm and 
gradient descent optimization method. Thus, polynomial SLAFs 
are adapted to the specific problem, network structure, 
hyperparameters, and dataset. 

Multiple studies indicate that NN models with polynomial 
activations have the same representational power as their non-
polynomial analogous [14], [15]. These polynomial activations 
enhance latency without compromising accuracy [16]. 
Additionally, a CNN-HE with SLAF can approximate any 
continuous activation [11] [17]. 

C. Errors 

 CNN-HE implementation using approximate HE schemes, 
such as CKKS and CKKS-RNS, can compromise the 
correctness of the results. This section examines the errors 
introduced during homomorphic processing to elucidate the 
accuracy loss in CNN-HE models compared to their non-
homomorphic counterparts. 

Encoding real (complex) numbers into a polynomial ring 
with integer coefficients can lead to an incorrect result. An error 
can occur in numbers in the zero neighborhood, even without 

adding noise. Converting a value vector to polynomial ��%� 
can lead to an error in calculation. Let us consider the CKKS [8] 
scheme to illustrate this concern: 

Let the z -th cyclotomic polynomial with z � 8  (i.e. 
Φ}�%� � %~ � 1 ), Δ � 64 , and � � ;�}, �}�=  for the root of 
unity �} � exp �2��/8� . For vector � � �0.1, −0.01� , its 
corresponding real polynomial is −0.039%� � 0.039% �
0.045 according to the interpolation polynomial in the Lagrange 

form for a given set of points ��, 0.1�, ���, −0.01�, ��̅, 0.1llll�, 

D��lll, −0.01llllllllE , where � � Y�llllllll � � − Y� , �, Y ∈ ℝ  and �Q � −1 . 

Therefore, the encoding algorithm output is ��%� � −2%� �
2% � 3 . Note that 64H. ⋅ D���}�, ���}��E �
�0.09107, 0.00268� is approximated to the vector � with high 
precision. This example shows that the encoding number −0.01 
turned into 0.00268  when decoded. The number obtained 
during decoding differs in the value and sign, i.e., it does not 
carry any information about the initial number. Moreover, 
increasing Δ allows to reduce the absolute value. Consequently, 
an incorrect result using a CNN-HE model is highly probable 
when the input data are normalized, i.e., the values are 
compressed up to the interval $0,1&. This error leads to incorrect 
results when using unstable algorithms [18]. 

On the other hand, calculation errors can arise due to the 
polynomial approximation of nonlinear activation functions. For 
instance, let us consider ReLU�y� � max�y, 0� �
y �sign�y� � 1�. The function max��, Y� returns the maximum 
value of � and Y. When we calculate ReLU�y� for y � 0 over 
HE-encrypted data using sign�y� algorithm presented by Cheon 
et al. [19], the function will be greater than zero. Thus, the 
implementation of CNN-HE should be considered rounding 
errors that may occur. 

IV. RELATED WORK 

This paper aims to be a step towards bringing closer the CNN 
and HE cryptography fields. However, the main challenge 
toward deploying HE in cognitive models is overcoming the 
high computational costs associated with these cryptosystems. 
Computing over ciphertexts with state-of-the-art schemes such 
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as CKKS and CKKS-RNS represents a slowdown of 4-6 orders 
of magnitude compared to performing the same computations 
on unencrypted data [7]. While several approaches have been 
proposed in the literature to accelerate the homomorphic 
processing of these solutions, they remain inefficient in practice. 
Consequently, designing efficient cryptographically compatible 
methods to optimize privacy-preserving CNN-HE models 
remains an open challenge. 

CryptoNets, proposed by Dowlin et al. [20], represents the 
first model that addresses the challenge of achieving a blind, 
non-interactive classification. It uses the leveled YASHE [21] 
for inputs and propagates signals across the network 
homomorphically. However, its performance is limited due to 
the square function being used as an activation function, 
computational overhead, and the insecure YASHE scheme [22]. 
Several subsequent works in the literature focus on improving 
its constraints. Chabanne et al. [23] enhanced CryptoNets' 
performance by employing a polynomial approximation of the 
ReLU activation function and using a batch normalization layer 
before each activation layer. Chou et al. [24] improved 
encrypted inference speed through pruning and quantization 
methods that leverage sparse representations in the underlying 
Brakerski/Fan-Vercauteren (BFV) [25], achieving competitive 
accuracy while reducing computational time. 

Bourse et al. [26] presented a Discretized Neural Network 
(DiNN) for inference over encrypted data, whose complexity is 
linear in the network size. However, it incurs high overhead and 
low accuracy because each neuron output is refreshed through 
the bootstrapping procedure featured by the Fully 
Homomorphic Encryption scheme over the Torus (TFHE). 
Sanyal et al. [27] proposed a privacy-preserving Binary Neural 
Network (BNN) with a TFHE scheme built upon the DiNN 
approach, which evaluates arithmetic operations as a 
composition of binary gates. The approach implements 
sparsification techniques and algorithmic tools to speed up and 
parallelize ciphertext computation but faces significant latency, 
requiring up to 37 hours for single predictions. 

Van Elsloo et al. [28] proposed SEALion, an extensible 
framework built upon CryptoNets that automates encryption 
parameter selection for BFV, improving both latency and 
encrypted inference. Hesamifard et al. [29] developed 
CryptoDL, an NN-HE based on CryptoNets [20], [23]. 
CryptoDL replaces nonlinear activations with HE-friendly low-
degree approximations. Liao et al. [30] extended this by 
implementing a CryptoDL-based NN-HE for encrypted sensor 
data; they approximated Tanh, ReLU, and Swish to generate 
cryptographically computable activations. Brutzkus et al. [31] 
proposed Low-Latency (Lo-La) CryptoNets to improve latency 
and memory usage. Lo-La encrypts entire layers as a single 
message with BFV and uses different matrix-vector 
multiplication implementations, improving latency but 
remaining constrained by message dimension. 

Boemer et al. [32] presented nGraph-HE, an extension of the 
Intel nGraph compiler to deploy NN-HEs. It incorporates a 
privacy-preserving abstraction layer, enabling HE-aware 
optimizations at compile- and run-time. Jiang et al. [33] 
proposed the E2DM framework for arithmetic on encrypted 
matrices, enabling Single Instruction Multiple Data (SIMD) 

computations. Their CryptoNets implementation processes ten 
likelihoods of 64 MNIST images in 1.69 seconds. Falcetta and 
Roveri [34] developed a privacy-preserving LeNet-1, focusing 
on security parameter selection and approximation of nonlinear 
layers. 

 Badawi et al. [35] presented an efficient GPU-based BFV 
implementation for NN-HE, significantly accelerating the 
classification process while maintaining accuracy; it classifies 
MNIST in 2% of the time CryptoNets takes. Lee et al. [36] 
deployed a ResNet-20 using RNS-CKKS with bootstrapping. 
The authors homomorphically evaluate the NN-HE with 383 
CIFAR-10 images and plaintext model parameters. However, 
inferring one image takes about 3 hours due to the more than a 
thousand bootstrapping functions and the high-degree minimax 
composite polynomials. Pulido-Gaytan and Tchernykh [11] 
proposed non-interactive privacy-preserving SLAF-based 
CNN-HE models to classify CKKS-encrypted data with 
improved accuracy and performance. The authors show that a 
self-learning mechanism can achieve the same accuracy of 
99.38% as a non-polynomial ReLU over non-homomorphic 
CNNs and increase accuracy and higher performance than the 
state-of-the-art CNN-HE CryptoNets. 

Table 1 summarizes the main features of the state-of-the-art 
NN-HE models, focusing on implementation details, latency 
(Lat), and accuracy (Acc). The GPU (Graphic Processing Unit) 
column denotes the use of GPU for hardware acceleration. The 
2-arch (2-architecture) column indicates using a dual-
architecture strategy by collapsing adjacent linear layers during 
the evaluation process. 

V. EXPERIMENTAL SETUP 

This section describes the evaluation method, developing 
tools, dataset, security parameter settings, and model 
architectures.  

A. Tools 

The CKKS-RNS scheme, homomorphic operations, and 
privacy-preserving CNN-HE-RNS models are implemented 
using PyTorch [15], a widely used open-source library for deep 
learning and tensor processing, and the open-source SEAL 
v3.5.6 [16] through the Python TenSEAL library [17]. Given 
that the current version of TenSEAL lacks support for RNS 
composition and decomposition, a custom CKKS-RNS 
implementation has been developed. The experimental 
evaluation is performed on a server Express x3650 M4 with 
Intel(R) Xeon(R) CPU E5-2650v2 95W at 2.6GHz, 64 GB. The 
64-bit server OS is Ubuntu 18.04.6. 

B. Security settings 

The noise budget, ciphertext and plaintext size, scheme 
performance, multiplicative depth, and security level depend on 
the security parameter settings. We adopt the security settings 
specified in the HE standard [37]. While the multiplicative depth 
of the mathematical convolution is equal to one, the 
multiplicative depth of the polynomial evaluation is equal to the 
binary logarithm of the polynomial plus one. In Table II, we 
show such security settings for the CKKS-RNS scheme. The 
security level � �  128 bits guarantees that an adversary needs 
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to perform 2.Q}  elementary operations to break the scheme with 
a probability one. 

TABLE I.  STATE-OF-THE-ART PRIVACY-PRESERVING NN-HE 

Year Model Dataset 
Performance 

GPU 2-arch Ref 
Lat (s) Acc (%) 

2016 CryptoNets MNIST 250 98.95  ● [20] 

2017 Chabanne-NN MNIST 
NR* 97.95   

[23] 
NR* 99.28   

2018 F-CryptoNets 
MNIST 39.1 98.70   

[24] 
CIFAR-10 22372 76.72   

2018 FHE-DiNN100 MNIST 1.65 96.35   [26] 

2018 TAPAS MNIST 37 [hrs.] 98.60   [27] 

2019 SEALion MNIST 60 98.91   [28] 

2019 CryptoDL MNIST 
148.97 98.52   

[29] 
320 99.25   

2019 Lo-La 
MNIST 

0.29 96.92   

[31] 2.20 98.95  ● 

CIFAR-10 730 74.10   

2019 nGraph-HE 
MNIST 16.72 98.95  

● [32] 
CIFAR-10 1651 62.20  

2019 E2DM MNIST 1.69 98.10  ● [33] 

2021 HCNN 
MNIST 5.16 99.00 

● 
 

[35] 
CIFAR-10 304.43 77.55  

2022 LeNet-HE MNIST 138 98.18   [34] 

2022 RNS-CKKS-NN CIFAR-10 10602    92.43** ●  [36] 

2024 CNN-HE-SLAF MNIST  
3.13 98.22   

[11] 
39.84 99.21  ● 

NR*: It does not provide results over encrypted data. Therefore, we cannot provide a comparison w.r.t 
to the performance measures.  

**: Classification accuracy with 383 encrypted images. 

C. Dataset 

The Modified National Institute of Standards and 
Technology (MNIST) database is a standard dataset widely used 
in the literature [38]. It consists of 60,000 grayscale images of 
handwritten digits. Each image is a 28x28 pixel array, where the 
value of each pixel is a positive integer in the range [0, 255]. The 
MNIST training set includes 50,000 examples. The remaining 
10,000 images represent the testing set. While MNIST is 
arguably a simple dataset, it has remained the standard 
benchmark for homomorphic inference tasks [29], [39]. 

TABLE II.  CKKS-RNS SECURITY SETTINGS 

Parameter Value 

� 128 

� 2.~ 

∆ 2Q� 

log   366 

+ 13 

  �40,  26, … ,26,  40� 
D. Architectures 

We study two CNN architectures: 1-convolutional (CNN1) 
and 2-convolutional (CNN2). To provide a direct comparison 
concerning state-of-the-art solutions, we adopt the CNN1-HE-
SLAF and CNN2-HE-SLAF [11] architectures for CNN1 and 
CNN2, which in turn are variants of CryptoNets [20], Faster-
CryptoNets [24], CryptoDL [29], Lo-La [31], HCNN [35], 
SEALion [28], and others. In the CNN-HE-SLAF framework, 

the model is trained with the original ReLU activation function, 
weights are fixed, SLAFs substitute activations, and CNN is 
shortly re-trained to learn customized polynomial 
approximation coefficients. 

CNN1 and CNN2 architectures are depicted in Figures 3 and 
4, respectively. Additionally, Figure 5 illustrates their adaptation 
to RNS. 

CNN1, with a single convolutional layer and two dense 
layers, is a variant of Lo-La [31]. In contrast to the Lo-La 
approach, the CNN1 model incorporates approximated 
activation functions after the convolutional and the first dense 
layers.  

 

Fig. 3. CNN1 with a single convolutional layer. A gray element denotes a 
convolutional layer. Circular elements after the convolutional and first fully 
connected layers denote activation functions. Blue elements represent dense 
layers. 

CNN2 is a CryptoNets-based model architecture with two 
convolutional layers. It incorporates a batch normalization layer 
before each activation to encourage the activation inputs to fit in 
the approximated interval. The normalization layer transforms 
them into normal distribution inputs with zero mean and unit 
variance, which reduces the overall approximation error, 
prevents the generalization of higher feature values, and 
indirectly provides smaller weights for HE processing. 

  

Fig. 4. CNN2: a CryptoNets-based network with two convolutional layers. 
Circular elements denote activation functions. 

CNN1-RNS and CNN2-RNS architectures denote the 
adaptation of CNN1 and CNN2 models to RNS processing. As 
shown in Figure 5a, CNN1-RNS decomposes the input image 
into multiple tensors using RNS representation. The 
convolutional layer then processes these tensors in parallel, 
optimizing the handling of ciphertexts. Subsequently, the 
tensors are reverted to their original representation. The 
activation functions and dense layers are processed similarly to 
standard CNN1. Similarly, the CNN2-RNS architecture 
employs RNS to decompose the signal to process convolutional 
layers, with the tensors being reassembled following the 
convolution (see Figure 5b). 
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Fig. 5. CNN-RNS architectures. a) CNN1-RNS with a single convolutional layer. b) CNN2-RNS architecture with two convolutional layers. They employ RNS to 
decompose the signal for the processing of convolutional layers, with the tensors being reassembled following the convolution.  

 

 The prevailing approaches use pre-trained models to 
mitigate the computational overhead associated with the training 
phase in CNN-HE modeling, allowing a trade-off between 
complexity and accuracy. That is, the training of our models is 
performed over unencrypted data, and the evaluation is kept on 
the encrypted data. State-of-the-art solutions such as 
CryptoNets, Chabanne-NN, F-CryptoNets, FHE-DiNN100, 
TAPAS, SEALion, CryptoDL, Lo-La, nGraph-HE, E2DM, 
HCNN, LeNet-HE, RNS-CKKS-NN, CNN-HE-SLAF (see 
Table I), also adopt this practice [6]. 

The networks are trained with Stochastic Gradient Descent 
(SGD) with a momentum of 0.9. We utilize a batch size of 64 
and a cross-entropy loss function. Thirty epochs better train 
models for testing accuracy. For the learning rate, we apply the 
1-cycle policy [40], also called the super-convergence 
phenomenon. It uses one round of an increasing and decreasing 
learning rate, in which the maximum learning rate serves as a 
regularizer. We adopt the Kaiming weight initialization for 
convolutional layers without dropout to obtain the initial 
synaptic weights.  

VI. EXPERIMENTAL ANALYSIS 

This section presents the experimental results of the 
proposed privacy-preserving CNN-HE-RNS model evaluation 
and provides a comprehensive comparison concerning state-of-
the-art solutions. The assessment of the privacy-preserving 
solutions is centered around their accuracy and latency.  

We adapt the CNN-HE-SLAF approach for RNS to reduce 
processing time without compromising inference accuracy. Our 
models take advantage of CKKS-RNS to optimize encrypted 
operations in terms of latency. To compare CNN-HE-SLAF 
models and solutions with RNS, we analyze their differences 
and similarities in the training and testing phases. In all models, 
both inputs and weights are encrypted before testing. 

A. CNN1-HE-RNS 

We evaluated the performance of privacy-preserving CNN1-
HE and CNN1-HE-RNS models. Table III presents the models' 
latency (Lat) and accuracy (Acc). Results for ciphertext inputs 
are reported in the CNN1-HE and CNN1-HE-RNS columns. 
Latency refers to the computational time required to process a 
single encrypted classification request. 

a) CNN1-RNS 

b) CNN2-RNS 



Prep
rin

t
TABLE III.  PERFORMANCE OF CNN1-HE AND CNN1-HE-RNS 

Model 
Training 

Acc (%) 

Lat (s) 

Acc (%) 

Min Max Avg 

  CNN1-HE 

99.442 

3.12 4.02 3.56 98.22 

  CNN1-HE-RNS 1.73 2.89 2.27 98.22 

 

We can see that the CNN1-HE-RNS implementation with a 
three-degree polynomial SLAF and three co-prime moduli 
achieves the same testing accuracy as CNN1-HE, indicating that 
RNS representation does not compromise the model accuracy. 
Additionally, experimental results show that the CNN1-HE-
RNS model reduces classification latency concerning CNN1-
HE. These results highlight the efficiency of CNN1-HE-RNS in 
terms of processing time without compromising accuracy, 
suggesting promising potential for practical applications. 

CNN1-HE model has an average processing time of 3.56 
seconds, ranging from 3.12 to 4.02. In contrast, the CNN1-HE-
RNS model shows a significant improvement, with an average 
processing time of 2.27 seconds, ranging from 1.73 to 2.89, 
representing a speed-up of 36.24% on average time.  

Non-positional RNS representation allows a large number to 
be decomposed into smaller residues that can be processed 
independently, accelerating convolution layers. Moreover, using 
smaller residuals minimizes the accumulation of numerical 
errors, preserving the accuracy without the need for additional 
calculations for error correction. These optimizations contribute 
to a significant decrease in processing time. 

We analyze the CNN1-HE-RNS performance across various 
modulo configurations. This analysis is critical for 
understanding how model latency is affected by an increase in 
the number of moduli. We use the co-prime generation tool 
provided by SEAL, where given a list of lengths of at most 60 
bits, also known as a moduli chain, a set of co-primes of those 
lengths is generated (see Table II). Table IV provides the 
average processing times obtained for each configuration. 

TABLE IV.  PERFORMANCE OF CNN1-HE-RNS WITH MODULO 

CONFIGURATIONS 

Moduli chain length  Lat (s) 

3 2.27 

4 2.02 

5 1.98 

6 1.89 

7 1.85 

8 1.74 

9 1.67 

10 1.74 

 

We can see that average model latency tends to reduce as the 
number of moduli increases from three to nine, with the 
minimum latency observed at nine moduli. However, when the 

number of modules is increased to ten, the average processing 
time rises to 1.74 seconds, indicating the presence of an optimal 
value for the number of modules; beyond this threshold, 
additional modules do not necessarily enhance latency. 

B. CNN2-HE-RNS 

 Table V presents the performance of the CNN2-HE and 
CNN2-HE-RNS models. Our CNN2-HE-RNS solution using 
three-degree polynomial activations and three co-prime moduli 
achieves the same testing accuracy as a non-RNS homomorphic 
model in the ciphertext space. These results show the 
remarkable capability of RNS variants to yield comparable 
accuracy to CNN-HE solutions. It confirms that CNN-HE-RNS 
models have the same representative ability as their non-RNS 
counterparts. 

TABLE V.  PERFORMANCE OF CNN2-HE AND CNN2-HE-RNS 

Model 
Training 

Acc (%) 

Lat (s) 

Acc (%) 

Min Max Avg 

  CNN2-HE 

99.338 

25.62 40.21 39.91 99.21 

  CNN2-HE-RNS 21.91 28.35 23.67 99.21 

 

  Comparing performance, the CNN2-HE model presents an 
average processing time of 39.91 seconds, ranging from 25.62 
to 40.21 seconds. On the other hand, our CNN2-HE-RNS model 
shows a significant improvement, with an average processing 
time of 23.67 seconds, ranging from 21.91 to 28.35 seconds, 
representing a speed-up of 40.69% on average time. The results 
demonstrate that CNN2-HE-RNS classifies the MNIST optical 
character recognition benchmark dataset 10.57 times faster than 
the state-of-the-art CNN-HE CryptoNets with better accuracy 
(see Table I). Therefore, the application of RNS to privacy-
preserving CNN-HE models not only preserves the accuracy but 
also enhances processing latency, suggesting promising 
potential for applications requiring high computational 
efficiency. 

We evaluate the performance of the CNN2-HE-RNS model 
through different modulo configurations, i.e., we study the 
impact of increasing the number of moduli on model latency. 
Table VI shows the average processing times obtained for each 
configuration. 

The latency evaluation of CNN2-HE-RNS under different 
moduli configurations shows a reduction in the average 
processing time with an increasing number of moduli, reaching 
a minimum of 22.46 seconds with nine modules. However, 
adding the tenth moduli resulted in a slight increase in the 
average processing time to 22.51 seconds, indicating that nine 
moduli represent the optimal setting for minimizing latency. 

The experimental results demonstrate that the integration of 
RNS representation significantly enhances the efficiency of 
CNN-HE models without sacrificing encrypted classification 
accuracy. Furthermore, parallelization is identified as a critical 
strategy for optimizing overall model efficiency. These findings 
offer valuable insights for the practical implementation of CNN-
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HE models, ensuring an adequate trade-off between security, 
accuracy, and computational complexity. 

TABLE VI.  PERFORMANCE OF CNN2-HE-RNS WITH MODULO 

CONFIGURATIONS 

Moduli chain length Lat (s) 

1 39.91 

3 23.67 

4 23.39 

5 23.12 

6 22.76 

7 22.54 

8 22.49 

9 22.46 

10 22.51 

  

VII. CONCLUSION 

Privacy-preserving techniques, such as HE, offer a solution 
for addressing the processing of confidential data while it 
remains encrypted. Nonetheless, the computational overhead is 
the biggest challenge to the widespread adoption of HE. 
Optimization techniques are required to improve performance in 
various domains, such as cloud CNN-HE modeling. Although 
protecting the privacy of sensitive data is essential, CNN-HE 
models must also offer acceptable time complexity. 

In this paper, we propose a method to enhance the 
performance of CNN-HE models by utilizing the CKKS-RNS 
HE scheme, enabling efficient encrypted image classification. 
Our CNN-HE-RNS enables encrypted inputs to be decomposed 
into several parts and then propagated homomorphically and 
independently in parallel across the model. The RNS 
representation enables parallel processing in our models, 
significantly reducing processing time. Experimental analysis 
on the MNIST optical character recognition benchmark dataset 
demonstrates that the proposed CNN-HE-RNS models reduce 
classification latency concerning state-of-the-art CNN-HE 
solutions without compromising security and accuracy. 

The proposed CNN-HE-RNS models yield better 
performance than state-of-the-art solutions. The CKKS-RNS 
scheme supports optimization. Nonetheless, several lines of 
work in the encrypted classification domain remain to be 
addressed in future work. It is essential to apply the state-of-the-
art practical methods of NN hardware acceleration to proposed 
models: GPU, Tensor Processing Unit (TPU), Field 
Programmable Gate Array (FPGA), Application-Specific 
Integrated Circuit (ASIC), etc. 

Moreover, the list of potential applications is broad due to 
the applied nature of discussed real-world problems and the 
privacy benefits of CNN-HE-RNS solutions. In future work, it 
is essential to explore the applicability of proposed models for 
sensitive domains such as medical image classification.  
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