ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Pravin Harish Sharma
Student ID: x22214224

School of Computing
National College of Ireland

Supervisor: Prof. Barry Haycock

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Pravin Harish Sharma
Student ID: X22214224
Programme: Data Analytics Year: 2023-2024
Module: MSc Research Project
Lecturer: Prof. Barry Haycock
Submission Due
Date: 12-08-2024
Project Title: A Deep learning approach for chicken disease detection using

images of droppings
Word Count: 1900 Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: PS

Date: 12-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Pravin Harish Sharma
Student ID; x22214224

1 Introduction

The research intents to build a deep learning pipeline for identifying sick chickens using their
faecal images. The object detection model will use the latest YoloV10s and for image
classification ensemble of light weight models — MobileNetV3, EfficientNetV2B2, and
NasNetMobile. The output will have the bounding boxes along with the disease class
predicted on the images. The technical setup and code samples from each module will be
stated in this configuration manual.

2 System Configuration and Setup

Two environments were used for the development of the project. Local setup for sample
scripts development/testing and data cleaning. Google Colab Pro was used training of models
on different parameters.

2.1 Local Setup

We need to utilize the GPU of the laptop for training the model for lesser epochs, and for
more epochs google colab will be used.

Setting Up Jupyter notebook in the windows laptop to utilize the GPU power:
1. Install Anaconda Navigator
2. Open Anaconda Prompt in Admin Mode and run following commands:
a) Create an environment with python version 3.9
conda create -n py39 python=3.9

b) Activate the environment
conda activate py39

c) Install cudatoolkit and cudnn
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0

d) Install tensorflow
python -m pip install tensorflow==2.10

e) Install jupyter notebook
3. Now open jupyter notebook and create a new notebook and run the below command

as shown in Figure 1 and 2, to check if GPU is accessible by jupyter notebook. Figure
3 shows the local system configuration.

[2]: | import tensorflow as tf

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU")))

Num GPUs Available: 1

Figure 1: Check Number of GPU available

[3]: Invidia-smi
Fri Jun 14 19:09:81 2024
B e e et et e R P +
| NVIDIA-SMI 555.99 Driver Version: 555.99 CUDA Version: 12.5 |
| L L L L L LR R PP e R T oo +
| GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC
| Fan Temp Perf Pur:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M.
| @ NVIDIA GeForce RTX 3058 ... WDDM | ©@G@EEee:01:00.8 OFf | N/A
| N/A 51C Pe 13W / SeW | @MiB / 4Q96MiB | @% Default |
| | | N/A |
B e T e e e e T +
B e e PP +
| Processes: |
| GPu G6I CI PID Type Process name GPU Memory |
| ID ID Usage
|s=smsesmmmemmmseenmsennaeeas —
| No running processes found |
= = = e +

Figure 2: Check GPU configuration

System: Windows

Machine: AMD64

Processor: AMD64 Family 25 Model 8@ Stepping @, AuthenticAMD
Physical cores: 8

Total cores: 16

Total memory: 16541605888

Total disk space: 5108455517184

Python Version: 3.9.19

Figure 3: Local System Configuration

4. The local system configuration:
4GB GPU (RTX 3050), 16GB RAM, 8 physical cores, Windows. Python 3.9.19

2.2 Google Colab Pro

Googl colab pro was used for running models for higher epochs. The configuration of
the machine is shown in the Figure 4 and 5. It consists of 16GB GPU (T4-Tesla), 51GB
RAM, 4 physical cores, Linux and Python 3.10.12

R e e e L L e e e e e ¥
| NVIDIA-SMI 535.104.85 Driver Version: 535.104.05 CUDA Version: 12.2 |
I e e e e e e Hom e e +
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
======================= ====t== =============t======================		
@ Tesla T4 off	00PEEREG:00:04.0 OFf	o
N/A 63C P8 18W / 70w	3MiB / 1536@MiB	% Default
		N/A
frmmm e e e fmmmmmm e fmmm e +		
e e +		
Processes:		
GPU GI (I PID Type Process name GPU Memory		
ID iD Usage		
No running processes found		
Ty +

Figure 4: Google Colab GPU Configuration

System: Linux

Machine: x86_64

Processor: x86_64

Physical cores: 4

Total cores: 8

Total memory: 54754004992
Total disk space: 216063848448
Python Version: 3.10.12

Figure 5: Google Colab Overall Configuration

3 Selection of the Dataset
The datasets for this research are acquired from Zenodo opensource dataset library. The data
is collected from Arusha and Kilimanjaro regions which are situated in Tanzania.
The 2-dataset used in this research are the following:

1. Manually labelled Dataset!

2. Lab labelled Dataset?
The Images in the dataset are the fecal images of chickens and are divided into following
categories: Coccidiosis(Cocci) Disease, Healthy, Newcastle(NCD) Disease and
Salmonella(Salmo) Disease.The manually labelled dataset have total of 6812 images which
also have bounding box annotation and lab labelled dataset have 1,255 images but these
images do not have bounding box annotation. The lab images were collected along with the
fecal sample for running tests on them. All the images do not have a fix resolution or
alignment.

4 Exploratory Data Analysis
4.1 Sample Images and Class Distribution (dataset/0_raw_data)

4.1.1 Farm Labelled Images

path: root/dataset/0O_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases
Diagnostics)

Each class had a separate folder. Figure 6 shows sample images from the farm labelled raw
dataset from each of the classes. Figure 7 shows distribution of images across the classes in
farm labelled raw dataset.

L https://zenodo.org/records/4628934
2 https://zenodo.org/records/5801834

https://zenodo.org/records/5801834
https://zenodo.org/records/5801834

o

occi.278‘jpg

healthy.628.jpg

o -

5
_ £
salmo.341.jpg

= !
salmo.2231.jpg

cocci.137.jpg

healthy.827.jpg

k.

ncd.257.jpg

salmo.2202.jpg

Figure 6: Sample Images from Farm labelled Raw dataset

Class

Class
Class
Class

"cocci" has 2103 images, which is 30.87% of the total.
"healthy" has 2057 images, which is 30.20% of the total.
"ncd" has 376 images, which is 5.52% of the total.
"salmo" has 2276 images, which is 33.41% of the total.

Number of Images per Class

Percentage of Images per Class

&
3

Number of Images
g

healthy

healthy

Class

Figure 7: Farm Labelled raw dataset image distribution

4.1.2 Lab Labelled Images

(path: root/dataset/0_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases

Diagnostics - PCR annotated)

Each class had a separate folder. Figure 8 shows sample images from the lab labelled raw
dataset from each of the classes. Figure 9 shows distribution of images across the classes in

lab labelled raw dataset.

pcrsalmo.178.jpg

pcrsalmo.4.jpg pcrsalmo.108.jpg

Figure 8: Sample Images from Lab labelled Raw dataset

Class "pcrcocci" has 373 images, which is 29.72% of the total.
Class "pcrhealthy" has 347 images, which is 27.65% of the total
Class "pcrncd" has 186 images, which is 14.82% of the total.
Class "pcrsalmo" has 349 images, which is 27.81% of the total.

Percentage of Images per Class

Number of Images per Class

pcrcocci

pcrhealthy

Number of Images
~N
o
=]

pcrsalmo

pereocci perhealthy perned persalmo
Class

Figure 9: Lab Labelled raw dataset image distribution

4.2 Display bounding box on raw images using labellmg app

e Only farm labelled dataset have Bounding box annotation provided by Author of the
dataset.

e A folder “imgObjDect_Yolo” located at “root/dataset/0_raw_data/ zenodo-Machine
Learning Dataset for Poultry Diseases Diagnostics” contents all the bounding boxes
annotations.

Farm labelled dataset images and bounding boxes labels of all the classes were copied
together in the same folder

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images)
Install labellmg app: pip install labelimg

Inside command prompt type this command to open a GUI: labelimg

Inside the APP go to the directory where images are stored along with the bounding
boxes labels. Figure 10, 11, 12 and 13 show different classes of poultry fecal images
with bounding boxes annotation.

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images)

_data_cleanng,) labelimg_working_tarm_labelledymagesicocci8jpg 19 / 6812) = =] S

Fle £dit View Help

o
_farm Iabelled\images\cocei 30jpg
—

Figure 10: Cocci disease bounding box annotated

Figure 11: Healthy poultry bounding box annotated

Figure 13: Salmo disease bounding box annotated

4.3 EDA Findings
After analysing the images from both the dataset, we can conclude that:
1. Total number of Farm labelled, and lab labelled images are 6,812 and 1,255,
respectively. Accounting to total 8,067 images.
Image sizes are varying.
Bounding boxes are missing from the Lab labelled images.
The folder structure required for Yolov10 is different than the existing structure.
Class imbalance is significant.

grwn

5 Data Cleaning and Preparation

5.1 Automated bounding boxes labelling

e Farm labelled Image resized to 640x640 pixel.
(code path: code/1_Object_detection/2_resizing_bounding_box)
e Then split into train, valid and test sets.
(dataset path: root/dataset/1 Object _detection/4_resized_farm_labelled_640)

Feed this data to Yolov10-n for object detection and trained for 50 epochs, | got a
model which predicts the bounding boxes with 79% accuracy.
(code path: root/code/1_Object_detection/3_experiment_two)

Used this model to predict the bounding boxes on lab labelled dataset.

(model path:
code/1_Object_detection/3_experiment_two/yolov10/runs/detect/train3/weights/best.
pt)

This is how we automated most of the annotation work for lab labelled images. After
that I manually checked the boxes and corrected them wherever required.

(path: dataset\1_Object_detection\5_pcr_images_annotated_manually)

Merging Farm labelled images+labels with Lab labelled image+labels and resizing to
640x640 pixels.

(code\l_Object_detection\6_merging_two_datasets)
(dataset\1_Object_detection\8_resized_640)

Now we have all the 8,067 images along with their bounding boxes annotation.
(dataset path: dataset\1 _Object_detection\8_resized_640)

5.2 Class Imbalance Mitigation

Checking the class distribution on merged dataset (dataset path:
dataset\1_Object_detection\8_resized_640) as shown in figure 14.

Class "cocci" has 2476 images, which is 38.69% of the total.
Class "healthy" has 24084 images, which is 29.86% of the total.
Class "ncd" has 562 images, which is 6.97% of the total.
Class "salmo" has 2625 images, which is 32.54% of the total.

Percentage of Images per Class
Number of Images per Class

cocal

healthy

29.8%

Y ncd
ccccc healthy ned salmo

Class

salmo
Figure 14: Merged Dataset Class Distribution

As NCD has low sample image (562 images) while other classes have 2000+
images, | will oversample the images for NCD class by image augmentation
techniques and make sure the augmented images have bounding boxes intact, so that |
won’t have to label them again.

Each will be augmented 5 times, so that total number of images for NCD class will
be 2810. As shown in the Figure 15, Albumentations library is used here for
augmentation and keeping the bounding boxes intact.

(code
path:code/1_Object_Detection/7_class_imbalance/2_0_script_multiple_ncd.py)

augmentation = A.Compose(|[
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),

A.ShiftScaleRotate(p=0.5, shift_limit=0.1, scale_limit=e.1, rotate_limit=45),
A.RandomBrightnessContrast(p=0.5),
A.RandomSizedBBoxSafeCrop(height=640, width=640, p=0.5

][, bbox_params=A.BboxParams (format="pascal _voc', label_fields=['labels']))

Figure 15: Augmentation for increasing sample while keep bounding boxes intact

e Now number of total images of NCD = 2810, other classes have total: 'cocci': 2476
images, ‘'healthy': 2404 images, 'salmo’. 2625 images. Now we will increase the
number of augmented images for other classes while having bounding boxes intact, so
that each class we end up having 2810 images each.

(code path:
code/1_Object_Detection/7_class_imbalance/2_1 script_multiple_other_class.py)

e Class distribution after augmentation is shown in the Figure 16.

Class "cocci" has 281@ images, which is 25.80% of the total.
Class "healthy" has 2810 images, which is 25.60% of the total.
Class "ncd" has 2816 images, which is 25.06% of the total.
Class "salmo" has 281@ images, which is 25.80% of the total.

Number of Images per Class

Percentage of Images per Class

2500

2000 healthy cocci

25.0% 25.0%

Number of Images
]
3
8

1=
1<
3

500

cocci healthy ncd salmo
Class

Figure 16: Class Distribution after augmentation

5.3 Folder structure and Datasplit

Data was split and arranged in specific folder structure according to different models’
requirement. The Code is stored in the public github repository. https://github.com/pravin-
sharma/thesis-poultry-disease-detection-and-classification-deep-learning.qgit

5.3.1 Object detection

For Object detection, the data should be in the format (structure is compulsory for Yolo) as
shown in the figure 17. The data is splitted into train, test and valid set using code:
code\l_Object_detection\8_data_split

https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git
https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git

i Object_Detection_Dataset (Directory) ‘

1 dataset (directory)

valid

" images

train
images

est
images

abels

|
TRl

— data.yaml (file)

Figure 17: Dataset folder structure for Object Detection

5.3.2 Image Classification

For Image Classification, we have structured the data in the following format (opinionated).
Here we don’t need image labels as we require in object detection. We have manually created
directory for each class and moved the images into them.

Image Classification Dataset(Directory)

cocci (directory)

A 4

healthy (directory)

ncd (directory)

» salmo (directory)

Figure 18: Dataset folder structure for Image Classification
5.4 Data Processing during Image Classification training process:

5.4.1 Data Split

The dataset was split into three sets: Train, Validation and Test split in ratio 70,20 and 10.
Figure 19 shows the code for split for image classification.

10

def split_data(path, seed, test_size=8.1, val_size=0.2):
all files = []
all_labels = []

Iterate through directory and collect file paths and labels
for class_dir in os.listdir(path):
class_path = os.path.join(path, class_dir)
if os.path.isdir(class_path):
for img in os.listdir(class_path):
img_path = os.path.join(class_path, img)
all_files.append(img_path)
all_labels.append(class_dir)

Convert labels to numeric format
label_to_index = {label: index for index, label in enumerate(np.unique(all_labels))}
all labels = [label_to_index[label] for label in all_labels]

Split into train+val and test
train_val_files, test_files, train_val_labels, test_labels = train_test_split(
all files, all_labels, test_size=test_size, random_state=seed, stratify=all_labels

)

Split train+val into train and validation sets
train_files, val_files, train_labels, val_labels = train_test_split(
train_val_files, train_val_labels, test_size=val_size, random_state=seed, stratify=train_val_labels

)

return (train_files, train_labels), (val_files, val_labels), (test_files, test_labels)

Figure 19: Code for data split - Image classification for training Individual model

5.4.2 Normalization

Figure 20 shows code for normalizing the image pixels. Normalized pixel value between the

range O to 1.
def load_image(file_path, imgsz, clr):
image = tf.io.read_file(file_path)
image = tf.image.decode_jpeg(image, channels=3 if clr == "rgb" else 1)
image = tf.image.resize(image, imgsz)
image tf.cast(image, tf.float32) / 255.0
return image

Figure 20: Normalization

5.4.3 Augmentation:

Using on-the-fly augmentation of tensorflow, so each epoch will see varied images and the
model will learn to generalize better. Different transfer learning model have different input
size, MobileNetv3Large and NasnetMobile expect 224x224 image size, while
efficientNetV2B2 expects 260x260 image size. Refer figure 21 for code used for
augmentation while training individual image classification model.

def augment_img(img_, 1lbl_):
image = tf.image.random_flip_left_right(img_)
image = tf.image.central_crop(image, ©.85)
image = tf.image.resize(image, IMAGE_SIZE)
image = tf.image.random_brightness(image, ©.2)
image = tf.image.random_contrast(image, 0.5, 2.0)
return tf.cast(image, tf.float32), 1lbl_

train_batch = train_batch.map(augment_img, tf.data.AUTOTUNE)

train_batch = train_batch.cache().prefetch(buffer_size = tf.data.AUTOTUNE)
val_batch = val_batch.cache().prefetch(buffer_size = tf.data.AUTOTUNE)
test_batch = test_batch.cache().prefetch(buffer_size = tf.data.AUTOTUNE)

Figure 21: Augmentation

11

6 Importing necessary Libraries

6.1 Object detection: Setup and All the libraries used

Following code was used for setting up Object detection.

lgit clone https://github.com/THU-MIG/yolovl@.git

Google Colab Specific commands

from google.colab import drive

drive.mount('/content/drive')

Example: Unzip into the current working directory - since i have a zip in my drive and i want to unzip into my colab env for faster access
tunzip -q "/content/drive/MyDrive/Colab Notebooks/pravin_thesis/@_dataset/1@_balanced_data_split.zip" -d '/content/yolovl@/datasets/'

cd yolovle

!'pip install .

import os
import urllib.request

Create a directory for the weights in the current working directory
weights_dir = os.path.join(os.getcwd(), "weights")
os.makedirs(weights_dir, exist_ok=True)

URLs of the weight files

Trying Yolov1e-S

urls = [
"https://github.com/jameslahm/yolovle/releases/download/v1.0/yolovl@n.pt"”,
"https://github.com/jameslahm/yolov1l@/releases/download/v1.08/yolovl@s.pt"

Download each file

for url in urls:
file_name = os.path.join(weights_dir, os.path.basename(url))
urllib.request.urlretrieve(url, file_name)
print(f"Downloaded {file_name}")

12

6.2 Image classification: All the libraries used

Standard Library Imports

import os

import random

import shutil

import warnings

Data Analysis and Manipulation

import pandas as pd

import numpy as np

Image Processing

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import cv2

import rasterio

from PIL import Image

import PIL

Visualization

import seaborn as sns

import matplotlib.pyplot as plt
plt.style.use("fivethirtyeight")

Machine Learning and Deep Learning

import tensorflow as tf

from tensorflow import keras

from keras.callbacks import ReducelLROnPlateau, EarlyStopping, ModelCheckpoint
from keras.utils import image_dataset_from_directory
from keras.optimizers import AdamW

import keras_cv
keras.mixed_precision.set_global_policy("mixed_floatl6")
Progress Bars

import tqdm

from tgdm.auto import trange, tqdm

Evaluation Metrics

import sklearn

from sklearn.metrics import precision_score, accuracy_score, fl_score
from sklearn.model_selection import train_test_split
from sklearn.utils import class_weight

7 Model Architecture

7.1 Object Detection

7.1.1 Yolovl0-n

from n params module arguments
£} -1 01 464 wultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
1 -1 01 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
2 -1 01 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
3 -1 01 18560 ultralytics.nn.modules.conv.Conv [32 64, 3, 2]
4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
5 -1 01 9856 ultralytics.nn.modules.block.SCDown [64, 128, 3, 2]
6 -1 2 197632 ultralytics.nn.modules.block.C2f [128 128, 2, True]
7 -1 01 36096 ultralytics.nn.modules.block.SCDown [128, 256, 3, 2]
8 -1 01 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
9 -1 01 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
10 -1 01 249728 ultralytics.nn.modules.block.PSA [256, 256]
11 -1 1 @ torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 @ ultralytics.nn.modules.conv.Concat [1]
13 -1 01 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
14 -1 1 @ torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 @ ultralytics.nn.modules.conv.Concat [1]
16 -1 01 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
17 -1 01 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 [-1, 13] 1 @ ultralytics.nn.modules.conv.Concat [1]
19 -1 01 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
20 -1 01 18048 ultralytics.nn.modules.block.SCDown [128, 128, 3, 2]
21 [-1, 18] 1 © ultralytics.nn.modules.conv.Concat [1]
22 -1 01 282624 ultralytics.nn.modules.block.C2fCIB [384, 256, 1, True, True]
[4,

23 [16, 19, 22] 1 862888 ultralytics.nn.modules.head.v1@Detect
YOLOv1®n summary: 385 layers, 2708600 parameters, 2708584 gradients, 8.4 GFLOPs

Total 2.7M parameters in Yolov10-n.

[64, 128, 256]]

13

7.1.2 Yolov10-s

from n params module arguments
2] -1 1 928 wultralytics.nn.modules.conv.Conv [3 32, 3, 2]
1 -1 1 18568 wultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
2 -1 1 29056 ultralytics.nn.modules.block.C2f [64, 64, 1, True]
3 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
4 -1 2 197632 ultralytics.nn.modules.block.C2f [128 128, 2, True]
5 -1 1 36096 ultralytics.nn.modules.block.SCDown [128, 256, 3, 2]
6 -1 2 7884808 wultralytics.nn.modules.block.C2f [256, 256 2, True]
7 -1 1 137728 ultralytics.nn.modules.block.SCDown [256, 2, 3, 2]
8 -1 1 958464 wultralytics.nn.modules.block.C2fCIB [512, 2, 1, True, True]
9 -1 1 656896 wultralytics.nn.modules.block.SPPF [512, 512 5]
10 -1 1 9960976 wultralytics.nn.modules.block.PSA [512, 512]
11 -1 1 @ torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 @ ultralytics.nn.modules.conv.Concat [1]
13 -1 01 591360 ultralytics.nn.modules.block.C2f [768, 256, 1]
14 -1 1 @ torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 4] 1 @ ultralytics.nn.modules.conv.Concat [1]
16 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
17 -1 01 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
18 [-1, 13] 1 @ ultralytics.nn.modules.conv.Concat [1]
19 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
20 -1 1 68864 ultralytics.nn.modules.block.SCDown [256, 256, 3, 2]
21 [-1, 18] 1 @ ultralytics.nn.modules.conv.Concat [1]
22 -1 1 1089536 wultralytics.nn.modules.block.C2fCIB [768, 512, 1, True, True]
23 [16, 19, 22] 1 1641896 ultralytics.nn.modules.head.vl@Detect [4, [128, 256, 512]]
YOLOv1@s summary: 402 layers, 8069448 parameters, 8069432 gradients, 24.8 GFLOPs

Total 8M parameters in Yolov10-s.

7.2 Image Classification

7.2.1 NasNetMobile

def create_nasnetmobile_model():
from keras.applications import NASNetMobile
from tensorflow.keras.layers import Dense

from tensorflow.keras.models import Model

NASNetMobile(input_shape=(224,224,
include_ top=False,
weights="imagenet’,

pre_model = 3),

pooling="avg')
pre_model.trainable = True
inputs = pre_model.input
x = Dense(64, activation='relu')(pre_model.output)
Dense(64, activation="relu')(x)
outputs = Dense(NUM_CLASSES, activation='softmax')(x)

X

model = Model(inputs=inputs, outputs=outputs)

initial_learning_rate = INITIAL_LEARNING_RATE

return model

14

optimizer = keras.optimizers.AdamW(learning_rate = initial_learning_rate)
model.compile(optimizer = optimizer,
loss = keras.losses.SparseCategoricalCrossentropy(),
metrics = ["accuracy"])

global_average_pooling2d ((None, 1856) 2] ["activation_187[@][0]"']
GlobalAveragePooling2D)

dense (Dense) (None, 64) 67648 ['global_average_pooling2d[@][
e]']

dense_1 (Dense) (None, 64) 4160 ['dense[©][@]"]

dense_2 (Dense) (None, 4) 260 ['dense_1[0][0]"]

Total params: 4341784 (16.56 MB)
Trainable params: 4305046 (16.42 MB)
Non-trainable params: 36738 (143.51 KB)

7.2.2 MobileNetV3Large

Model: "MobileNet™

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 224, 224, 3)] 2}
mobile net v3 large backbo (None, 7, 7, 960) 2996352

ne (MobileNetV3Backbone)

max_pool (GlobalMaxPooling (None, 968) 2}
2D)
predictions (Dense) (None, 4) 3844

Total params: 3000196 (11.44 MB)
Trainable params: 2975796 (11.35 MB)
Non-trainable params: 24400 (95.31 KB)

3M params

7.2.3 EfficientNetV2B0

Model: "KerasCV_efficientnet”

Layer (type) Output Shape Param #
input_2 (InputLayer) [(None, 268, 260, 3)]]
efficient_net_v2b@_backbon (None, 9, 9, 1280) 5919312

e (EfficientNetV2Backbone)

avg_pool (GlobalAveragePoo (None, 1288))
ling2D)
predictions (Dense) (None, 4) 5124

Total params: 5924436 (22.60 MB)
Trainable params: 5863828 (22.37 MB)
Non-trainable params: 60608 (236.75 KB)

5.9M params

15

7.2.4 EfficientNetV2B2

Model: "KerasCV_efficientnet”

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 260, 260, 3)] 2]
efficient_net_v2b2_backbon (None, 9, 9, 1488) 8769374

e (EfficientNetV2Backbone)

avg_pool (GlobalAveragePoo (None, 1488) 0
ling2D)
predictions (Dense) (None, 4) 5636

Total params: 8775010 (33.47 MB)
Trainable params: 8692722 (33.16 MB)
Non-trainable params: 82288 (321.44 KB)

8.7M Params

7.2.5 Ensemble model

1 # Define the custom objectﬂ

2 # Define the custom objects for loading models

3 “ custom_objects_1 = {

4 'EfficientNetV2Backbone': keras_cv.models.EfficientNetV2Backbone,
5 'ImageClassifier': keras_cv.models.ImageClassifier,

6 "Adamll': AdamW

7

8

9 model_1 = load_model('./models/efficientnetV2B2_best_model.h5', custom_objects=custom_objects_1)
10 v model_1 = Model(inputs=model_1.inputs,

11 outputs=model_1.outputs,
12 name="efficientnetV2B2')
13

WARNING:tensorflow:Error in loading the saved optimizer state. As a result, your model is starting wi

1 # Define the custom objects

2 custom_objects_2 = {

3 'MobileNetV3Backbone': keras_cv.models.MobileNetV3Backbone,

4 'ImageClassifier': keras_cv.models.ImageClassifier,

5 "Adamli': AdamW

6 1}

7 model_2 = load_model('./models/mobilenet_best_model.h5', custom_objects=custom_objects_2)
8 model_2 = Model(inputs=model_2.inputs,

9 outputs=model_2.outputs,

10 name="mobileNetVv3")

WARNING:tensorflow:Error in loading the saved optimizer state. As a result, your model is starting wi

1 # Define the custom objects

2 custom_objects_3 = {

3 # 'MobileNetV3Backbone': keras_cv.models.MobileNetV3Backbone,

4 # 'ImageClassifier': keras_cv.models.ImageClassifier,

5 "Adamli': AdamW

6 1}

7 model_3 = load_model('./models/nasnetmobile_best_model.h5', custom_objects=custom_objects_3)
8 model_3 = Model(inputs=model_3.inputs,

9 outputs=model_3.outputs,

10 name='nasnetmobile')

16

1 # Define the input layer with a common shape

2 common_input_shape = (224, 224, 3) # Chosen common input shape
3 model_input = Input(shape=common_input_shape)

4

5 # Resize inputs to match model_1's required input shape
6 resize_input_1 = Resizing(26@, 26€)(model_input)

7 output_1 = model_1(resize_input_1)

8

9 # Resize inputs to match model_2's required input shape
10 resize_input_2 = Resizing(224, 224)(model_input)
11 output_2 = model_2(resize_input_2)
12
13 # Resize inputs to match model_3's required input shape
14 resize_input_3 = Resizing(224, 224)(model_input)
15 output_3 = model_3(resize_input_3)

1 # Average the outputs to create the ensemble output

2 ensemble_output = Average()([output_1, output_2, output_3])

i # Create the ensemble model

2 ensemble_model = Model(inputs=model_input, outputs=ensemble_output, name='ensemble’)
3

4 # TODO: Freeze the layers

1 # Compile the ensemble model

2 ensemble_model.compile(optimizer=AdamW(learning_rate=0.0001),

3 loss="sparse_categorical_crossentropy’,

4 metrics=["accuracy'])

Model: "ensemble"

Layer (type) Output Shape Param # Connected to
=z;put_3 (InputLayer) i E(None, 224, 22:, 3)] [} [1 i i T
resizing (Resizing) (None, 260, 260, 3) 2] ['input_3[e][e]"']

resizing_1 (Resizing) (None, 224, 224, 3) 2] ['input_3[e][e]"']

resizing_2 (Resizing) (None, 224, 224, 3) 2] ['input_3[e][e]"']
efficientnetV2B2 (Function (None, 4) 8775018 ['resizing[e][0]']

al)

mobileNetV3 (Functional) (None, 4) 3000196 ['resizing_1[0][0]"']
nasnetmobile (Functional) (None, 4) 4341784 ['resizing_2[@][0]"]

average (Average) (None, 4) 2] ['efficientnetv2B2[0@][0]",

'mobileNetVv3[o][e]",
'nasnetmobile[@][0]"']

Total params: 16116996 (61.48 MB)
Trainable params: 15973564 (66.93 MB)
Non-trainable params: 143426 (560.26 KB)

Ensemble have 16.1M parameters. A simple ResNet-50 would have 23M params

8 Evaluation Metrics

17

IMPORTANT: Since the checkpointing is being used, the model is stored when there is improvement in val_acc
or val_loss, the score shown below is when the model was stored and not the score on final epoch.

8.1 Yolovl0
metrics/mAP50(B) train/box_om train/cls_om
0.9 1.6
1.6 1 —e— results
0.8 1.4 - 1.4 - smooth
0.7 1 1.2 1
0.6 1.0 A
0.5 A 0.8 A
0 50 100 0 50 100 0 50 100

Canfusion Matrix

1000

ROI

- 600

Predicted

ROV Backgrouna

8.2 NasNetMobile

Code: 3_NasNetMobile_train_val_test_split
NasNetMobile was trained for 50 epochs and Learning rate was kept at 0.0001
Pre-trained ImageNet weights were used.

Model Data Monitoring | Pateince | Loss Acc Val_loss | Val_Acc | Trainable | Verdict
Split layers

Train, val_acc 20ES/ | 0.0661 0.9853 | 0.3232 0.9008 All Val_loss
Val 5RLR Frozen is
increasing
overtime
from 20
epoch -
overfitting
Train, val_acc 20ES/ | 5.6826e- | 1.0000 | 0.2573 0.9662 All Val_loss
NasNetMobile | Val 5RLR 07 is
increasing
overtime
from 20
epoch -
overfitting
Train, val_loss 5ES/3 | 1.0584e- | 1.0000 | 0.2253 0.9546 All Due to
Val RLR 05 early
stopping

18

model

didn’t
overtrain
and is
stable
Train, val_loss 5ES/3 | 5.9582e- | 1.0000 | 0.1771 0.9669 All Stable
Val, RLR 06
Test
8.3 MobileNetV3Large
Code: 2_MobileNetV3_large_3_split
MobileNetV3Large was trained for 50 epochs and Learning rate was kept at 0.0001
Pre-trained ImageNet weights were used.
Model Data Monitoring | Pateince | Loss Acc Val_loss | Val_Acc Trainable | Verdict
Split layers
Train, val_acc 20ES/ | 0.0161 0.9950 | 0.2118 0.9542 All Stable
Val 5RLR
MobileNetV3Large | Train, val loss 10 ES/ 0.0154 0.9954 | 0.2678 0.9387 All Stable
Val, 5RLR
Test
8.4 EfficientNetV2B0
Code: 1_efficientNetV2B0
efficientNetV2BO0 was trained for 50 epochs and Learning rate was kept at 0.0001
Model Data Monitoring | Pateince | Loss Acc Val_loss | Val_Acc | Trainable | ImageNet | Verdict
Split layers Weights
Train, | val_acc 20ES/ | 0.0120 | 0.9969 | 0.1416 0.9600 All True Stable
Val 5RLR
Train, | val_acc 20ES/ | 0.0507 | 0.9815 | 0.6046 0.8661 All False Did not
EfficientNetV2B0 | Val 5RLR coverge
well.
Loss is
high

Imagenet weights are important even though all layers are trained again. The model converges faster. Pre-
trained weights are providing a good starting point to the model. The efficientNetV2B2 model is available with
more parameters and better performance, so all other experiments will be on that model.

8.5 EfficientNetVV2B2

Val Loss is less and val accuracy is more as compared to BO.

Model Data Monitoring | Pateince | Loss Acc Val_loss | Val_Acc | Trainable | Verdict
Split layers
Train, val_acc 20ES/ | 0.0085 0.9978 | 0.1225 0.9729 All Stable
Val 5RLR
EfficientNetV2B2 | Train, | val_loss 10ES/ | 0.0348 0.9884 | 0.1012 0.9674 All Stable
Val, 5RLR
Test
8.6 Ensemble
All layers are trainable for fine-tunning complete model.
Model Epochs | Data Monitoring | Pateince | Loss Acc Val_loss | Val_Acc | Trainable | Verdict
Split layers
10 Train, | Val_loss 5ES/3 | 0.0480 0.9873 | 0.0749 0.9787 All Need to
val, RLR run on
test more
Ensemble epoch to
stablize
30 Train, | Val_loss 5ES/3 | 0.0101 0.9971 | 0.0527 0.9891 All Stable
val, RLR

19

| test |

Training and Validation Accuracy Training and Validation Loss
—— Training accuracy —— Training loss
—— Validation accuracy 0.10 —— Validation loss
0.995 -
0.08
0.990 4
z
2 9 0.06
2 0.985 5
]
0.04
0.980 4
0.02
0.975
] 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs

Precision: ©.989114487340604
Recall: ©.9890873015873016
Fl-score: ©.9890829980078678

Confusion Matrix - Validation Data

500
‘0
[
[o]
[
400
=
=
Pt
©
2 300
w
2
'_
- - 200
2
- 100
<)
E
&
| -0
coccli healthy ncd salmo
Predicted

20

True

coccl

Confusion Matrix - Test Data

250

200

healthy

150

ncd

- 100

- 50

salmo
]

healthy ncd salmo
Predicted

1
cocci

Precision: ©.9892982427471103
Recall: ©.9892857142857143
Fl-score: ©.9892856802418476

21

