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1 Introduction 
 

The research intents to build a deep learning pipeline for identifying sick chickens using their 

faecal images. The object detection model will use the latest YoloV10s and for image 

classification ensemble of light weight models – MobileNetV3, EfficientNetV2B2, and 

NasNetMobile. The output will have the bounding boxes along with the disease class 

predicted on the images. The technical setup and code samples from each module will be 

stated in this configuration manual.  

 

2 System Configuration and Setup 
 

Two environments were used for the development of the project. Local setup for sample 

scripts development/testing and data cleaning. Google Colab Pro was used training of models 

on different parameters. 

2.1 Local Setup 

We need to utilize the GPU of the laptop for training the model for lesser epochs, and for 

more epochs google colab will be used. 

 

Setting Up Jupyter notebook in the windows laptop to utilize the GPU power: 

1. Install Anaconda Navigator 

2. Open Anaconda Prompt in Admin Mode and run following commands: 

a) Create an environment with python version 3.9 

conda create -n py39 python=3.9  

 

b) Activate the environment 

conda activate py39  

 

c) Install cudatoolkit and cudnn 

conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0  

 

d) Install tensorflow  

python -m pip install tensorflow==2.10 

 

e) Install jupyter notebook 

 

3. Now open jupyter notebook and create a new notebook and run the below command 

as shown in Figure 1 and 2, to check if GPU is accessible by jupyter notebook. Figure 

3 shows the local system configuration. 
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Figure 1: Check Number of GPU available 

 

 

Figure 2: Check GPU configuration 

 

 

Figure 3: Local System Configuration 

  

4. The local system configuration: 

4GB GPU (RTX 3050), 16GB RAM, 8 physical cores, Windows. Python 3.9.19 

2.2 Google Colab Pro 

Googl colab pro was used for running models for higher epochs. The configuration of 

the machine is shown in the Figure 4 and 5. It consists of 16GB GPU (T4-Tesla), 51GB 

RAM, 4 physical cores, Linux and Python 3.10.12 



3 
 

 

 

Figure 4: Google Colab GPU Configuration 

 

 

Figure 5: Google Colab Overall Configuration 

 

3 Selection of the Dataset 
The datasets for this research are acquired from Zenodo opensource dataset library. The data 

is collected from Arusha and Kilimanjaro regions which are situated in Tanzania. 

The 2-dataset used in this research are the following: 

1. Manually labelled Dataset1 

2. Lab labelled Dataset2 

The Images in the dataset are the fecal images of chickens and are divided into following 

categories: Coccidiosis(Cocci) Disease, Healthy, Newcastle(NCD) Disease and 

Salmonella(Salmo) Disease.The manually labelled dataset have total of 6812 images which 

also have bounding box annotation and lab labelled dataset have 1,255 images but these 

images do not have bounding box annotation. The lab images were collected along with the 

fecal sample for running tests on them. All the images do not have a fix resolution or 

alignment. 
 

4 Exploratory Data Analysis 

4.1 Sample Images and Class Distribution (dataset/0_raw_data) 

4.1.1 Farm Labelled Images 

path: root/dataset/0_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases 

Diagnostics) 

Each class had a separate folder. Figure 6 shows sample images from the farm labelled raw 

dataset from each of the classes. Figure 7 shows distribution of images across the classes in 

farm labelled raw dataset. 

 
 
1 https://zenodo.org/records/4628934 
2 https://zenodo.org/records/5801834 

https://zenodo.org/records/5801834
https://zenodo.org/records/5801834
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Figure 6: Sample Images from Farm labelled Raw dataset 

 

 

 

 

Figure 7: Farm Labelled raw dataset image distribution 

4.1.2 Lab Labelled Images 

(path: root/dataset/0_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases 

Diagnostics - PCR annotated) 

Each class had a separate folder. Figure 8 shows sample images from the lab labelled raw 

dataset from each of the classes. Figure 9 shows distribution of images across the classes in 

lab labelled raw dataset. 
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Figure 8: Sample Images from Lab labelled Raw dataset 

 

 
 

 

Figure 9: Lab Labelled raw dataset image distribution 

 

4.2 Display bounding box on raw images using labelImg app 

• Only farm labelled dataset have Bounding box annotation provided by Author of the 

dataset.  

• A folder “imgObjDect_Yolo” located at “root/dataset/0_raw_data/ zenodo-Machine 

Learning Dataset for Poultry Diseases Diagnostics” contents all the bounding boxes 

annotations.  
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• Farm labelled dataset images and bounding boxes labels of all the classes were copied 

together in the same folder  

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images) 

• Install labelImg app: pip install labelimg 

• Inside command prompt type this command to open a GUI: labelimg 

• Inside the APP go to the directory where images are stored along with the bounding 

boxes labels. Figure 10, 11, 12 and 13 show different classes of poultry fecal images 

with bounding boxes annotation. 

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images) 

 

 

Figure 10: Cocci disease bounding box annotated 

 

 

 

Figure 11: Healthy poultry bounding box annotated 
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Figure 12: NCD infected poultry fecal image annotated 

 

 

Figure 13: Salmo disease bounding box annotated 

 

4.3 EDA Findings 

After analysing the images from both the dataset, we can conclude that: 

1. Total number of Farm labelled, and lab labelled images are 6,812 and 1,255, 

respectively. Accounting to total 8,067 images. 

2. Image sizes are varying. 

3. Bounding boxes are missing from the Lab labelled images. 

4. The folder structure required for Yolov10 is different than the existing structure. 

5. Class imbalance is significant. 
 

5 Data Cleaning and Preparation 

5.1 Automated bounding boxes labelling 

• Farm labelled Image resized to 640x640 pixel. 

(code path: code/1_Object_detection/2_resizing_bounding_box) 

• Then split into train, valid and test sets. 

(dataset path: root/dataset/1_Object_detection/4_resized_farm_labelled_640) 
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• Feed this data to Yolov10-n for object detection and trained for 50 epochs, I got a 

model which predicts the bounding boxes with 79% accuracy. 

(code path: root/code/1_Object_detection/3_experiment_two) 

 

• Used this model to predict the bounding boxes on lab labelled dataset.  

(model path: 

code/1_Object_detection/3_experiment_two/yolov10/runs/detect/train3/weights/best.

pt) 

• This is how we automated most of the annotation work for lab labelled images. After 

that I manually checked the boxes and corrected them wherever required.  

(path: dataset\1_Object_detection\5_pcr_images_annotated_manually) 

• Merging Farm labelled images+labels with Lab labelled image+labels and resizing to 

640x640 pixels.  

(code\1_Object_detection\6_merging_two_datasets) 

( dataset\1_Object_detection\8_resized_640) 

•  Now we have all the 8,067 images along with their bounding boxes annotation. 

(dataset path: dataset\1_Object_detection\8_resized_640) 

5.2 Class Imbalance Mitigation 

• Checking the class distribution on merged dataset (dataset path: 

dataset\1_Object_detection\8_resized_640) as shown in figure 14. 
 

 
 

 

Figure 14: Merged Dataset Class Distribution 

• As NCD has low sample image (562 images) while other classes have 2000+ 

images, I will oversample the images for NCD class by image augmentation 

techniques and make sure the augmented images have bounding boxes intact, so that I 

won’t have to label them again. 

• Each will be augmented 5 times, so that total number of images for NCD class will 

be 2810. As shown in the Figure 15, Albumentations library is used here for 

augmentation and keeping the bounding boxes intact. 

(code 

path:code/1_Object_Detection/7_class_imbalance/2_0_script_multiple_ncd.py)  
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Figure 15: Augmentation for increasing sample while keep bounding boxes intact 

• Now number of total images of NCD = 2810, other classes have total:  'cocci': 2476 

images, 'healthy': 2404 images, 'salmo': 2625 images. Now we will increase the 

number of augmented images for other classes while having bounding boxes intact, so 

that each class we end up having 2810 images each. 

(code path: 

code/1_Object_Detection/7_class_imbalance/2_1_script_multiple_other_class.py) 

• Class distribution after augmentation is shown in the Figure 16. 

 

 
  

 

Figure 16: Class Distribution after augmentation 

5.3 Folder structure and Datasplit 

Data was split and arranged in specific folder structure according to different models’ 

requirement. The Code is stored in the public github repository. https://github.com/pravin-

sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git 

5.3.1 Object detection 

For Object detection, the data should be in the format (structure is compulsory for Yolo) as 

shown in the figure 17. The data is splitted into train, test and valid set using code: 

code\1_Object_detection\8_data_split 

https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git
https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git
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Figure 17: Dataset folder structure for Object Detection 

5.3.2 Image Classification 

For Image Classification, we have structured the data in the following format (opinionated). 

Here we don’t need image labels as we require in object detection. We have manually created 

directory for each class and moved the images into them. 

 

Figure 18: Dataset folder structure for Image Classification 

5.4 Data Processing during Image Classification training process: 

5.4.1 Data Split 

The dataset was split into three sets: Train, Validation and Test split in ratio 70,20 and 10. 

Figure 19 shows the code for split for image classification. 



11 
 

 

 

Figure 19: Code for data split - Image classification for training Individual model 

5.4.2 Normalization 

Figure 20 shows code for normalizing the image pixels. Normalized pixel value between the 

range 0 to 1. 

 

Figure 20: Normalization 

5.4.3 Augmentation:  

Using on-the-fly augmentation of tensorflow, so each epoch will see varied images and the 

model will learn to generalize better. Different transfer learning model have different input 

size, MobileNetv3Large and NasnetMobile expect 224x224 image size, while 

efficientNetV2B2 expects 260x260 image size. Refer figure 21 for code used for 

augmentation while training individual image classification model. 

 

 

Figure 21: Augmentation 
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6 Importing necessary Libraries 
 

6.1 Object detection: Setup and All the libraries used 
Following code was used for setting up Object detection. 
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6.2 Image classification: All the libraries used 

 
 
 

7 Model Architecture 

7.1 Object Detection 

7.1.1 Yolov10-n 

 
Total 2.7M parameters in Yolov10-n. 
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7.1.2 Yolov10-s 

 
Total 8M parameters in Yolov10-s. 

7.2 Image Classification 

7.2.1 NasNetMobile 
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7.2.2 MobileNetV3Large 

 
3M params 

 

7.2.3 EfficientNetV2B0 

 
5.9M params 
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7.2.4 EfficientNetV2B2 

 
8.7M Params 

7.2.5 Ensemble model 
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Ensemble have 16.1M parameters. A simple ResNet-50 would have 23M params 
 

8 Evaluation Metrics 
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IMPORTANT: Since the checkpointing is being used, the model is stored when there is improvement in val_acc 
or val_loss, the score shown below is when the model was stored and not the score on final epoch. 

8.1 Yolov10 

  
 

 
 

 

8.2 NasNetMobile 
Code: 3_NasNetMobile_train_val_test_split 
NasNetMobile was trained for 50 epochs and Learning rate was kept at 0.0001 
Pre-trained ImageNet weights were used. 
 
 
Model Data 

Split 

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable 

layers 

Verdict 

NasNetMobile 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

0.0661 0.9853 0.3232 0.9008 All 

Frozen 

Val_loss 

is 

increasing 
overtime 

from 20th 

epoch - 
overfitting 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

5.6826e-

07 

1.0000 0.2573 0.9662 All  Val_loss 

is 

increasing 
overtime 

from 20th 

epoch - 
overfitting 

Train, 

Val 

val_loss 5 ES / 3 

RLR 

1.0584e-

05 

1.0000 0.2253 0.9546 All Due to 

early 
stopping 



19 
 

 

model 

didn’t 

overtrain 
and is 

stable 

Train, 

Val, 

Test 

val_loss 5 ES / 3 

RLR 
5.9582e-
06 

1.0000 0.1771 0.9669 All Stable 

 

8.3 MobileNetV3Large 
Code: 2_MobileNetV3_large_3_split 
MobileNetV3Large was trained for 50 epochs and Learning rate was kept at 0.0001 
Pre-trained ImageNet weights were used. 
Model Data 

Split 

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable 

layers 

Verdict 

MobileNetV3Large 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

0.0161 0.9950 0.2118 0.9542 All Stable 

Train, 

Val, 

Test 

val loss 10 ES/ 

5 RLR 

0.0154 0.9954 0.2678 0.9387 All Stable 

 
 

8.4 EfficientNetV2B0 
Code: 1_efficientNetV2B0 
efficientNetV2B0 was trained for 50 epochs and Learning rate was kept at 0.0001 
Model Data 

Split 

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable 

layers 

ImageNet 

Weights 

Verdict 

EfficientNetV2B0 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

0.0120 0.9969 0.1416 0.9600 All True Stable 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

0.0507 0.9815 0.6046 0.8661 All False Did not 

coverge 

well. 

Loss is 

high 

Imagenet weights are important even though all layers are trained again. The model converges faster. Pre-
trained weights are providing a good starting point to the model. The efficientNetV2B2 model is available with 
more parameters and better performance, so all other experiments will be on that model. 

8.5 EfficientNetV2B2 
Val Loss is less and val accuracy is more as compared to B0.  
Model Data 

Split 

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable 

layers 

Verdict 

EfficientNetV2B2 

Train, 

Val 

val_acc 20 ES / 

5 RLR 

0.0085 0.9978 0.1225 0.9729 All Stable 

Train, 

Val, 

Test 

val_loss 10 ES / 

5 RLR 

0.0348 0.9884 0.1012 0.9674 All Stable 

 

8.6 Ensemble 
 
All layers are trainable for fine-tunning complete model. 
 
Model Epochs Data 

Split 

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable 

layers 

Verdict 

Ensemble 

10 Train, 

val, 

test 

Val_loss 5 ES / 3 

RLR 

0.0480 0.9873 0.0749 0.9787 All Need to 

run on 
more 

epoch to 

stablize 

30 Train, 

val, 

Val_loss 5 ES / 3 

RLR 

0.0101 0.9971 0.0527 0.9891 All Stable 
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test 
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