

Configuration Manual

MSc Research Project

Data Analytics

Pravin Harish Sharma

Student ID: x22214224

School of Computing

National College of Ireland

Supervisor: Prof. Barry Haycock

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Pravin Harish Sharma

Student ID:

x22214224

Programme:

Data Analytics

Year:

2023-2024

Module:

MSc Research Project

Lecturer:

Prof. Barry Haycock

Submission Due

Date:

12-08-2024

Project Title:

A Deep learning approach for chicken disease detection using

images of droppings

Word Count:

1900 Page Count: 23

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

PS

Date:

12-08-2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Pravin Harish Sharma

Student ID: x22214224

1 Introduction

The research intents to build a deep learning pipeline for identifying sick chickens using their

faecal images. The object detection model will use the latest YoloV10s and for image

classification ensemble of light weight models – MobileNetV3, EfficientNetV2B2, and

NasNetMobile. The output will have the bounding boxes along with the disease class

predicted on the images. The technical setup and code samples from each module will be

stated in this configuration manual.

2 System Configuration and Setup

Two environments were used for the development of the project. Local setup for sample

scripts development/testing and data cleaning. Google Colab Pro was used training of models

on different parameters.

2.1 Local Setup

We need to utilize the GPU of the laptop for training the model for lesser epochs, and for

more epochs google colab will be used.

Setting Up Jupyter notebook in the windows laptop to utilize the GPU power:

1. Install Anaconda Navigator

2. Open Anaconda Prompt in Admin Mode and run following commands:

a) Create an environment with python version 3.9

conda create -n py39 python=3.9

b) Activate the environment

conda activate py39

c) Install cudatoolkit and cudnn

conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0

d) Install tensorflow

python -m pip install tensorflow==2.10

e) Install jupyter notebook

3. Now open jupyter notebook and create a new notebook and run the below command

as shown in Figure 1 and 2, to check if GPU is accessible by jupyter notebook. Figure

3 shows the local system configuration.

2

Figure 1: Check Number of GPU available

Figure 2: Check GPU configuration

Figure 3: Local System Configuration

4. The local system configuration:

4GB GPU (RTX 3050), 16GB RAM, 8 physical cores, Windows. Python 3.9.19

2.2 Google Colab Pro

Googl colab pro was used for running models for higher epochs. The configuration of

the machine is shown in the Figure 4 and 5. It consists of 16GB GPU (T4-Tesla), 51GB

RAM, 4 physical cores, Linux and Python 3.10.12

3

Figure 4: Google Colab GPU Configuration

Figure 5: Google Colab Overall Configuration

3 Selection of the Dataset
The datasets for this research are acquired from Zenodo opensource dataset library. The data

is collected from Arusha and Kilimanjaro regions which are situated in Tanzania.

The 2-dataset used in this research are the following:

1. Manually labelled Dataset1

2. Lab labelled Dataset2

The Images in the dataset are the fecal images of chickens and are divided into following

categories: Coccidiosis(Cocci) Disease, Healthy, Newcastle(NCD) Disease and

Salmonella(Salmo) Disease.The manually labelled dataset have total of 6812 images which

also have bounding box annotation and lab labelled dataset have 1,255 images but these

images do not have bounding box annotation. The lab images were collected along with the

fecal sample for running tests on them. All the images do not have a fix resolution or

alignment.

4 Exploratory Data Analysis

4.1 Sample Images and Class Distribution (dataset/0_raw_data)

4.1.1 Farm Labelled Images

path: root/dataset/0_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases

Diagnostics)

Each class had a separate folder. Figure 6 shows sample images from the farm labelled raw

dataset from each of the classes. Figure 7 shows distribution of images across the classes in

farm labelled raw dataset.

1 https://zenodo.org/records/4628934
2 https://zenodo.org/records/5801834

https://zenodo.org/records/5801834
https://zenodo.org/records/5801834

4

Figure 6: Sample Images from Farm labelled Raw dataset

Figure 7: Farm Labelled raw dataset image distribution

4.1.2 Lab Labelled Images

(path: root/dataset/0_raw_data/ zenodo-Machine Learning Dataset for Poultry Diseases

Diagnostics - PCR annotated)

Each class had a separate folder. Figure 8 shows sample images from the lab labelled raw

dataset from each of the classes. Figure 9 shows distribution of images across the classes in

lab labelled raw dataset.

5

Figure 8: Sample Images from Lab labelled Raw dataset

Figure 9: Lab Labelled raw dataset image distribution

4.2 Display bounding box on raw images using labelImg app

• Only farm labelled dataset have Bounding box annotation provided by Author of the

dataset.

• A folder “imgObjDect_Yolo” located at “root/dataset/0_raw_data/ zenodo-Machine

Learning Dataset for Poultry Diseases Diagnostics” contents all the bounding boxes

annotations.

6

• Farm labelled dataset images and bounding boxes labels of all the classes were copied

together in the same folder

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images)

• Install labelImg app: pip install labelimg

• Inside command prompt type this command to open a GUI: labelimg

• Inside the APP go to the directory where images are stored along with the bounding

boxes labels. Figure 10, 11, 12 and 13 show different classes of poultry fecal images

with bounding boxes annotation.

(path: root/dataset/1_Object_detection/ 3_labelimg_working_farm_labelled/images)

Figure 10: Cocci disease bounding box annotated

Figure 11: Healthy poultry bounding box annotated

7

Figure 12: NCD infected poultry fecal image annotated

Figure 13: Salmo disease bounding box annotated

4.3 EDA Findings

After analysing the images from both the dataset, we can conclude that:

1. Total number of Farm labelled, and lab labelled images are 6,812 and 1,255,

respectively. Accounting to total 8,067 images.

2. Image sizes are varying.

3. Bounding boxes are missing from the Lab labelled images.

4. The folder structure required for Yolov10 is different than the existing structure.

5. Class imbalance is significant.

5 Data Cleaning and Preparation

5.1 Automated bounding boxes labelling

• Farm labelled Image resized to 640x640 pixel.

(code path: code/1_Object_detection/2_resizing_bounding_box)

• Then split into train, valid and test sets.

(dataset path: root/dataset/1_Object_detection/4_resized_farm_labelled_640)

8

• Feed this data to Yolov10-n for object detection and trained for 50 epochs, I got a

model which predicts the bounding boxes with 79% accuracy.

(code path: root/code/1_Object_detection/3_experiment_two)

• Used this model to predict the bounding boxes on lab labelled dataset.

(model path:

code/1_Object_detection/3_experiment_two/yolov10/runs/detect/train3/weights/best.

pt)

• This is how we automated most of the annotation work for lab labelled images. After

that I manually checked the boxes and corrected them wherever required.

(path: dataset\1_Object_detection\5_pcr_images_annotated_manually)

• Merging Farm labelled images+labels with Lab labelled image+labels and resizing to

640x640 pixels.

(code\1_Object_detection\6_merging_two_datasets)

(dataset\1_Object_detection\8_resized_640)

• Now we have all the 8,067 images along with their bounding boxes annotation.

(dataset path: dataset\1_Object_detection\8_resized_640)

5.2 Class Imbalance Mitigation

• Checking the class distribution on merged dataset (dataset path:

dataset\1_Object_detection\8_resized_640) as shown in figure 14.

Figure 14: Merged Dataset Class Distribution

• As NCD has low sample image (562 images) while other classes have 2000+

images, I will oversample the images for NCD class by image augmentation

techniques and make sure the augmented images have bounding boxes intact, so that I

won’t have to label them again.

• Each will be augmented 5 times, so that total number of images for NCD class will

be 2810. As shown in the Figure 15, Albumentations library is used here for

augmentation and keeping the bounding boxes intact.

(code

path:code/1_Object_Detection/7_class_imbalance/2_0_script_multiple_ncd.py)

9

Figure 15: Augmentation for increasing sample while keep bounding boxes intact

• Now number of total images of NCD = 2810, other classes have total: 'cocci': 2476

images, 'healthy': 2404 images, 'salmo': 2625 images. Now we will increase the

number of augmented images for other classes while having bounding boxes intact, so

that each class we end up having 2810 images each.

(code path:

code/1_Object_Detection/7_class_imbalance/2_1_script_multiple_other_class.py)

• Class distribution after augmentation is shown in the Figure 16.

Figure 16: Class Distribution after augmentation

5.3 Folder structure and Datasplit

Data was split and arranged in specific folder structure according to different models’

requirement. The Code is stored in the public github repository. https://github.com/pravin-

sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git

5.3.1 Object detection

For Object detection, the data should be in the format (structure is compulsory for Yolo) as

shown in the figure 17. The data is splitted into train, test and valid set using code:

code\1_Object_detection\8_data_split

https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git
https://github.com/pravin-sharma/thesis-poultry-disease-detection-and-classification-deep-learning.git

10

Figure 17: Dataset folder structure for Object Detection

5.3.2 Image Classification

For Image Classification, we have structured the data in the following format (opinionated).

Here we don’t need image labels as we require in object detection. We have manually created

directory for each class and moved the images into them.

Figure 18: Dataset folder structure for Image Classification

5.4 Data Processing during Image Classification training process:

5.4.1 Data Split

The dataset was split into three sets: Train, Validation and Test split in ratio 70,20 and 10.

Figure 19 shows the code for split for image classification.

11

Figure 19: Code for data split - Image classification for training Individual model

5.4.2 Normalization

Figure 20 shows code for normalizing the image pixels. Normalized pixel value between the

range 0 to 1.

Figure 20: Normalization

5.4.3 Augmentation:

Using on-the-fly augmentation of tensorflow, so each epoch will see varied images and the

model will learn to generalize better. Different transfer learning model have different input

size, MobileNetv3Large and NasnetMobile expect 224x224 image size, while

efficientNetV2B2 expects 260x260 image size. Refer figure 21 for code used for

augmentation while training individual image classification model.

Figure 21: Augmentation

12

6 Importing necessary Libraries

6.1 Object detection: Setup and All the libraries used
Following code was used for setting up Object detection.

13

6.2 Image classification: All the libraries used

7 Model Architecture

7.1 Object Detection

7.1.1 Yolov10-n

Total 2.7M parameters in Yolov10-n.

14

7.1.2 Yolov10-s

Total 8M parameters in Yolov10-s.

7.2 Image Classification

7.2.1 NasNetMobile

15

7.2.2 MobileNetV3Large

3M params

7.2.3 EfficientNetV2B0

5.9M params

16

7.2.4 EfficientNetV2B2

8.7M Params

7.2.5 Ensemble model

17

Ensemble have 16.1M parameters. A simple ResNet-50 would have 23M params

8 Evaluation Metrics

18

IMPORTANT: Since the checkpointing is being used, the model is stored when there is improvement in val_acc
or val_loss, the score shown below is when the model was stored and not the score on final epoch.

8.1 Yolov10

8.2 NasNetMobile
Code: 3_NasNetMobile_train_val_test_split
NasNetMobile was trained for 50 epochs and Learning rate was kept at 0.0001
Pre-trained ImageNet weights were used.

Model Data

Split

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable

layers

Verdict

NasNetMobile

Train,

Val

val_acc 20 ES /

5 RLR

0.0661 0.9853 0.3232 0.9008 All

Frozen

Val_loss

is

increasing
overtime

from 20th

epoch -
overfitting

Train,

Val

val_acc 20 ES /

5 RLR

5.6826e-

07

1.0000 0.2573 0.9662 All Val_loss

is

increasing
overtime

from 20th

epoch -
overfitting

Train,

Val

val_loss 5 ES / 3

RLR

1.0584e-

05

1.0000 0.2253 0.9546 All Due to

early
stopping

19

model

didn’t

overtrain
and is

stable

Train,

Val,

Test

val_loss 5 ES / 3

RLR
5.9582e-
06

1.0000 0.1771 0.9669 All Stable

8.3 MobileNetV3Large
Code: 2_MobileNetV3_large_3_split
MobileNetV3Large was trained for 50 epochs and Learning rate was kept at 0.0001
Pre-trained ImageNet weights were used.
Model Data

Split

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable

layers

Verdict

MobileNetV3Large

Train,

Val

val_acc 20 ES /

5 RLR

0.0161 0.9950 0.2118 0.9542 All Stable

Train,

Val,

Test

val loss 10 ES/

5 RLR

0.0154 0.9954 0.2678 0.9387 All Stable

8.4 EfficientNetV2B0
Code: 1_efficientNetV2B0
efficientNetV2B0 was trained for 50 epochs and Learning rate was kept at 0.0001
Model Data

Split

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable

layers

ImageNet

Weights

Verdict

EfficientNetV2B0

Train,

Val

val_acc 20 ES /

5 RLR

0.0120 0.9969 0.1416 0.9600 All True Stable

Train,

Val

val_acc 20 ES /

5 RLR

0.0507 0.9815 0.6046 0.8661 All False Did not

coverge

well.

Loss is

high

Imagenet weights are important even though all layers are trained again. The model converges faster. Pre-
trained weights are providing a good starting point to the model. The efficientNetV2B2 model is available with
more parameters and better performance, so all other experiments will be on that model.

8.5 EfficientNetV2B2
Val Loss is less and val accuracy is more as compared to B0.
Model Data

Split

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable

layers

Verdict

EfficientNetV2B2

Train,

Val

val_acc 20 ES /

5 RLR

0.0085 0.9978 0.1225 0.9729 All Stable

Train,

Val,

Test

val_loss 10 ES /

5 RLR

0.0348 0.9884 0.1012 0.9674 All Stable

8.6 Ensemble

All layers are trainable for fine-tunning complete model.

Model Epochs Data

Split

Monitoring Pateince Loss Acc Val_loss Val_Acc Trainable

layers

Verdict

Ensemble

10 Train,

val,

test

Val_loss 5 ES / 3

RLR

0.0480 0.9873 0.0749 0.9787 All Need to

run on
more

epoch to

stablize

30 Train,

val,

Val_loss 5 ES / 3

RLR

0.0101 0.9971 0.0527 0.9891 All Stable

20

test

21

