

Configuration Manual

MSc Research Project

Data Analytics

Himani Sharma
Student ID: X22224815

School of Computing

National College of Ireland

Supervisor: Mr. Vladimir Milosavljevic

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Himani Sharma

Student ID: X22224815
Programme: MSC-Data Analytics

Year: 2023-24

Module: MSc Research Project

Supervisor: Mr. Vladimir Milosavljevic
Submission Due Date: 12/8/2024

Project Title: Configuration Manual

Word Count: 2400

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Himani Sharma

Date: 11 August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only

Signature: Himani Sharma

Date: August 11, 2024

Penalty Applied (if applicable):

Configuration Manual

Himani Sharma
SID: X22224815

1 Overview

This manual explains the general setup and use of the various Python scripts for data pre-
processing, training of Faster R-CNN, RT-DETR, and YOLO V8. Programs are written in
the form of scripts so that they can be tuned by adjusting many factors that are common to
all the scripts being used.

2 Prerequisites

2.1 Python Libraries

• import json

• import os

• import random

• import xml.etree.ElementTree as ET

• from PIL import Image

• import yaml

• import shutil

• import cv2

• import numpy as np

• import albumentations as A

2.2 Hardware

The following hardware is present by default on the current laptop, which is known as the
Analytics Tier. These are therefore not prerequisites:

• Laptop/Desktop Computer: HP Pavilion Power Laptop 15-cb0xx series

1

• CPU/Processor: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz, Intel(R) Core(TM)
i7-8750H CPU with a clock speed of 50 GHz, 2496 MHz, 4 cores, 4 threads.

• RAM: 16GB

• Graphics Card: NVIDIA GEFORCE GTX

2.3 Software

The following software is installed on the present laptop. These are not requirements but
are helpful in making replication easier:

• Operating system: Windows 10 Home (Microsoft)

• Interactive Development Environment (IDE): PyCharm Community Edition 2019.2.3

• Anaconda Python 3 Distribution: Version 4.10.1

3 Dataset

https://www.kaggle.com/datasets/truthisneverlinear/dentex-challenge-2023

Figure 1: Scrpits

4 Data Processing Script

4.1 Data Input and Check

The Data Input and Check function loads the COCO dataset JSON file and opens it in
write mode. It retrieves image IDs associated with category id 3 by looping through all
annotations and adding the image IDs of the annotations related to this category. Next, it
compares these image IDs to select those for which no annotations for category id 3 have
been made. Finally, it displays the names of these images.

2

https://www.kaggle.com/datasets/truthisneverlinear/dentex-challenge-2023

Figure 2: Data Processing - Annotations

4.2 2. Remove Images Without Annotations

The Remove Images Without Annotations(data dir) function eliminates images from
directories where there is no corresponding label file. It sets paths to the images and labels
for the training and validation data splits. This function compares file names to find images
that are not labeled and removes those that lack descriptions.

4.3 Load COCO JSON

The Load COCO JSON function reads the COCO JSON file and transforms bounding
boxes from COCO format to YOLO format with the help of a helper function. It then con-
verts class IDs to the corresponding YOLO formatted annotation files and saves these YOLO
annotation files to the labels directory. Additionally, it includes a create xml(filename,

width, height, objects) function that converts Pascal VOC XML files from the anno-
tation data. This function creates XML elements regarding size and bounding boxes and
returns an XML tree object.

4.4 Convert YOLO to Pascal VOC

The Convert YOLO to Pascal VOC tool changes the format of annotations from YOLO
to Pascal VOC. It sets paths for YOLO and Pascal VOC directories, allowing the trans-
formation of YOLO formatted labels into Pascal VOC XML format. This function creates
Pascal VOC XML files and moves or replaces images into their corresponding directories.

4.5 Create New Custom YAML

The Create New Custom YAML function produces a YAML configuration file containing
parameters related to the Pascal VOC dataset. It defines the paths for datasets and classes,

3

Figure 3: Data Processing-Input

and saves the YAML configuration to the specified output directory.

4.6 Augment Images

TheAugment Images function applies various transformations to enhance images based on
input and predefined augmentation techniques. It uses methods such as flipping, brightness
adjustment, and noise addition. The function applies these augmentations to each image
and saves the augmented images in a new folder.

4.7 Main Function

The Main() function initiates the entire process, acting as the workflow management func-
tion. It enumerates untagged images belonging to categories such as animate, plant, artifact,
animal, leaf, and tree. It calls necessary functions for removing images without annotations,
sampling and copying images, converting annotations, and creating the YAML configura-
tion. Finally, it enhances images and stores them in the output folder, marking the end of
the process.

5 Faster RCNN.py File

5.1 Imports

The imports include the FastRCNNPredictor class from torchvision, which provides helper
functions for the prediction head of Faster R-CNN models. Various utilities are included,
which encompass functions related to training, evaluation, datasets, logs, and model in-
puts/outputs. Additionally, distributed, RandomSampler, and SequentialSampler are
two major classes used for distributed and non-distributed data sampling.

4

Figure 4: Train Data

Figure 5: Faster RCNN

5

Figure 6: Faster RCNN

5.2 Model Creation

The create model function has the following arguments: num classes, and coco model=False.
It constructs a Faster R-CNN model based on a pretrained MobileNetV3 backbone. The
function modifies the final part of the structure, specifically the roi heads.box predictor,
to match the required number of classes. Additionally, it includes an option coco model,
which, if set to True, returns a model pretrained on the COCO dataset.

Figure 7: Trainning graph

Main Function (main)

The main function initializes distributed training mode if applicable and sets up Weights &
Biases (W&B) logging if not disabled. It loads data configurations from a YAML file. To

6

ensure reproducibility, the function sets random seeds at the start of the run. It also ensures
that both the training and validation datasets are fully loaded. Depending on whether
distributed training is employed or not, data loaders are created with appropriate sampling
strategies.

5.3 Visualization

This section optionally displays the converted images.The model can be constructed from
scratch or, if weights are provided, continued from where it left off. The classification head
is set to match the number of classes specified in the input. The function also defines data
distribution, data parallelism, and synchronization.

Figure 8: Visualization-output

7

5.4 Training Loop

The training loop works through a specified number of iterations, known as epochs. It
saves the training and validation losses and mAP (mean Average Precision). Performance
is tracked using TensorBoard, W&B, or CSV. All model checkpoints are saved, and the best
model is selected based on validation performance.

5.5 Key Utility Functions

The function trains the model for one epoch, computes the required losses, and handles
gradient updates.Runs the model on the validation set to obtain performance metrics. Backs
up the state of the model and its parameters.Provides methods for creating plots of training
losses and mAP, and includes functions for saving these plots. Includes additional logging
functions for Weights & Biases and TensorBoard.

5.6 Logging

Handles plotting of training loss and mAP. Training logs can be saved.Used for logging
and graphic analysis.Utilizes SGD with an optional cosine annealing learning rate scheduler.
Optionally performs automatic mixed precision (AMP) to accelerate training. Supports
saving both single-machine and multi-machine distributively trained models.

Figure 9: Logging

6 YOLOV8

6.1 Define train v8s Function

The train v8s function is responsible for training and validating the YOLOv8 small model.
It calls the constructor of the YOLOv8 small model with pre-trained weights from a file. This
function trains the model using a JSON file containing parameters such as the training data
size, number of epochs, image size, batch size, and patience for early stopping. After training,
it assesses the model on a validation dataset and displays the mean Average Precision (mAP)
scores at various Intersection over Union (IoU) values to show model performance.

8

Figure 10: YOLOV8

6.2 Define train v8m Function

Similar to train v8s, the train v8m function trains and validates the YOLOv8 medium
model. It sets the model to YOLOv8 medium and loads the weights from a file. This
function uses the same training parameters as those in the train v8s function. It measures
the effectiveness of the developed model and provides the evaluation metrics.

6.3 Define train v8l Function

The train v8l function handles the training and validation for the YOLOv8 large model.
It initializes the YOLOv8 large model with pre-trained weights. This function uses similar
training parameters as the other training functions mentioned. It evaluates the model’s
performance on a validation dataset and prints out the evaluation metrics for the large
model.

6.4 Define main Function

The main function orchestrates the training process for all three YOLOv8 models. It prints
messages to notify the start of training for each model and specifies the path where the
results will be stored. The function sequentially uses train v8s to train the small model,
train v8m for the medium-sized model, and train v8l for the large model. After each
model’s training is complete, the function prints a message informing users of the location
where the results have been written.

9

7 RT-DETR

Figure 11: RT-DETR

7.1 Load the Model

An example of the RT-DETR model is established by loading a pre-trained model file named
rtdetr-l.pt. This file contains the weights for the RT-DETR large model, which is a variant
designed for object detection tasks. The train method is then used on the model object to
perform training.

7.2 Training Configuration

The dataset configuration is specified via a YAML file, referred to as custom.yaml. This file
includes paths to the training and validation images, as well as class labels. The number of
training epochs is set to 100, where an epoch represents a complete pass through the entire
training dataset.

10

Figure 12: Training Data

The input image size for training is specified as 1280 by 1280 pixels. The parameter
time to stop=50 with patience=50 indicates that the training will terminate if there is
no improvement in validation performance for 50 consecutive epochs, in order to prevent
overfitting. The batch size is set to 16, defining the number of samples processed before
updating the model parameters. Additionally, it is suggested that model checkpoints are
saved during training and that the final model is saved after training is complete.

7.3 Validate the Model

To assess the performance of the model, the val method is used. This method evaluates the
model on the validation dataset, which consists of data that the model has not seen during
training. The evaluation provides metrics that reflect the model’s efficiency and effectiveness
in making predictions.

8 References

Gad, A.F. (2024) ’PyGAD: an intuitive genetic algorithm Python library’, Multimedia
Tools and Applications, 83, pp. 58029–58042. Available at: https://doi.org/10.1007/

s11042-023-17167-y (Accessed: 11 August 2024).

Sirin, U. and Idreos, S. (2024) ’The Image Calculator: 10x Faster Image-AI Inference by
Replacing JPEG with Self-designing Storage Format’, Proceedings of the ACM on Manage-
ment of Data, 2(1), Article 52, pp. 1–31. Available at: https://doi.org/10.1145/3639307
(Accessed: 11 August 2024).

Creswell, J., Vo, L.N.Q., Qin, Z.Z., Muyoyeta, M., Tovar, M., Wong, E.B., Ahmed, S., Vi-
jayan, S., John, S., Maniar, R., Rahman, T., MacPherson, P., Banu, S. and Codlin, A.J.
(2023) ’Early user perspectives on using computer-aided detection software for interpret-
ing chest X-ray images to enhance access and quality of care for persons with tubercu-
losis’, BMC Global and Public Health, 1(30). Available at: https://doi.org/10.1186/

11

https://doi.org/10.1007/s11042-023-17167-y
https://doi.org/10.1007/s11042-023-17167-y
https://doi.org/10.1145/3639307
https://doi.org/10.1186/s44263-023-00033-2
https://doi.org/10.1186/s44263-023-00033-2

s44263-023-00033-2 (Accessed: 11 August 2024).

Si, T., He, F., Li, P. and Gao, X. (2022) ’Tri-modality consistency optimization with het-
erogeneous augmented images for visible-infrared person re-identification’, Neurocomputing,
522, pp. 12–24. Available at: https://doi.org/10.1016/j.neucom.2022.12.042 (Ac-
cessed: 11 August 2024).

12

https://doi.org/10.1186/s44263-023-00033-2
https://doi.org/10.1186/s44263-023-00033-2
https://doi.org/10.1016/j.neucom.2022.12.042

	Configuration Manual
	Himani Sharma
	National College of Ireland Project Submission Sheet School of Computing
	PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

	Overview
	Prerequisites
	Python Libraries
	Hardware
	Software

	Dataset
	Data Processing Script
	 Data Input and Check
	2. Remove Images Without Annotations
	 Load COCO JSON
	 Convert YOLO to Pascal VOC
	 Create New Custom YAML
	 Augment Images
	 Main Function

	Faster RCNN.py File
	Imports
	Model Creation
	Visualization
	Training Loop
	Key Utility Functions
	Logging

	YOLOV8
	Define train_v8s Function
	Define train_v8m Function
	Define train_v8l Function
	Define main Function

	RT-DETR
	Load the Model
	Training Configuration
	Validate the Model

	References

