~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Dev Sharma
Student ID: X23139676

School of Computing
National College of Ireland

Supervisor: Abdul Qayum

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dev Sharma
Student ID: X23139676
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Abdul Qayum
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 1361
Page Count: p|

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Dev Sharma

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Dev Sharma
X23139676

1 Introduction

This configuration manual is designed in such a way that it provides a comprehensive
and detailed instructions to set up, run and reproduce the research titled as “LSTM
Hyperparameter Optimization”. The main purpose of this manual is to make sure that
every person be it a researcher, students or practitioners can reproduce this study easily
without any hassle and difficulties and validate the results that are presented in the thesis
titled as above. With the help of the following steps in the manual, users will be able to
recreate the execution environment. Preprocess the data, can implement the model and
conduct the experiments in a systematic order.
The manual serves the following main purposes:

1. Reproducibility: This ensures that the experiments conducted by the researchers
can replicated, which is important for validation purpose. Reproducibility is one the
primary fundamental aspect of any scientific research that increases the credibility
and the reliability of the results.

2. Ease of Use: This manual provides a clear and step by step instruction that are
required to set up the complex working environment in an easy way. Ease of use
becomes important because any person that has less experience will be able to set
up and execute the program without any issues.

3. Troubleshooting Errors: This manual will also help researchers to solve any kind
of errors that may occur during or before the execution of the program. This will
ensure efficiency and reduce significant delays that may occur during the process.

4. Educational Resource: Students who are in process of learning and have no prior
experience will be able to read this manual and execute the programs on their own
without any hassle. This will help in their learning process and ability to tackle
problems.

This manual covers the following section:

e System Requirement: Minimum hardware and software requirement to replicate
the model working.

e Environment Setup: Gives a detailed instructions about how to set up the pro-
gramming environment and includes the installations of the dependencies.

e Data Preparation: Data preprocessing steps discussed.

Model Implementation: Architecture of the LSTM model. Snippets of the code
provided for implementation purpose.

Training the LSTM model: This sub section will explain the configurations which
are suitable for model implementation.

Evaluation and Testing: Methods used for the evaluation purpose.

e Hyperparameter Tuning: Optimization process to improve the model performance.

2 System Requirements

To successfully execute the programs and validate the obtained results, it becomes very
crucial to correctly setup the appropriate environment and install the necessary software
dependencies. In this section a comprehensive overview of the both the hardware and
software requirements and the dependencies that must be installed in order to successfully
will be discussed.

Hardware Requirements are as follows:

1. CPU: An Intel Core i5 (for windows user) or MacBook (with Apple silicon M1 or
later or i7 Intel chip (for older variants)) is recommended to efficiently handle the
computational task.

2. RAM: Minimum requirement is 8GB to ensure uninterrupted processing.

3. Disk Space: At least 10 GB free disk space is required to store the files that
includes the dataset, the main code and the intermediate files that are created
when the execution starts.

4. GPU: GPU is optional but can be used to increase the processing speed. An
NVIDIA GPU along with CUDA can drastically reduce the training time of the
model and increase the performance.

Software Requirements are as follows:

1. OS (Operating System): Systems operation on Ubuntu 18.04 or later versions,
or Windows 10 or later, or MacOS BigSur or later are compatible.

2. Python: Python version 3.7 or later is required to run the model. Python pro-
gramming language is used for the research because of the wide variety of available
libraries which reduces the need to write complex programs.

3 Environment Setup

For setting up the environment several python libraries are needed to be installed for the
smooth flow of model development. Firstly, TensorFlow and Keras should be installed
as these libraries provide the necessary tools that are required for implementation of the
LSTM model. Next is numpy and pandas which are the fundamental libraries that are
required for any machine learning project. For the visualization purpose such as graphs
and plots matplotlib and seaborn are used. Wordcloud library is used for generating

words clouds from the textual data. Lastly NLTK which is a fundamental library in any
natural language processing project is installed which provides tools that will be helpful
when working with the human language data. Broadly these are the major libraries that
need to pre-installed before the development process to have a smooth workflow.

Google Colab is an open platform offered from Google which lets its user run python
codes in their browser which any need for expensive hardware setup. It consists of many
runtime can be configured according to the requirement and the type of applications it
has been used for.

To verify that the libraries are installed correctly the code snippet shown in Fig.
should be executed.

import tensorflow as tf
import keras

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import nltk

import wordcloud

import sklearn

Figure 1: Required Libraries for Development

To install the NLTK data run the following code as shown in Fig[2]

© import nltk

nltk.download('punkt")

Figure 2: Installing NLTK Data

By following all these steps the working environment is perfectly configured and ready
for the research process. Another important step is adding the correct path of the dataset
in the system. The following Fig. shows where the file path needs to be changed
according to where the user has the text file.

© import PyPDF2

file_path = '/content/drive/MyDrive/Research/Text_Data.pdf'

Figure 3: Path of file need to be changed according to users file location

4 LSTM Modelling and Training

This section will provide the instructions about how to implement the LSTM model. A
complete overview of development starting from defining the model architecture, config-
urations of the training process will done.

Define the model as shown in the Fig[]

[1 class LSTMHyperModel(HyperModel)
def build(self, hp):
model = Sequential()
model.add(Embedding(input_dim=1en(tokenizer.word_index) + 1,
output_dim=hp.Int('embedding_output_dim', min_value=32, max_value=256, step=32),
input_length=max_length))
model.add (LSTM(units=hp.Int('units', min_value=32, max_value=256, step=32),

return_sequences=True))
model.add(Dropout(rate=hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1)))
model.add(LSTM(units=hp.Int('units', min_value=32, max_value=256, step=32)))
model.add(Dropout(rate=hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1))
model.add (Dense(units=1len(tokenizer.word_index) + 1, activation='softmax'))
model.compile(optimizer=keras.optimizers.Adam(hp.Float('learning_rate', min_value=le-4, max_value=le-2, sampling='lL0G')),
loss="'sparse_categorical_crossentropy', metrics=['accuracy'l])
return model

Figure 4: Defining the LSTM Model

Any changes required as per requirement can be done here. This includes adding
more layers so as to increase the performance of the model. The different layers include
the dense layer, LSTM layer and the dropout layer.

The next step is the using the Keras Tuner’s Random Search to find the optimal
value of hyperparameter. The following Fig[j] shows the configurations for the tuning
process. The number of epochs can be changed as per choice. But it is important to note
increasing the epochs lead to increased processing time.

© tuner = RandomSearch(
LSTMHyperModel(),
objective='val_accuracy',
max_trials=10,
executions_per_trial=1,
directory="'1lstm_hyperparameter_tuning',
project_name='text_generation'

S+ Reloading Tuner from lstm_hyperparameter_tuning/text_generation/tuner0.json

[1 tuner.search(X, y, epochs=20, validation_split=0.2)

Figure 5: Keras Random Search Tuning

Here,
e Epochs: 20 (It is the number of time the algorithm will work)

e Validation Split: 0.2 (From original dataset 80% for training purpose and 20% for
validation purpose)

Fitting the model on the dataset with the optimized parameter as show in Figlf]

o history = model.fit(X, y, epochs=10, validation_split=0.2)

Figure 6: Model Fitting

5 Evaluation Process

For evaluating the performance of the model. The following code snippet in Fig. [7] is
executed it calculates and prints the accuracy and the loss values respectively.

[1 loss, accuracy = model.evaluate(X, y)

print(f'Loss: {loss}, Accuracy: {accuracy}')

Figure 7: Evaluation Process

	Introduction
	System Requirements
	Environment Setup
	LSTM Modelling and Training
	Evaluation Process

