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Hyper-parameter Optimization for LSTM models

Dev Sharma
X23139676

Abstract

Due to the high potential of Natural Language Processing (NLP) in various ap-
plications the study in this domain has increased rapidly. More precisely the usage
of Long Short Term Memory (LSTM) networks for different applications such as
text prediction, language modelling and machine translations have risen. But the
performance of the LSTM model remains a challenging task despite the effective-
ness of the LSTM networks. The current research study does not detail about the
dependencies between the hyperparameters and performance of the model which
therefore leads to poor performance results. Therefore this research tries to address
this gap and thereby increase the real world applicability. This research aims to
determine the impact of hyperparameter optimization on LSTM models for NLP
applications. In this study the application is text prediction The data which is
present in form of text is extracted from a PDF document using the PyPDF2 library
and is tokenized with the help of Keras Tokenizer which is offered by TensorFlow.
Before the modelling process is started the data is prepared with the help of differ-
ent pre-processing techniques. An LSTM model is built which consists of number
of different layers having different functionalities. Different hyperparameters such
as embedding output dimension , LSTM unit, dropout rate and learning rate are
taken into consideration. These hyperparameters are optimized with the help of
the Random Search approach provided by the Keras Tuner and the performance
is evaluated. The results obtained show that there is marginal improvement when
compared with baseline model The study will help in providing a comprehensive
framework for enhancing the performance of the neural networks in the text pre-
diction applications.

1 Introduction

The fast pace advancement in the domain of natural language processing has transformed
a wide variety of fields ranging from automated translations to sentimental analysisWu
et al. (2021). However, when comparing all the techniques, the Long Short Term Memory
networks is one of the most advanced tools for applications such as sequence prediction
and text generation due to its ability to determine and capture the long range dependen-
cies in the data. Due to the scarcity in the availability of effective text prediction models
for applications such as predictive text input, language modelling and automated content
creation they are in high demand. Despite various findings the optimization of the per-
formance of the LSTM models remains a very crucial and less touched area of study. It
becomes important because it directly impacts the accuracy as well as the applicability
in the real world use cases Sundermeyer et al. (2012). Hyperparameter optimization has
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a very significant role in fine tuning the architecture and the parameters of the developed
model which will lead to improvement in the model’s efficiencyLiu et al. (2021).

This research question trying to solve is: Measuring the impact of hyperpara-
meter optimization on the performance on LSTM networks for text prediction
application. The main objectives of this research is:

• Developing an LSTM model which can effectively perform text prediction and gen-
eration.

• Analysing the impact of different hyperparameters on the performance of the model.

• Optimization using the Keras Tuner’s random search method.

Figure 1: LSTM Architecture Calzone (2019)

The Fig.1 shows the architecture of the LSTM network. LSTM is special type of
recurrent neural network (RNN) which is designed to model sequential data by learning
long term dependencies present in the data. It makes use of different gates such as the
input gate, forget gate and the output gate for controlling the flow of the information. The
special characteristic of LSTM is its ability to selectively remember and forget information
using these gates. This makes LSTMs suitable for a wide variety of applications such as
text predictions, timer series forecasting.The hypothesis assumed for this research is that
if the hyperparameters are optimized systematically then the performance of the LSTM
model used for text prediction tasks is enhanced. By identifying the key parameters that
will be crucial for this task and tuning carefully will help in achieving better accuracy
and generalization.

The motivation for this research emerges because of the increasing demand of intelli-
gent text processing systems. The ability to predict and generate text is essential for a
wide range of applications such as virtual assistants and automated content creation. As
LSTM networks are capable to understand and maintain long term dependencies in the
data so they are the most suited for these tasks. However, the performance of the LSTM
models are highly dependent on the selection of the hyperparameter values which includes
the number layers, units in each layer, dropout rate and the learning rate Zaremba et al.
(2014). Therefore, this research aims to systematically find the impact of various hy-
perparameters on the performance of the LSTM model and also identifying the optimal
configurations in order to get the best result for the text prediction application. This
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approach is expecting to increase the accuracy of the model as well as help in finding the
a relationship between hyperparameters and how they impact the model’s performance.

This study will significantly contribute to the scientific literature by providing a com-
plete detailed methodology for the LSTM hyperparameter optimization, which will high-
light the importance of fine tuning the neural networks. The findings that will be obtained
from this research will provide valuable insights about the practices that should be fol-
lowed in order to for configuring the LSTM model for text prediction tasks. Additionally,
the use of random search methodology provided by Keras will provide a complete frame-
work for hyperparameter optimization which can be applied on other types of neural
networks and different machine learning models. Majorly the contribution of this re-
search is twofold:

• Methodological Framework: The study will provide a comprehensive methodology
ranging from extraction, processing and modelling of the text data using the LSTM
model with major focus on the hyperparameter optimization.

• Empirical Findings: The results of this research will provide an empirical evidence
of the impact of hyperparameter tuning on the LSTM model performance, demon-
strating how optimization can lead to significant improvement in the accuracy and
generalization of the optimized mode.

The structure of the report will be as follows:

• Literature Review: A deep analysis of the existing methodologies and the previous
research that had been conducted related to the LSTM networks and optimization of
the hyperparameter. This will help in providing a theoretical foundation which will
help in understanding the significance of hyperparameter in the neural networks.

• Methodology: In this section there will be complete discussion starting from the
data preparation, model building and tuning of the hyperparameters in detail. This
will also include the steps that will be followed to extract the text data, creation of
the training data and building of the LSTM model.

• Results: This section will present the findings that are obtained from the research,
including the performance measurement metrics and a detailed analysis. There will
also be a complete overview on the results of the optimization and the effectiveness
of the optimized model.

• Conclusion and Future Work: In this section there will be a complete summary of
the outcomes of the conducted research and also what are the possible future work.

2 Related Work

The literature review is divided into subsection according to the specific details as per
requirement.

2.1 Optimization

The research conducted by Abdolrasol et al. (2021) proposed to develop an optimiza-
tion technique with the help of artificial neural networks to solve a variety of problems.
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Initially the authors begins with the discussion for the need for optimization technique
for machine learning applications also the authors gives much emphasis on the usage of
the neural networks which are complex computational algorithms based on the biolo-
gical nervous system. The authors also states that the popularity of these algorithms
are increasing in the recent times because of their ability to process complex data ef-
ficiently. The different algorithm used in the research paper include genetic algorithm,
particle swam optimization, artificial bee colony, lightning search algorithm and many
more algorithms. Each of these above mentioned algorithm is discussed in the context
of optimization with the usage of neural networks to improve their performance by ma-
nipulating the hyperparameter. This research showcases the results of the optimization
technique in various applications such as energy management, forecasting, data analysis
and other real life applications. In one of the applications discussed by the authors the
particle swam optimization technique is used to optimize the number of neurons which
are present in the hidden layer and also optimizing the learning rate for improving the
energy management in the virtual power plants. In another application the authors uses
the genetic algorithm to optimize the predictive and forecasting applications. For the pro-
cess of evaluation the authors does a comparative analysis between the results that are
obtained from the baseline model and the results from the models when the parameters
are fine tuned. The research does not explicitly make use of a particular dataset rather
it focusses only on the development technique using the artificial neural network. To
evaluate the accuracy of the developed model mean absolute error (MAE) is employed.
The positives of this research conducted is it discusses a wide variety of optimization
technique which comprises of both the conventional and non-conventional techniques for
different applications. A number of different applications are also discussed which will
significantly contribute during the research process. The negatives of this research is that
it lacks comparison between the optimization techniques.

The study conducted in Aldabbagh and Syed (2023) discusses about the importance
of hyperparameter tuning in the artificial neural networks. These hyperparameters in-
clude the weights, learning rate, batch size and other parameters which can be tuned
in order to increase the efficiency of the model. Initially the research paper highlights
problems that arises because of the conventional optimizations technique such as the
gradient descent algorithm for improving the efficiency. To solve this issue the research-
ers proposes a metaheuristic approach which will help in determining the most optimum
values of the hyperparameter. More specifically this involves the development of a tech-
nique using the variable neighbourhood search to overcome the limitations. Further in
the research the authors performs an extensive literature review on the metaheuristic al-
gorithm which is used for the optimization of the artificial neural network. The research
uses three datasets which comprises of a wide variety of data having different structure,
types, distribution and complexities which will help in determining the robustness and
the stability of the variable neighbourhood search algorithm under different conditions.
There is no mention regarding the source of the dataset. The results obtained after per-
forming the research deem that there is a varying trade-off between the speed and the
accuracy. The simple back propagation method outperforms all others in terms of speed
whereas the full neighbourhood search back propagation method outperforms in terms
of accuracy. This indicates that which model to be used highly depends on the type of
application in which it is employed. In the case of time critical applications where there
is no requirement of high accuracy the simple back propagation method will be useful
where in cases where accuracy matters the most the latter model can be employed. The
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evaluation method used for the model is based on comparing the performance of differ-
ent Variations of Variable Neighbourhood Search (VNS) for Artificial Neural Network
(ANN) structure optimization. The evaluation involves assessing the trade-offs between
speed and accuracy for each VNS variation. The evaluation also utilizes various datasets
to gauge the algorithm’s adaptability and generalizability. Overall the paper provides a
complete overview but lacks in few areas. There is no discussion regarding the scalability
and the generalization of the developed model which is a very important point.

The research study done by Powell et al. (2020) introduces a real time optimization
method using the reinforcement learning. It uses an actor – critic architecture to make
and apply optimal decisions in response to the stimuli that is generated in the neural
network. This working methodology makes it different from the conventional real time
optimization methods which includes reputedly solving a process in order to determine
the optimal values for the model. Further in the research the authors discusses about the
working methodology of the proposed model. To demonstrate the working the testing
is performed on the real time data generated from a chemical reactor process system to
continuously update the parameters in order to maximize the efficiency. After apply-
ing the proposed model on the chemical reactor it was seen that there was an increase
of 9.6% in the annual profits of the business. The evaluation method for this research
model involves a closed-loop simulation using the original dynamic model of the chemical
reactor system, with measured disturbances changing at random. The RL-RTO applica-
tion is put in closed-loop with the plant, and the simulation is run for a year in order to
summarize the results and compare them to a conventional NLP-based RTO application.
Further. The researchers also state that more development is needed in this reinforcement
learning based real time optimization method to be able to compete with the conven-
tional real time optimization methods. The proposed method is not able to fully use the
capabilities of the reinforcement learning for the optimization process. Moreover, the au-
thors state that the RL RTO method exhibited abnormal behaviour in certain conditions
where the complexity of the data changes. Overall, the results are promising but further
improvement is also required in order to make it useful for real world applications.

The research study done in Gorgolis et al. (2021) performs hyperparameter optimiz-
ation of LSTM network for the NLP applications. It makes use of the genetic algorithm
for the same. The application for which the model is being developed is next word
prediction which is majorly used in the natural language processing field. Further the
authors discusses that artificial neural networks are most commonly used for this applic-
ation and hyperparameter optimization is essential in order to improve the performance
of the model. The authors emphasize on the importance of sequence prediction in various
task such as text auto correction, generation and many more. Also since neural networks
involves a number of different parameters finding the optimal value becomes very import-
ant. The genetic algorithm involves creating number of initial models using randomly
choosing the hyperparameter value, evaluating the fitness of each of it using metrics such
as accuracy or perplexity and then selecting the fittest model through the process of elit-
ism. The concept of crossover and mutation is also defined. Crossover is defined as the
process of selecting two parent models and combing them to develop an offspring model.
Mutation is introducing random changes to the hyperparameters of the model. In the
first variation of the algorithm, concept of mutation is applied to the survivors of the
previous generation, whereas in the second variation mutation is applied to the entirely
new generation after the crossover process is completed. This random variation helps in
exploring a large space of hyperparameter thereby finding the optimal value which results
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in increased performance. The paper doesn’t provide any dataset rather focuses only on
the methodology of developing the model. However, the choice of dataset will have a
significant impact on the performance of the model. Also there is no discussing regarding
the potential drawbacks or limitations of the model.

The study conducted in Hashem et al. (2017) proposes an adaptive stochastic conjug-
ate gradient (ASCG) technique for the purpose of optimization of the neural networks.
For the purpose of this study the authors makes use of publicly available dataset. The
first dataset contains 5000 instances and includes 12 characteristics whereas the second
dataset has 769 instances with 9 characteristics. Appropriate data pre-processing pro-
cedures such as label encoding, removal of certain characteristic and other methods have
been followed in order to ensure that the data is ready for processing. In the proposed
methodology the value of leering rate and search directions are calculated dynamically
based on the observations gathered from the gradient which in turn helps in enhancing
the efficiency and convergence speed. The models is designed in such a way that it in-
cludes a multi-layer perceptron which has an input layer, hidden layer and output layer.
Experimental results on benchmark datasets show that the ASCG optimization approach
outperforms standard optimization techniques in terms of convergence time and model
performance. The ASCG algorithm is able to navigate the complex parameter space
more efficiently by adaptively updating the conjugate directions, avoiding local min-
ima and accelerating the optimization process. The neural network iteratively updates
weights, manages activation functions, and computes optimized cost errors. After defin-
ing the network architecture, it is compiled by specifying the loss function, optimizer,
and evaluation metrics before being trained on the prepared datasets. The paper also
mentions the use of the Quasi-Newton method and CSG optimization approach during
the training phase. While the paper presents an adaptive stochastic conjugate gradient
(ASCG) optimization strategy for backpropagation neural networks, it lacks in-depth
comparison with a broader range of state-of-the-art optimization techniques. Addition-
ally, the experimentation and evaluation are restricted to specific benchmark datasets,
potentially limiting the generalizability of the proposed method across various problem
domains. Furthermore, the paper does not extensively discuss the potential limitations
and assumptions of the ASCG algorithm, which could impact its applicability in practical
scenarios.

The research study conducted by Li et al. (2021) introduces an algorithm called as
the hybrid equilibrium optimizer (HEO) which will be able to solve the problems of the
conventional equilibrium optimizer algorithm such as premature convergence and the
slow convergence process. It incorporates mainly three key elements (i) Chaotic Reverse
Learning Strategy, (ii) Elite Gaussian Perturbation Strategy, and (iii ) Time- varying Levy
Perturbation strategy. The authors perform simulation and does a comparative analysis
with the help of classical test functions which gives evidence that the HEO algorithm
has increased convergence accuracy and better performance when compared with other
equilibrium optimizer algorithm. The authors doesn’t explicitly specify the dataset used
for this research. However, the research mentions the HEO LSTM model is used for the
classification process of the cardiovascular diseases. It highly possible that this dataset
might be used for the training and testing process of the developed HEO algorithm.
Similarly, there is no mention regarding the model’s performance metrics. Broadly for
classification tasks metrics such as precision, recall, F1 score similar are used. Overall
the research is well performed but lacks in few aspects. Firstly, there are generalizability
challenges because the model cannot be used for applications other than cardiovascular

6



disease classification. The paper also lacks in depth explanation of the methodology that
has used to develop the model. By solving these stated problems the model will be more
robust and useful for a wide variety of applications.

2.2 Application of LSTM

The research study conducted by Buslim et al. (2021) performs a comparative analysis of
different machine learning algorithm for predicting the bitcoin prices on a dataset ranging
from August 2017 to August 2021. The algorithms that were used are gated recurrent
unit, recurrent neural networks and the long short term memory network models. Two
optimization algorithms grid search and random search were used for the purpose of the
hyperparameter optimization of these models. The dataset has 1356 rows containing the
bitcoin price information with the features such as open, high, low close and trade count.
Appropriate preprocessing was carried out on the data before it was used for modelling.
All the developed models were of the same configurations which had 40 windows and
50 batches. As the grid search algorithm checks for a wide variety of hyperparameter
values it takes a good amount of time to train. To analyse the performance of the models
the Mean Absolute Error metric was used. The results showed that the GRU method
accompanied by the grid search algorithm has the best performance amongst all the
models. The results also showed that LSTM ten to depend on the long term history in
the data to process while the RNN model also showed fairly good accuracy but was highly
sensitive to the parameters chosen. The limitations of this model is that it focuses only
on one cryptocurrency Bitcoin but there are others available as well such as Etherium,
which may follow a different pattern. Another downside is that the time frame taken for
this research is very short (August 2017 to April 2021) which may limit generalization of
the model when applied for other time periods. Additionally there is no considerations
of external factors such as market sentiments, regulatory issues which have significant
impact on the model.

The research study conducted by Singh et al. (2023) makes use of the LSTM model
along with the ARIMA for the application of time series forecasting. LSTMs are used for
a wide variety of applications such as machine translations, topic modelling, next word
prediction. In the research the authors gives great emphasis on the fact that historical
data is of huge importance in forecasting the results for the future time. There is also
discussion regarding the importance of hyperparameters. For hyperparameter tuning the
authors discuss about two methods Bayesian search and the random search algorithm.
This will help in forecasting better result when compared to the baseline model. To
determine the performance of the developed model metrics such as mean absolute error
(MAE) and mean absolute percentage error (MAPE) are calculated. These metrics will
help in finding the closeness of the predicted result to the actual results. There are some
downsides to this research firstly the methodology is poorly described and misses a lot of
important information. Secondly, there is no discussion regarding the implementation of
these model on a larger and its potential drawbacks.

Another study done by Maulani et al. (2024) develops a machine learning based
diagnosis system for heart diseases using a combination of convolutional neural network
and LSTM. The authors compare the results obtained when two optimization techniques
are used namely grid search and random search. The main agenda of this study is the
early detection of the heart diseases which is one of the leading cause of global deaths
The dataset employed for this research is sourced from the machine learning repository
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at the University of California, Irvine. The dataset consists of 303 records and has 76
attributes and is used for investigating heart disease pattern. The main focus is on the
14 specific attributes in the dataset of which 13 columns serve the role of features and
the remaining 1 is the target variable. For analysing the performance of the developed
model metrics such as accuracy, recall, specificity, f1 score and AUC values are calculated.
The recorded accuracy was 91.67%. Overall the research serves as a good base for heart
disease diagnosis it remains very restricted to a particular application only. Additionally,
for better validation of the results datasets from other sources could also be used to test
the working of the developed model.

The table shown in the following Fig.2 gives a summary of the literature review
conducted.

Figure 2: Literature Review Summary Table

3 Methodology

The following flow chart in Fig.3 explains the complete methodology of this research.
The methodology section provides a comprehensive framework which portrays the sys-

tematic approach that has been followed to address the proposed research problem which
in this case is hyperparameter optimization in LSTM networks for NLP applications. This
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Figure 3: Workflow of research showing each step in detail

section is crucial as it details the steps and the techniques that are implemented which
will help in ensuring that the research is reproducible and the findings are reliable. The
methodology section is further divided into sub-sections where each sub-sections explains
the details of the step and the rationale behind it. The first sub-section begins with the
collection and preparation of the data which includes the extraction of the text data from
the PDF document and converting it into suitable format for the purpose of processing.
The exploratory data analysis (EDA) is carried out in order to generate insights from the
data which will be helpful during the modelling process. After this the dataset is created
using method that will generate the training samples and will also help in capturing the
sequence in the data is discussed. Next sub-section details about the architecture of the
LSTM model also including the choice of layers and the rationale behind the proposed
design. Next step is the hyperparameter tuning process using the Keras Tuner’s Ran-
dom Search to enhance the performance of the model. This involves trying the different
configurations of the model in order to get the optimal combination which in turns gives
better performance. Finally, the evaluation process is done to validate the performance
of the developed model and conclusions are drawn.

3.1 Data Collection and Preparation

The data collection and preparation stage is one of the most important part of any
machine learning project. The whole modelling process is dependent on the quality of
the data that is being used. For this research the text data is taken from a publicly
available domain called Project Gutenberg. The text data is stored in form of a PDF
document. This section discusses about the process of extraction of the text data from the
PDF document, the EDA process and the other procedures that are followed to prepare
the data for the modelling process. The coding environment used for this research is
Google colab because it provides a smooth execution process and better user interface
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which is important for an research. The extraction of text from the PDF document
was performed using the PyPDF2 which a python library designed to read PDF files.
PyPDF2 efficiently extracts the text data from each page of the PDF document.

The process of extracting the text data from PDF document begins by opening it
in binary read mode and creating a PdfReader object. This object then iterates over
each page of the document and contents is extracted and concatenated to form a single
continuous string. This methods efficiently extracts the content from the document which
will help in creating a comprehensive dataset for further analysis. After the text data
is extracted a thorough exploratory data analysis (EDA) is performed to gather useful
insights from the data. This includes generating facts like frequency distribution of the
words, text length distribution, vocabulary size analysis and Unique words per sequence
Kumar et al. (2020). The following figures shows results obtained after performing the
EDA process. The Fig. 4 gives information regarding the top 50 most common words in
the text data, Fig.5 is a word cloud generated from the text data, Fig.6 Shows the top
20 most common 2-grams (n-grams) words and the Fig.7 shows the distribution of the
sequence length.

Figure 4: Top 50 most common words in the text data

Figure 5: Word cloud generated from the text data
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Figure 6: Top 20 most common 2-grams (n-grams) words

Figure 7: Distribution of the sequence length

The next step in the process is Tokenization. It is one of the seven steps that are
followed during the natural language processing tasks (Tokenization, stemming, lemmat-
ization, POS tagging, name entity recognition, Chunking). In tokenization the raw text is
converted into sequence of integers where each integer represent a unique word. The fol-
lowing Fig. 8 shows the tokenization process. The Fig.8 shows an example of tokenization
where the sentence ”This - 1 is - 2 a- 3 chair- 4” is divided into 4 tokens respectively.

Figure 8: Tokenization of text data

It is an important step because the neural network model typically requires numerical
data for processing and not text Dominguez et al. (2020). For the process of tokenization
the tokenizer class from TensorFlow library is used. It provides an effective and efficient
way to convert the text into unique integers. It creates a vocabulary index. After the
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tokenization process is completed a sentence typically looks like a sequence of integers.
To ensure that the model has better efficiency sequence padding is done. It involves
converting all the sequences (sentences) into uniform length. In this research threshold
values has been set to 100 which means a sentence can have a maximum of 100 words.
The sequences that are shorter than this are padded with zero to make them uniform in
length and bigger sentences were truncated in length. Here the post padding is done in
order to maintain uniformity and easy for readers to read.

3.2 Dataset Creation

The PDF that consists of the text data is an e-book having 227 pages an around 120,000
words. It is publicly available on the internet and has sufficient text data for modelling.
After the text data has been extracted from the PDF the dataset is created this involves
generating input output pairs using the sliding window approach. Before the sliding
windows approach is applied it is important to tokenize the data and perform sequence
padding so that uniformity is maintained and model performs efficientlyChen et al. (2020).
The input output pairs that are generated from the sliding windows process is used for
learning (training) process of the model. Each of the input sequence have a definite
number of consecutive integers and output of that corresponding order is the next integer
present in that sequence. In this way the context of each word is captured and allows
the model to generate the dependencies present in the text. In this research window size
is selected as 100 this means at a time sequence of 100 words will be considered for a
window. The window moves one token at a time to the right through the text and creates
overlapping sequences. The following Fig. 9 shows the working of the sliding windows
technique. By the help of this method training samples are generated.

Figure 9: Sliding Window Algorithm

After completion of the sliding windows process and the padding the final dataset
consists of two important components the input sequence and the corresponding output
tokens. Then reshaping of input sequences is done so as to make it fit for the LSTM
layer’s requirement generally it should be in the format [samples, time steps, features] ,
where samples are number of input sequences present, time steps is the sequence length
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100 in this case and features represent the number of features present per step ( here
features has value 1 because each time step is a single integer). By properly following all
these preprocessing steps, a well-structured dataset is created which enables the LSTM
model to effectively learn from the data. All these preparations are very crucial before
developing any model as it will directly impact the models ability to capture and predict
the sequential dependencies present in the data.

4 Model Design

Defining a comprehensive architecture of a model is very important for effective working.
This sections outlines the detailed architecture of the LSTM model used for next word
prediction. Different components in the section include the embedding layer, LSTM
layer and the dropout layer The Fig. 10 shows all the layers in the model. Also a
comprehensive rationale behind choosing this particular architecture will be discussed.
All the components in the architecture are as discussed below:

Figure 10: Detailed Architecture of model

• Embedding Layer: The first layer present in the LSTM model is the embedding
layer. This layer functions to convert the integer sequences (words that were token-
ized) into dense vectors having definite size. All the words present in the vocabulary
are mapped to a unique vector which helps in capturing the semantic relationship
in the textual data. The embedding layer is an important components because it
converts the high dimensional integer representation into a lower dimension dense
representation which can be efficiently and easily processed by the further layers of
the neural network.Basarslan and Kayaalp (2020b)

• LSTM Layer: After the embedding layer follows two LSTM layers. LSTM layers
are kind of RNN networks which is specifically designed to capture the long term
dependencies present in the sequential data. Unlike the conventional RNN models
LSTM are very effective when dealing with the text data and capable of identifying
the semantic relationship present in the data. Having two layers in the LSTM model
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tries to develop a balance between complexity and the computation efficiency of the
model. The two LSTM layers are:

- First LSTM layer: Its job is to process the dense vectors that are produced
by the embedding layer. There are specified number of units present in this layer
which determines how well the model learns from the data. The suitable number
of units are chosen during the hyperparameter tuning processChakraborty et al.
(2020). Roughly it varies from 50 to 200 units. The output generated from this
layer are sequence of hidden states which captures the dependencies as well as the
context present in the input sequence (text data).

- Second LSTM layer: It process the outputs (hidden states) from the first layer.
The second layer is provided in addition to first because any complex dependencies
present in the text data that were not captured by the first layer is done by the
second. It also helps in developing hierarchical representation of the input sequence
which will improve the model’s ability to correctly predict the next word. Similar
to the first layer, this layer also has specified number of units roughly from 50 to
200 which as adjusted during the optimization process.

• Dropout Layer: To prevent the problem of overfitting (model tries to learn the data
extensively and also learns the errors or outliers) dropout layers are added after each
LSTM layer. Dropout follows a regularization technique that sets random number
of input units to zero during the training process which helps in the model to not get
dependent on few particular neurons. This improves the model to learn different
features making it robust and generalize better the unseen dataAbbasimehr and
Paki (2020). Since in this research there are two LSTM layers thereby two dropout
layers are added. There is also a dropout rate associated to each dropout layer
which ranges roughly from 0.2 to 0.5 and is tuned as per requirement during the
optimization process.

• Output Layer: The final layer present in the model is the output layer which is
a dense layer added with a softmax activation function. The output of this layer
is gives a probability distribution over the entire vocabulary, which indicates the
likelihood of each words being the subsequent word in the sequence. The softmax
ensures that the output values are in the range of 0 to 1 which helps in better
interpretation. The output has the same number of units as the size of vocabulary
which helps it in predicting any of the words present in the vocabulary as the next
words.

For the purpose of modelling this particular configuration is chosen so as to maintain
a balance with the model complexity with ability to capture long term dependencies
present in the text data. Firstly, the embedding layers transforms the high dimension
input into lower dimension dense vectors which are then processed by the LSTM layers
to recognize and learn the sequential pattern. The dropout layer minimizes the chances
of overfitting. Overall this architecture manages to use the potential of LSTM network
while handling the sequential data.

4.1 Hyperparameter Tuning

Hyperparameter tuning is one of the most critical steps in the process of hyperparameter
optimization. The aim of this process is to find the best possible combinations of hyper-
parameter that will result in highest model performance. In this there will be a detailed
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discussion regarding how the Keras Tuner was used to for the optimization process and
also the hyperparameters that are considered for this tuning process. In this research
following hyperparameters were considered for the optimization process:

1. Embedding Output Dimension: It is the size of the vector produced by the embed-
ding layer from the high dimension input sequence.

2. LSTM Units: If number of units are more it can easily capture complex patterns
in data, but there also increases the risk of overfitting and requires sophisticated
computing resources.

3. Dropout Rate: Units that need to dropped during the training process.

4. Learning Rate: Used by the optimizer to update the model weights during the
training process.

5. Batch Size: Minimum number of samples that need to processed before the internal
parameters of the model are updated.

The Fig. 11 shows the hyperparameter tuning method.

Figure 11: Tuning Process

For the process of hyperparameter optimization the Keras Tuner library was used. It
provides a convenient yet efficient way to determine the best possible configurations. In
this research the Random Search method was used because of its simplicity and more
effectiveness Yang and Shami (2020). In the Random Search method the hyperparameter
values are selected randomly from the from a predefined space (range). This method is
useful when the possible values are large and it does not require an exhaustive search of
different combinations of configurations. Instead by the method of sampling it determines
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combination of hyperparameters which makes it efficient and there still remains high
chances of finding optimal configurations. The process of tuning starts with defining a
hypermodel, it is a Keras model that defines the search space for the hyperparameters.
It includes the ranges and the possible values of the each hyperparameter that is to be
tuned. In this research the hyperparameters defined above are tuned to get the optimized
value. Next step is setting up the Tuner the Random Search tuner was configured with
the hypermodel, also specifying the objective that is to be optimized , the maximum
number of trials that need to be performed, and the maximum number of executions per
trial. In each of the trial different configurations are applied. After this the tuner searches
the hyperparameter space. The data is split is training, testing and validation and the
model is trained for the different configurations of the hyperparameters. The tuner then
evaluates the performance based on the accuracy obtained. After the search is completed
the tuner identifies the best combination hyperparameters based on the highest value of
validation accuracy. This configuration having the highest performance is used to build
the final model.

5 Implementation

After the tuning process when the optimal values of hyperparameters are identified the
final LSTM model was constructed with the help of it. The training process of the
LSTM model involves feeding it with prepared dataset, allowing to recognize the pattern
and the relationship present in the text data and accurately predicting the next word in
the sequence. The dataset comprises of input sequences (sentences) which contain 100
tokens (words) each, with every sequence paired with the corresponding next token as
the output. The sequences are fed as the input into the LSTM model, it learns and then
predicts the next word based on the preceding context. The key configuration involved
during the training process are as follows:

1. Epochs: The model was trained for a good number of epochs to make sure that it
had enough chances to learn from the text data. Generally it is trained for 20 to 50
epochs as standard but it can vary depending upon the validation data.Shafi and
Assad (2023)

2. Batch Size: Commonly used batch sizes are 32,64 or 120 as per the requirement.
The optimal value is obtained during the training processBasarslan and Kayaalp
(2020a).

3. Validation Split: To have a check on the performance of the model a validation set
is created from the actual dataset, In this research the ratio was set as 80:20 which
80% of the whole dataset is used for training process and the 20% is used for the
validation purposeGupta (2023).

In the training process the LSTM model iterates over the training data in batches as
defined above, during the same process it updates the weight depending upon the error
between the predictions and the actual target values. Early stopping technique was also
used to prevent the problem of overfitting where the training process is halted it there
is no significant improvement in the validation loss for a given number of epochs. After
the training process is completed the evaluation is done by calculating few metrics and
analysing it. The next section discusses about the results obtained and the justifications.

16



6 Result and Evaluation

This section provides an in depth discussion regarding the LSTM model’s performance
for the next word prediction. It also includes a detailed overview of the model’s accuracy
and loss and the following implications and its comparison with baseline models and
possible areas of improvement. After training the model with the processes dataset, the
evaluation metric gave an accuracy of approximately 20% and a loss value of 6.97. The
loss value grades the model on how well it is learning during the training process and
therefore percentage is generally not used in this case. These values were obtained when
the model was evaluated on the training dataset. Here the term accuracy is the ratio of
the correct next word prediction, while the loss function defines the difference between
the predicted and the actual next word and quantifies it. The results obtained indicate
that the developed model has very limited predictive power in the current form. However,
getting an initial score is very important for further improvement process which will result
in better performance.

6.1 Discussion

The obtained accuracy of 20% suggests that the developed model is able to correctly
predict the next word in sequence in 20 cases out of 100. There may be several factors
that contribute to this performance. The following explains the possible reasons:

• Data Quality and Quantity: The dataset that is provided to the model might
be insufficient to learn the complex patterns effectively. The application of text
prediction requires very huge amount of text data in order for correct predictions.
Also there may be issues regarding the quality of the text, irrelevant content , noise
these all significantly impact the performance of a model SpringerLink (2022).

• Complexity of the Model: The selected model architecture of LSTM might not be
complex enough to detect and capture the details from the dataset Hamarashid
et al. (2022). Addition of further layers or selection of a different architecture shall
improve the performance.

• Hyperparameter Optimization: Further experimentation and exploration in the
hyperparameter space can yield better performance thereby getting better results
Alshemali and Kalita (2019). The parameters such as the learning rate, batch size,
number of units in the LSTM layer can significantly improve the model performance.

• Duration of training During the training process it was observes that the accuracy
improved significantly when the number of epochs were increase. But there was an
issue regarding the time taken during the training process. Increasing the number
of epochs improves the accuracy there also comes drawbacks.

To get a context of the LSTM model’s performance it is will be useful to compare
it with against the simpler models. One of the common baseline for the application of
the next words prediction is the N gram model, which is used to predict the next words
in the sequence based on the previous N words that are present by taking help of the
probabilities derived from the corpus

N-gram models:
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1. Unigram (N=1): It predicts the most frequent word present in the dataset.

2. Bigram (N=2): It predicts the next word in the sequence based on the frequency
of the preceding word’s.

3. Trigram (N=3): It predicts the next word in the sequence based on the frequency
of the preceding two word’s.

In the current dataset, the Unigram will be the baseline model typically which achieves
an accuracy of 5-7%, as it able to predict the most frequent words present in the dataset
regardless of the context. The accuracy achieved by the LSTM model was 20% which
surpasses the baseline model demonstrating the ability to learn the contextual dependen-
cies present in the dataset at a basic level . The next section discusses about the future
work and the improvements possible to improve the performance of the LSTM model.
The following table in Fig.12 shows the comparison with the baseline models.

Figure 12: Table showing comparison with few baseline models

7 Conclusion and Future Work

Through this thesis the usage of Long Short Term Memory (LSTM) networks for the
next word prediction task was done, which included a comprehensive process starting
from data extraction and preprocessing to model development and hyperparameter tun-
ing. The results obtained though not very high, accuracy of 20% and loss of 6.97 shall
serve as a foundational understanding of the details involved during the prediction of
next word task when using the deep learning models.Despite the low accuracy obtained,
this research highlights the importance of various factors such as data quality, model
architecture, and the configurations of the hyperparameters on the performance of the
model. The challenges faced during this research shows the complexity involved during
the text prediction task and also the need for more research and experimentation.

There is a good scope in future to improve these results if more time is available.
In future data Augmentation and quality improvement can be done. Adding extra text
sources which will significantly increase the size of the dataset and add more diversity
to it. This will improve the vocabulary of the model thereby improving its perform-
ance to correctly predict the next word. Additionally making use of advanced NLP
preprocessing techniques will improve the quality of the data thereby improving the per-
formance. Secondly, Model Architecture and Enhancement can be done. Exploring other
neural networks such as gated recurrent unit (GRU), transformer model can done for bet-
ter processing. Advanced optimization technique such as Bayesian optimization or the
grid search algorithm which are capable of exploring a wide variety of hyperparameter
values can be an effective solution. Regularization techniques such as L2 can be used in
order to prevent the problem of overfitting which impacts the performance of the model.
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