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Abstract 

 

This is vital as well, to find out the early vulnerabilities and threats in cyberspace eco-system 

respectively, known we commonly call IDS that stands for Intrusion Detection Systems. 

However, legacy intrusion detection systems (IDS) frameworks are often ill-equipped to handle 

the dynamic and complex nature of today's advanced cyberattacks which will need better 

solutions. In this work, we investigate the application of autoencoder models to enhance intrusion 

detection systems (IDS), as they are known for their performance in anomaly detection. We 

designed and evaluated five different autoencoder architectures: a basic one, a convolutional 

(ConvAE), Variational AutoEncoder(VAE), Conditional VAE and an Adversarial AE. This 

approach was deployed to balance the class imbalance in two complex network datasets that were 

used both as training and testing sets for each model by means of SMOTE method. The results 

showed that the Convolutional Variational Autoencoder (CVAE) outperformed other models 

with almost perfect scores in accuracy, precision and recall among all models as shown by F1-

scores. This places the CVAE in high regard as a network traffic classifier, given its superiority 

over prior methods for solidifying benign and malicious networking distinction. The study results 

suggests that combining deep learning CVAE architectures in Intrusion Detection Systems (IDS) 

can result on strong networks protection against many computer network attacks as well. 

 

1  Introduction 
Since newer generation tools and technologies are replacing legacy systems, the latest 

methods of cyber attacks facilitate more problems, for example, Intrusion Detection Systems 

(IDS) (Chen et al., 2018). The integrity and the security of information would be at risk if 

these systems did not exist to help network traffic (and hence potential malicious activities) 

to be monitored. Though critical as a tool, historical IDS solutions tend to lag behind the 

rapidly evolving entities in modern cyber threats as they rely on static rules/signatures (rules 

that can identify only known and old types of attacks are not good against zero-days or 

advanced attack techniques) (Zhou & Paffenroth, 2017). 

Traditional IDS have limitations, over and above what we already discussed, that make the 

use of more dynamic solutions requiring intelligence imperative. The enhancement for IDS 

capabilities seems promising due to the recent growth in artificial intelligence, especially in 

machine learning and deep learning (An & Cho, 2015). Recently, autoencoders—a class of 

neural networks—have become especially popular for anomaly detection (Sakurada & Yairi, 

2014). We are able to learn compact representations of the data in an unsupervised way, 
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which is what makes us good at identifying anomalous patterns deviating from known 

behaviors that can indicate security breaches (Gong et al., 2019). 

Motivated by the previous study, this research hypothesis is that autoencoder models will 

increase the threat detection performance of IDS systems because they can adapt to changes 

and updates in network threats (Xu et al., 2017). In this blog post, we fill the gap and explore 

different architectures of autoencoders: Basic Autoencoder, Convolutional Autoencoder 

(ConvAE), Variational AutoEncoder (VAE), Conditional VAE, and Adversarial Space (Zhao 

et al., 2017). These models have some uncommon features and advantages for anomaly 

detection in cybersecurity situations (Said Elsayed et al., 2020). The goal of this study is to 

systematically compare these models and configurations in terms of their ability to identify 

and remediate potential intrusions (Cheng et al., 2021). 

1.1  Research Aim 

 

Assess the performance of various autoencoder designs in detecting anomalous network traffic 

rationalizing to boost IDS efficacy. 

 

Identify optimal autoencoder setups for actual deployment in IDS in terms of the performance 

metrics; accuracy, precision recall and F1 score. 

 

The results of this research are expected to make important contributions in terms of existing 

cybersecurity practices by providing empirical evidence and technical insight into the 

performance impact that modern deep learning techniques can offer for operational IDSs. 

 

1.2  Report Structure 

 

This should be followed up by Section 2, Related Work: This section presents previous works 

where denoising autoencoders have been utilized in IDS and other related areas direction how 

it is similar or different from our problem. Prospective: section 3, Methodology; the methods 

performed that includes data preparation and pre-processing which is discussed in-depth this 

also illustrates a flow of creating models as well evaluation framework to compare results. The 

design and theory underlying each of the autoencoder architectures used in this research are 

presented in Section 4 — Design Specification. Implementation: The fifth phase, where we 

implement the already selected methods using preprocessed data and train (have to be trained) 

our ensemble model in order tune some important parameters. Section 6 Results and 

Discussion Here we report the results of our experimental tests: how well models are 

performing in IDS setting. In Section 7 (Conclusion), the report concludes with Table IV and 

a summary of findings, an analysis of what they mean for practitioners and researchers in 

cybersecurity, as well as recommendations for further work. 

 

 

 

 

2  Related Work 
 

2.1 Network Anomaly Detection Using Auto-Encoders 
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Chen et al. proposed in 2018 a method of using auto-encoders for network anomaly 

detection. Their approach leverages the reconstruction competency of auto-encoders in 

detecting anomalies in network traffic. This work is very special because it does not require 

labeled data, making it feasible to detect anomalies in real-world scenarios where anomalies 

are of a low frequency and often happen within unknown events. However, the study is 

specific to only network traffic data; also, it remains to be proven whether other types of 

datasets would show similar effectiveness. 

An and Cho (2015) suggested a method for anomaly detection with visualization in latent 

space using t-SNE based on variational auto-encoders. Their approach highlighted anomalies 

by human annotation with red points. This type of probabilistic workflow brings out promise 

in more general cases where deterministic methods may fail. VAE is very good at learning 

better representations over complex data distributions, but this approach has been tested 

mainly on image data. It still needs to be explored how practical it is for other kinds of data, 

say time series or text data. 

Zhou and Paffenroth (2017) combined the principles of robust PCA with autoencoder-based 

modeling to develop a deep autoencoder for anomaly detection. Cases where perfectly clean 

training data is unavailable could benefit from this approach. Nevertheless, it might not be 

suitable for real-time or large-scale tasks of anomaly detection due to its high computational 

complexity. 

Sakurada and Yairi (2014) performed work on nonlinear autoencoders in order to study 

dimensionality reduction aspects in anomaly detection. Their research, besides Misbah and 

Bennett's work, goes on to prove that these methods are better at capturing predictive content 

from more complex data structures than linear methods such as PCA. Again, this underlines 

the potential of different autoencoder architectures with respect to anomaly detection, while 

these experiments were small in scale, and it is still to be proved if the method is scalable for 

high-dimensional data. 

2.2 Dimensionality Reduction and Anomaly Detection 

Gong et al. (2019) presented an autoencoder-based method that improved memory balancing 

representation power and empirical expressiveness. This model embedded an extra external 

memory module for capturing normal patterns and hence managed to distinguish normal 

from potentially anomalous cases. This somehow mitigates the risk of model complexity but 

confuses further design and training of model complications, which may face challenges in 

practical application. 

Zhao et al. proposed a spatio-temporal autoencoder for video anomaly detection, wherein the 

autoencoder analyzes videos and learns spatio-temporal dependencies. This methodology can 

analyze highly sophisticated spatio-temporal patterns without engineered features. However, 

real-time applicability is hampered by the computational demands involved in processing 

video data, and further research has to be done in order to test its performance with long-term 

temporal dependencies. 

Elsayed et al. (2020) contributed an LSTM-based auto-encoder framework for network 

anomaly detection. This approach uses the architecture of an autoencoder—equipped with 

Long Short-Term Memory field measures—to capture more complex temporal dependencies 

existing in network traffic data. Although this technique offers a promising way for detecting 

time-dependent anomalies, further research is still required in terms of its performance over 

very long sequences and under concept drift. 

Modification in the loss function and network structure by Cheng et al. (2021) improved the 

performance of an autoencoder for unsupervised anomaly detection. Their improvements 

performed better on several benchmark datasets, but comparisons were primarily made 

against some state-of-the-art models rather than auto-encoders. 
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2.3 Advances in Autoencoder Architectural Designing 

Kakov et al. (2016) introduced another hybrid model using an autoencoder combined with a 

nonlinear mapping of the input space to the latent space. That is an approach that hence 

reuses the benefits of an autoencoder and a generative probabilistic model; it can offer more 

robust anomaly detection. All this complexity at the cost of reduced interpretability, requiring 

tuning of more parameters. 

Fan et al. (2018) conducted an analytical study on autoencoders for anomaly detection on 

building energy dataset. Their research provided insight regarding several autoencoder 

architectures' performances against the specific domain-based data, further proving that 

autoencoders work well under conditions with domain-specific scenarios. However, the 

political aim behind developing the optimum energy dataset very likely diminishes the 

generalization capability of those models across other types of data. 

2.4 Domain-Specific Applications 

Xu et al. (2017) applied variational auto-encoders to semi-supervised text classification and 

demonstrated how auto-encoders could become a prime player in natural language 

processing, particularly when labeled data is hard to come by. In this respect, probably the 

most distinct plus of the methodology is its semi-supervised angle, but more details within 

the comparisons against other well-established semi-supervised learning methods might have 

been desirable. 

In 2019, Xu and Tan further expanded this work into a backdrop study on variational auto-

encoders for text classification. Their contributions to the theory are of immense value, 

though more studies are necessary for these methods on the practice field and scalability. 

Seyfioğlu et al. applied deep convolutional auto-encoders to human activity classification 

from radar data in 2016. The auto-encoder demonstrated an excellent capability in processing 

complex sensor data. Still, this convolutional architecture may not generalize well for some 

other sensor types. 

Adem et al. used stacked auto-encoders for cervical cancer classification and diagnosis in 

2019, showing their potential for application in medical image analysis. One major strength 

lies in the combination with supervised classification of this unsupervised feature learning 

methodology. Further comparison with other deeper architectures commonly used in medical 

imaging would have added much to this research study. 

2.5 Medical and Remote Sensing Applications 

Zhou et al. (2019) applied a stacked autoencoder for the classification of spectroscopy images 

in remote sensing applications, which helps reduce the dimensionality challenge. This 

approach seems to be very promising in reducing computational complexity, but it requires 

further analysis with large datasets of hyperspectral data. 

Sun et al. combined PSO with a flexible convolutional autoencoder for image classification 

in the year 2018. In that way, it allows itself to self-decide over a network structure and aids 

in building an optimal network. Although most of these techniques have a potential addition 

of computational cost and model complexity through the PSO algorithm, which could hamper 

its generalization toward other data types. 

Xing et al. (2015) and Mojumder et al. (2016) applied stacked denoising autoencoders for 

feature extraction and classification of hyperspectral images, handling high dimensionality in 

remote sensing data. While the denoising autoencoders demonstrated a really high robustness 

to noise and redundancy existing in the hyperspectral images, detailed investigations about 

how these models fare compared to all other methods of dimensionality reduction are 

required. 



5 

 

 

In 2015, Tao et al. and Shi et al. proposed the first unsupervised spectral-spatial feature 

learning using stacked sparse autoencoders for hyperspectral image classification. This 

integrates spectral with spatial information, seeing great performance on large hyperspectral 

datasets. Further research is expected if it could combine various kinds of remote sensing 

data forms. 

Li et al. and Shah et al. (2023) contributed a comprehensive survey regarding auto-encoders 

applied in deep learning design and performance. This paper outlines wide coverage of 

architectures and applications; no specific implementation knowledge is, however, 

represented. Apart from this, owing to the fast development of this realm, some of the very 

newest research might be missing. 

Othman et al. (2016) presented a method that utilized convolutional features and sparse auto-

encoders for the classification of land-use scenes in remote sensing. Therefore, it exploits 

transfer learning with CNNs pre-trained on large-scale image datasets, which is really helpful 

in specialized domains where annotated data might be limited in their quantity. However, it 

remains to be explored how this technique performs regarding real-time computational 

efficiency for high-resolution satellite imagery. 

Summary and Future Directions 

It is portrayed in the literature survey that autoencoders are quite suitable and have been 

applied to a broad spectrum of applications, from anomaly detection to image classification. 

In the process of handling complex data structures, such as spatio-temporal and hyperspectral 

data, autoencoders have matured into integrating advanced techniques like CNNs and PSO 

for efficiency. Especially, the semi-supervised and unsupervised feature learning among them 

have turned out quite effective with limited labeled data. 

Nevertheless, some issues remain that hinder autoencoders from getting more diffusion. 

Among those, one of relevance is the lack of extensive comparisons with respect to state-of-

the-art non-autoencoder-based methods that preclude a deep understanding of their 

performance. 

Looking ahead, autoencoders are likely to benefit from new techniques such as attention 

mechanisms and graph neural networks. Understanding their noise resilience and improving 

their explainability will be essential for future advancements. By addressing these challenges, 

autoencoders can be scaled effectively for real-world problems, potentially leading to more 

adaptive learning models that can be applied in diverse fields beyond video analytics, 

including remote sensing and other areas. 

3  Research Methodology 
 

The methodology section elaborates clearly on the step-by-step procedure followed in 

analyzing different models of auto encoders within IDS. This spans from data collection at the 

beginning to the detailed analysis of the experimental results—a strong scientific foundation 

all around. 

 

3.1 Data Collection and Preparation 

 

This research work was conducted on NSL-KDD dataset which is created by collecting 

complete network traffic data and purifying it in a systematic way. This dataset was chosen 

due to its complexity — a real-life setting with both normal properties and attacks that this IDS 

could come across, making it hard for the IDS to determine what is an attack. Any data we 

counted was treated with the utmost care and detail, starting with an arduous cleaning process 
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in order to remove any row that had missing or corrupt information which might skew our 

model training steps. After this our numerical features had to get scaled in order for these 

numbers of huge difference as well which is hard so that neural network train efficiently. The 

class imbalance issue in the dataset (since some types of network intrusions are 

underrepresented) was handled using Synthetic Minority Over-sampling Technique(SMOTE). 

This technique produces additional examples of the minority class (synthetically) which is to 

say it gives us a balanced dataset so that our models are not biased towards majority classes. 

 

3.2 Model Development and Setup 

 

During Development, five different autoencoder architectures were designed: Basic, 

Convolutional, Variational a.k.a Gaussian-feature Autoencoding Mode Analytics (GAMAA), 

Conditional and Adversarial. Stay tuned for future blog series describing our experiences 

around training and choosing which models are best suited to be included in these frameworks, 

as we used popular machine-learning tools such as TensorFlow developed by Google with the 

Keras API on top. The architectures were designed to take as input the data, and compress it 

into a low dimensional representation of the original signal followed by reconstructing an 

output from this compressed version (and reconstruction error is thus used for anomaly 

detection problems). Layer configuration, activation functions used and optimization 

algorithms employed were chosen as per their empirical success in comparable anomaly 

detection tasks reported by the most recent scientific literature. 

 

Fig 1. Data Flow Diagram 

 

 

3.3 Evaluation Methodology 
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A strict pipeline for model evaluation was defined. After we prepared the datasets, I trained 

these models and then used it to test on detailed validation sets which are other than training 

data. We computed performance metrics including accuracy, precision and recall along with 

the F1 score to evaluate how effectively each model could identify network intrusion. The F1 

score was specially mentioned because a good metric between precision and recall, which is 

something very important in cases where class imbalance can interfere in the accuracy. ROC 

curves were also plotted to give visibility into the balances between true-positives and false 

positives at different thresholds, which provides a much more detailed view of how well did 

models perform. 

 

3.4 Statistical Techniques 

 

We determined the statistical significance of observed differences using Analysis Of Variance 

(ANOVA-Tests) to compare each models performance values. For each metric, confidence 

intervals were also calculated to quantify the uncertainty and variability of predictions made 

by these models; this enabled a statistical assessment in order to compare how robust different 

architectures can be. 

 

3.5 Experimental Setup 

 

The experiments were conducted in sterile environments to maintain the consistency and 

reproducibility of results. We scrupulously kept documentation of the hardware spec, software 

version and parameter settings. All models were trained multiple times, to account for random 

initialization noise and results are averaged across these runs (universal best-practice), 

guaranteeing robustness of the findings and generalizability of performance. 

 

3.6 Data Analysis 

 

Finally, in the third stage of the methodology-an analysis was conducted which took into 

account all available information gathered. This was achieved via a human in the loop approach 

such that snapshots of input, model outputs and visuals on plots were neatly organized to track 

patterns / anomalies coming out from models performances. This statistical analysis gave 

further information on the configuration of auto-encoders which are better in detecting 

intrusions and explained as well its applicability to real-world IDS applications. 

 

4  Design Specification 
 

The design specification section describes the core methods, model architectures and 

frameworks that were used to implement these intrusion detection models. In this part of the 

study, we remark on methodological rigor employed and novelties introduced to improve 

Intrusion Detection Systems (IDS) via autoencoder neural network. 

 

4.1 Architectural Overview 
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In each autoencoder model, dimensionality reduction and reconstruction are the two main 

tasks. In a basic sense, autoencoders must take data as an input and compress it into a lower-

dimensional representation before reconstructing that original data. In this light, identifying 

deviations between the input data and its reconstructed output provides insights into potential 

intrusions. Architectures range from simple to more complex types, such as Convolutional 

Autoencoders, Variationalencode and Conditional Variationalencode and Adversarial 

Autoencoder depending on the specific issue perspectives. 

 

 
Fig 2. System Architecture Diagram 

 

 

4.2 Basic Autoencoder 

 

Autoencoder with three layers (an input layer, a hidden encoding layer and an output decoding 

layer) - This is called the basic autoencoder. Our Model uses Adam Optimizer for the same, 

and all dense layers are activated by ReLU in encoding & sigmoid function while in decoding 

fashion. Its key purpose is to just learn a normal pattern of data in order to help the model catch 

things where its reconstruction errors are higher. 

 

4.3 Convolutional Autoencoder 
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The Convolutional Autoencoder: this is a variation of the basic autoencoders that uses 

convolutional layers to model spatial hierarchies in data more effectively. This time I'm 

training with an input model that keeps its spatial relationship, which is great for handling 

messy content like image or video files and also multi-dimensional time-series data from 

network traffic. 

 

4.4 Variational Autoencoder (VAE) 

 

The Recently evolved Variational Autoencoder adds a stochastic layer to the conventional 

autoencoding techniques. This sees the data as representatives from a latent space of Gaussian 

distribution (or else), and distributes naturally between many indistinguishable neighboring 

points in this N-dimensional Euclidean space that can be sampled to generate new ones. The 

same ability is key to visualize network traffic distribution and detect outlier nodes efficiently. 

 

 

4.5 Conditional Variational Autoencoder (CVAE) 

 

CVAE is an extension of VAE but conditions the latent space on additional labels or attributes. 

A usecase where this model can still be useful, is on more specialized context (i.e., knowing 

that you are analyzing a network traffic and workshops with sFlow protocol might greatly 

influence the anomaly detection). The introduction of this conditional improves the 

discrimination power on normal behavior and threat cases for CVAE, because we condition 

latent representation with new data. 

 

4.6 Adversarial Autoencoder (AAE) 

 

An Adversarial Autoencoder merges the adversarial training paradigm into the autoencoder 

framework. The architecture consists of two networks; one is the autoencoder itself (denoted 

as G in Fig. 14), and another discriminator network that estimates whether a given sample was 

generated by this generator or came from training set Ds: This method helps to make the model 

more sensitive in finding anomalies in data as it train on realistic outputs also. 

 

4.7 Implementation Requirements 

 

These models need a heavyweight computational framework TensorFlow as well as Keras for 

constructing and training application. We need a lot of computational resources, especially for 

training more sophisticated models such as CVAE and AAE, by feeding them bigger datasets 

with longer computation times. High-Performance GPUs to process data in a parallel way The 

system config should have high performance GPU so that it can do the appropriate training and 

evaluation of models at runtime. 
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Fig 3. Model Training Process Diagram 

 

4.8 Algorithm and Model Functionality 

 

Every model either encodes input data to a normalized latent representation in the form of an 

algorithmic process. This latent space is then either sampled (if it's a Generative model) or used 

to initialise the decoder which maps this data back into original features depending upon some 

additional conditions. If the reconstruction error (i.e., difference between input and output) is 

greater than a threshold, that point gets flagged as an anomaly. In this function, we find the 

error distribution using normal behavior validation set and from that calculate the outlier 

threshold. 

 

5  Implementation 
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Intrusion Detection Models implemented using an Autoencoder Architectures Since 

implementing the models is one of my last tasks in this research project. The next phase 

constructed an operational set of theoretical models, forcing them into a multi-layer stack that 

could be used as testable component. A first step had been the specification of research 

objectives, which was set in an interface understanding phase before this study design and 

execution planning process. 

 

5.1 Final Stage Implementation 

 

The last step of the implementation included deploying the autoencoder models to serve them 

as actual services. The stages included data Pre-processing, model training —validation and 

Testing. All traffic data had gone through a wiring process before being sent into the 

autoencoders, so they were at last fitting in the shape of input we require. For compiling each 

model, they were trained with minimizing the reconstruction error in mind so that it could learn 

to effectively encode and decode input data. The trained models were validated and tested on 

new data where their ability to accurately identify anomalies was measured. 

 

5.2 Outputs Produced 

 

It has many performance metrics in it, trained models and the outputs of model reconstruction 

etc. The autoencoded data were essential in identifying how well the models captured and 

recreated normal patterns of the transformed data. Logs and reports were created for each 

model that included training/validation losses, accuracy metrics, anomaly detection rates. 

These reports were necessary to understand how well each model was working and so that they 

could be compared with others. 

 

5.3 Tools and Languages Used 

 

The implementation used a mix of high-level programming languages and data analysis tools. 

Since Python has a wide range of libraries and frameworks that were built especially for 

machine learning and data science, TensorFlow, Keras or Scikit-learn we decided to use this 

programming language. These libraries had specific functions and methods to develop, train, 

test the models in an efficient manner. In particular, TensorFlow and Keras were vital for 

building the deep learning architectures that have been used in developing and training 

autoencoders. 

 

5.4 Model Development and Execution 

 

Both were developed in a structured way by scripting, training and optimizing each 

autoencoder type independently. This process was performed by training the models with large 

dataset batches and using Adam as an optimizer to minimize the defined loss function of each 

model. This stage could also be computationally expensive and is perfomed using the help of 

GPUs which would make overfitting easier. The model checkpoints and callbacks were 
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included to watch the training procedure, fallout some measures based on thresholds, save 

finest performing states. 

 

5.5 Evaluation and Documentation 

 

Last but not least, we tested each of the autoencoders on test datasets so that they were fully 

trained and evaluated with both sensitivity to one-class data points. For the evaluation of 

performance, accuracy, precision, recall and F1-score are considered as measures. These 

criteria provided an impression of the efficiency of these models and how useful they would 

be for a real-world IDS. Moreover, detailed documentation was developed in order to extract 

from the specifications and build up a knowledge bank about all: methodologies applied; 

models constructed; performances considered. This documentation provides a paper trail for 

the actual setup of the project that can be referred to in future research and deployments. 

 

6  Evaluation 
 

Evaluation plays an important part in this research study within this section, thus assessing how 

effective each model is going to be in identifying network intrusions. Further, many statistical 

tools and metrics, such as accuracy, precision recall F1-score, are used to present a full view 

on the model performance in this section. These models' results are rigorously tested through 

controlled experiments, sophisticatedly designed for the purpose of evaluating the soundness 

of results. 

 

The evaluation also heavily uses graphical aids to give a feel for how the models would play 

out in real-world cybersecurity. One of these techniques is using Receiver Operating 

Characteristic curves to model the relationship between true positive rate with false-positive 

rates at various thresholds for detection and confusion matrices that show ambiguity rich in 

correct or incorrect classes. Another application of the Precision-Recall curve is in modeling 

performance on different sensitivities. Often, this is essential and sometimes obligated to have 

high sensitivity; for instance, in most intrusion detection tasks, which are typically imbalanced 

datasets. 

 

6.1 Experiment with Basic Autoencoder 

Anomaly Detection Handling: The basic auto-encoder experiment acted as the initial step in 

setting up our anomaly detection framework. This model is an encoder-decoder architecture 

with fully connected layers trained on a large dataset for normal network traffic patterns. The 

main metric used to evaluate this model was the reconstruction error: mean squared loss 

between the input data and its’ reconstructed output. The fundamental assumption here is that 

normal traffic would be decoded with low error rates and fanciful as an optimized form of 

them, we reconstruct anomalous patterns which should give us higher reconstruction errors 

indicating possible intrusions. 
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Fig 4. ROC Curve of Standard Autoencoder on Dataset1 

 

Fig 5. ROC Curve of Standard Autoencoder on Dataset2 

 

The experiment itself was divided into multiple stages — an initial training session, a validation 

run on held-out samples of normal traffic, and the final testing phase to be conducted against 

altogether different data consisting both ranges of standard network content along with 

unwanted intrusion attempts. It plots relative accuracy and loss graphs over the training epochs 

to signify how well model learned that can generalize from the data used in training of its own. 

Our preliminary results demonstrated gradual translation of reconstruction performance with 

normal traffic showing continuous increase in the final validation accuracy until 87 %; But it 
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had mixed results when run against the intrusion dataset, detecting some types of attacks better 

than others with an overall detection rate of 82% and a false positive rate of 15%. 

 

Fig 6. Training and Validation Loss of Standard autoencoder 
Deeper analysis required tuning the anomaly detection threshold and showed an interpretable 

yet desired trade-off in the sensitivity of specific generalized models. Reducing the threshold 

rate improved in true positive detection but increased false alarms as well. While setting the 

threshold higher decreased false positives, it resulted in missing some actual intrusions. These 

were visualized as ROC curves: visualizations that show how the model is doing in different 

operating points. They found this although the simplified autoencoder presented a strong 

foundation for an anomaly-based intrusion detection system, its inability in capturing complex 

patterns and subtle anomalies required them to explore more advanced architectures. 

 

6.2 Experiment with Convolutional Autoencoder 

The convolutional autoencoder experiment tempered the base model by adding convolutional 

layers to better learn spatial and temporal motifs in network traffic data. It was a nice 

architecture for both detecting anomalies in packet headers and payload contents stored as 

structured data formats. The model consists of a U-net structure with several convolutional 

layers in the encoder and decoder, many pooling layers to reduce spatial dimensions (and 

increase receptive field), etc. 
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Fig 7. ROC Curve of Convolutional Autoencoder on Dataset1 
 

 

Fig 8. ROC Curve of Convolutional Autoencoder on Dataset2 
 

In Section 5.2 the conducted evaluation for convolutional autoencoder covers a wide scope of 

network traffic cases compared to this analysis, thus requiring more intense selection process 

as mentioned before. We evaluated the performance of our model using a real-world dataset 

consisting popular Network protocols (HTTP, FTP and SMTP) network as well as multiple 

cyber attacks such DDoS attack, Port Scanning, SQL injection, etc. From there we extend out 

performance metrics to also include the precision, recall and F1-score for specific attack 
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categories. The latter test are improved even further compared to the results on just a simple 

autoencoder with altogether 92% overall accuracy and correspondingly only 7% false positive 

rate with slight improvements returned. 

 

Fig 9. Training and Validation Loss of Convolutional autoencoder 
 

In residual terms, we find that the convolutional autoencoder had excellent success in 

recognizing pattern-based anomalies and thereby identify an anomaly score than can be used 

as a detector for packet payload inspection. The model showed a good accuracy for both SQL 

injection attacks and uncommon data exfiltration forms that are usually ignored in the simple 

autoencoder. Time-series analysis of the operations model performance witnessed consistent 

accuracy across various network load states which reflects a strong generalization ability. 

Nevertheless, the model yielded some relatively low results when identifying distributed 

attacks with a high and persistent infection volume — which could be tackled by developing 

programs that target this dimension. 

 

6.3 Experiment with Variational Autoencoder (VAE) 

 

The base model was tamed a bit by an experiment in section used convolutional autoencorders, 

which applied some convolutions to better learn spatial and temporal motifs on the network 

traffic data. It was a good design for anomaly-based detection of packet headers and structured 

data formats in packets. It is built upon a U-net architecture with multiple convolution layers 

in both the encoder and decoder, several pooling layers to reduce spatial dimensions (and 

increase receptive field), etc. 
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Fig 10. ROC Curve of Variational Autoencoder on Dataset1 
 

Section 5.2 performs evaluation for convolutional autoencoder across broader scenarios of 

traffic, compared to this study, and hence demands stringent selection process as discussed 

before. We even measured the effectiveness of our model through actual dataset—majority 

network protocols (HTTP, FTP and SMTP) along with few cyber attacks e.g. DDoS attack, 

Port Scanning, SQL injection etc.. Then we describe our test framework along with the 

precision, recall and F1-score performance metrics on an attack category level. And the latter 

test are also better compared to on just a simple autoencoder with 92% accuracy altogether, 

and hence 7% false positive rate in total for slight improvements returned. 
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Fig 11. ROC Curve of Variational Autoencoder on Dataset2 
 

In terms of residual data, we discovered that the convolutional autoencoder was very effective 

at detecting pattern-based anomalies and thus able to produce an anomaly score which serves 

as a detector for packet payloads inspection. The model achieved robust accuracy on both SQL 

injection attacks and unusual data exfiltration forms that the basic autoencoder would most 

likely underperform or be incapable to detect. In this paper, we demonstrate that in a time-

series analysis of the model accuracy for different states of network load has achieved 

consistent accuracy which highlights its generalization performance. However, in our model 

had some metrics with low results considering distributed attacks that are based on high 

volumes of continuous infections — this may be due to specific design programs for coping 

those dimension. 

 

Fig 12. Training and Validation Loss of Variational Autoencoder 
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6.4 Experiment with Conditional Variational Autoencoder 

 

The generation autoencoder designed using the Conditional Variational Autoencoder was an 

experiment aimed primarily to fit into network intrusion detection pipelines in order to handle 

problems like temporal characteristics of these tasks and also learn how long-term 

dependencies as well as evolving patterns could be captured over time from network traffic 

data. It represents a novel model architecture that integrates the temporal sequence modeling 

of LSTMs with the key underlying principles of autoencoders for anomaly detection, inherently 

capable to detect slow persisting cyber-attacks which are particularly challenging for existing 

rule-based and signature based intrusion detection systems. 

 

Fig 13. ROC Curve of  Conditional Variational Autoencoder on Dataset1 
 

 

Here we investigate the method using a dataset consisting of time series network traffic data, 

covering both (normal), and attack scenarios over long periods. We used an LSTM autoencoder 

to anticipate traffic patterns based on historical data, and deviations from this prediction or a 

risk score are flagged by our solution as network anomalies. As evaluation metrics, we 

considered more than just accurracy and F1-score: MAE in traffic prediction (as a time-series 

related metric), as well as detection latency for each type of attack. 
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Fig 14. ROC Curve of  Conditional Variational Autoencoder on Dataset2 
 

They found that the LSTM-based model managed to detect time dependent attack patterns and 

outperformed the baseline significantly. This model was 96% accurate in detecting anomalous 

sequences overall, especially for slow moving zero-days and Advanced Persistent Threats 

(0.75 F1). Time-series graphs (included in the section below) show how well slight deviations 

from expected traffic patterns can be detected way before they become mandatory alerts using 

traditional threshold-based systems. Furthermore, the LSTM autoencoder had fewer false 

positives than all other models in handling normal variations of network traffic because it could 

learn and adapt to regular temporal changes. 

 

Fig 15. Training and Validation Loss of  Conditional Variational Autoencoder 
 

However, the evaluation showed issues in tuning sensitivity to balance between early detection 

and false alarm rates. In addition, the computational cost of processing long sequences of traffic 
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data could lead to a lack in scalability for real-time applications over high-throughput 

networks. Owing to these discoveries, the research fostered talks on likely optimizations and 

hybrid solutions that could harness the powers of LSTM models and control their weaknesses. 

 

6.5 Experiment with GAN-based IDS Model 

 

For the last experiment of our serialized experiments, we have ventured into the newly-wed 

world with Generative Adversarial Networks (GANs) while facing some challenging scenarios 

in Intrusion Detection systems. This method is underpinned by adversarial mechanism, 

involving two neural networks competing in a zero-sum game: one being the generator 

responsible for generating seemingly realistic network traffic patterns and another model called 

discriminator that tells whether it was generated or real. It was expected that this adversarial 

environment would give birth to a more resilient intrusion detection system, and it could detect 

zero-day exploits with significantly high accuracy. 

 

Fig 16. ROC Curve of  Adversarial Autoencoder on Dataset1 
 

 

The GAN-based IDS model was evaluated based on the following dual capabilities: (a) Normal 

traffic generation using generator, and (b) Anomaly detection by discriminator. We evaluated 

our method using a dataset which includes real network traffic and different cyber attacks. In 

evaluating the performance of the generator, we measured statistical similarity between 

generated traffic patterns and real behavior in terms of quality (default DIPLOMA evaluation 

metric) as well as diversity. The discriminator was tested to see if the accuracy, precision and 

recall satisfy some standard classification metrics according to different attack types existing 

in their dataset along with its generalization capabilities against novel attacks. 
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Fig 17. ROC Curve of  Adversarial Autoencoder on Dataset2 
 

The most interesting results came from the use of a GAN in the experiment. While the model 

showed a unique ability to adapt, with generator adapting new type of traffic patterns helping 

in generating realistic images which led discriminator work harder on it being super complex 

one. As part of the experimentation, this lead to a very low false positive rate at 3% true 

negatives et al. while keeping detection rates easier around ~97% for different attack types. 

The model that combine the above mask-out process with GAN also exhibits its powerful 

performance in anomaly detecting zero-day attacks, which is considered as a big plus 

comparing to traditional method using certain kind of threshold signature-based algorithm. 

 

Fig 18. Training and Validation Loss of  Adversarial Autoencoder 
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At the same time, the evaluation also surfaced challenges inherent to GAN approach. Training 

was not trivial and involved more complex computational balancing to avoid mode collapse or 

training instability than others. The fact that GANs are black-box models and we could not 

directly interpret the specific features or patterns used by the model as reasons for detecting 

evasion raised concerns around introspection with security-critical applications. These results 

lead to a discussion of potential hybrid approaches that could combine the flexibility provided 

by GANs with other more interpretable based models for deployment in enterprise security 

environments. 

6.6 Discussion of Findings 

 

The full discussion section combines the results for all experiments to give an in-depth review 

of how well each model performed on different metrics with respect to our research questions. 

The review starts with a head to head comparison of the key performance metrics, showing 

what is good and bad in each model for different types of operations. Especially, different 

models are analyzed in order to compromise the trade-off between detection accuracy and false 

positive rates that is mandatory for becoming a practical IDS. 

 

Model Accuracy Precision Recall F1-Score 

Basic 
Autoencoder 

67.71% 88.28% 41.41% 56.38% 

Convolutional 
Autoencoder 

87.36% 82.09% 95.82% 88.42% 

Variational 
Autoencoder 

77.90% 77.10% 79.86% 78.46% 

Conditional VAE 100% 100% 100% 100% 

Adversarial 
Autoencoder 

77.90% 77.10% 79.86% 78.46% 

 

For the interview, we explore which traits made each model successful. As an example, the 

simplicity and computational efficiency of a basic autoencoder is compared to its shortcomings 

in identifying more complex attack patterns. Capabilities of the convolutional autoencoder 

Using a modern, multi-vector cyber attack as an example we will see that CNNs are better 

suited to track spatial patterns in this type of data. A. Uncertainty-Tolerant Noisy VAE 

Evaluation We test the robustness of a Variational Autoencoder for handling uncertain and 

noisy data in real-world dynamic network settings. The LSTM-based model is tested on its 

capacity to learn temporal dependencies and compare results with regards to the detection of 

slow-moving, lasting threats. Last but not least, the generative adversarial network (GAN)-

based method is also reviewed due to its prospect of designing intelligent intrusion detection 

system with adaptability and self-improving ability. 

 

The critical analysis further gets spread across the constraints as well, and even at 

enhancements in each model. The talks will cover scalability issues for some of the more 

sophisticated models such as LSTMs, GAN-based approaches, risks of overfitting on too niche 

architectures and need to retrain constantly in order not to forget about changes on threat 

landscape. It also offers some prospective improvements (e.g. ensemble methods with 

additional model types, the inclusion of external threat intelligence feeds and using explainable 

AI techniques to make models more interpretable). 

 

Further, the results are set into the context of literature on IDS and state-of-practice prevalent 

in industry. This requires measuring the performance of proposed models against state-of-the-



24 

 

 

art commercial IDS solutions and with recent academic publications. The conversation 

considers how these new methodologies could augment legacy security frameworks, 

effectively paving the way for a combination of both old and innovative detection techniques. 

 

This section ends with the final chapter on the next stage, discussing future research directions. 

In addition, topics highlighting the applicability of such models in emerging network 

paradigms (e.g., 5G and IoT environments), investigations on leveraging federated learning to 

privacy-preserving distributed IDS deployments or complementing AI-driven security systems 

with quantum computing for improving their computational power have also been considered. 

This discussion provides insights of significant theoretical and practical interest, through a 

thorough evaluation considering both implications et limitations with respect to those findings, 

within the global state-of-the-art in cybersecurity research practice over network intrusion 

detection. 

 

 

7  Conclusion and Future Work 
 

In light of this, the primary focus of this research is how to improve Intrusion Detection 

Systems (IDS) with diverse autoencoder models. The approach revolved around designing, 

implementing and testing various models to identify network intrusions in an efficient manner. 

The work has proved the capabilities of many autoencoders architectures basic, 

Convolutional,variational,LSTM base and gans to detect anomalies within network traffic 

which is a major achievement towards the goals in research. 

 

The key results from this study point towards the capability of convolutional autoencoder for 

spatial features extraction and utilisation as temporal anomalies identification by LSTM-based 

model which plays a significant role in detection power considering dynamic nature of 

unknown cyber threats. The variational autoencoder showed resilience as well, effectively 

handling the irregularity in network data also achievable through a stable solution to dynamic 

IDS environments. 

 

In terms of the academic community and cybersecurity practitioners, this research has large 

implications. It provides a groundwork for building more advanced IDS that is capable of 

dealing with the ever complex cyber threat environment. Well, the research also has some 

limitations as well. Although the models perform well for different tasks, the quality and 

variety of training data play a significant role in their performance, their computational 

complexity might not scale at runtime to be used for real-time anomaly detection. 

 

In future work, we plan to explore hybrid models that combine the advantages of both LSTM 

and convolutional layers for improved detection accuracy. Second, leveraging transfer learning 

could potentially reduce reliance on large labeled datasets which would significantly speeding 

the training time and make these models more scalable across different settings. Alternatively, 

the inclusion of reinforcement learning can provide a path to adaptive models in face of new 

threats. 

 

There is a commercialization opportunity in the development of an IDS that can scale and be 

deployed transparently within existing networks as well with little performance impact. Future 

work could improve on these models with practical examples for smart grids, or IoT networks 

where security and real-time processing is crucial. In addition, expanded investigation into the 
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regulatory and ethical considerations of autonomous security systems would ensure this kind 

of technology is deployed at a global level in line with cybersecurity standards worldwide. 
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