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Configuration Manual

Pattamaporn Sanluang
X21122466

1 Introduction

This configuration manual details the steps in implementing this research to address the
customer churn in the telecommunications sector by utilizing machine learning models
along with Explainable AT (XAI) methods to enhance transparency and interpretability.
The approach incorporates data from a telecommunications dataset and applies various
XAI methods, including SHAP, LIME, and Feature Importance to identify and interpret
the key factors influencing customer churn.

2 Environmental Setup

This section details the technical environment required to implement the research. It
covers the hardware and software specifications, along with the setup of necessary tools
and libraries used throughout the project.

2.1 Hardware Specifications

The research was conducted on a local machine equipped with an AMD Ryzen 7 5800H
processor, 16GB of RAM, running Windows 11 Home Single Language (64-bit) as shown
in figure (1] below.

@ Device specifications

Device name

Processor AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz
Installed RAM 16.0 GB (15.4 GB usable)

Device ID

Product ID

System type 64-bit operating system, x64-based processor

== Windows specifications

Edition Windows 11 Home Single Language

Version 23H2

Installed on 09/01/2023

OS build 22631.3880

Experience Windows Feature Experience Pack 1000.22700.1020.0

Figure 1: Hardware Specification



2.2 Software Specifications

This research used Anaconda as the virtual environment manager and Jupyter Notebook
as the interactive platform for executing the Python programming language, manipulating

data, and documenting the process.
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Figure 2: Anaconda Navigator

2.3 Python Library Packages

import pandas as pd
import numpy as np
from numpy import random

# Visualisation & Stats

import matplotlib.pyplot as plt
import seaborn as sns

import re

import statsmodels.api as sm
from scipy import stats

import scipy.stats as stats

# Preprocessing & Modelling

from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder
from imblearn.over_sampling import SMOTE

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression

from xgboost import XGBClassifier

import xgboost as xgb

# XAI Methods

import shap

import lime

import lime.lime_tabular

# Evaluation

from sklearn.metrics import roc_auc_score, fl_score, accuracy_score, roc_curve
from sklearn.metrics import confusion_matrix, classification_report, auc

Figure 3: Python Libraries

Python programming language and libraries were utilised for implementing the baseline
machine learning models and XAI techniques. The libraries used include Pandas for data



manipulation, Scikit-learn for machine learning, SHAP and LIME for interpretability,
SMOTE for handling imbalanced datasets, Matplotlib for visualizations along with mod-
eling and evaluation metrics.

3 Data Acquisition

Table|l] below details 21 features and its description in Telco dataset used in this research.
It was acquired from open-sourced, Kaggle [

Feature Description

customerlID A unique ID that identifies each customer

gender The customer’s gender

SeniorCitizen The customer is 65 or older

Partner The customer is married

Dependents The customer lives with any dependents

tenure The total amount of months that the customer has been
with the company

PhoneService Customer subscribes to home phone service

MultipleLines Customer subscribes to multiple telephone lines

InternetService Customer subscribes to Internet service

OnlineSecurity Customer subscribes to additional online security service

OnlineBackup Customer subscribes to additional online backup service

DeviceProtection | Customer subscribes to an additional device protection
plan for their Internet equipment

TechSupport Customer subscribes to additional technical support plan

StreamingTV Customer uses their Internet service to stream television
from a third party provider

StreamingMovies | Customer uses their Internet service to stream movies from
a third party provider

Contract Customer’s current contract type: Month-to-Month, One
Year, Two Year

PaperlessBilling | Customer has chosen paperless billing

PaymentMethod | How the customer pays their bill: Bank Withdrawal, Credit
Card, Mailed Check

MonthlyCharges | Customer’s current total monthly charges of their services

TotalCharges Total charges

Churn Customer’s churn status, whether they left or remained
with the company

Table 1: Dataset Features and Descriptions

4 Data Preprocessing

This section shows the steps taken to prepare the data for modeling. This includes data
preparation, Exploratory Data Analysis and data transformation. The preprocessing

'https://wuw.kaggle.com/datasets/yeanzc/telco-customer—-churn-ibm-dataset.


https://www.kaggle.com/datasets/yeanzc/telco-customer-churn-ibm-dataset.

ensures that the data is in the best possible state for accurate and reliable model training.

4.1 Data Preparation

file_path = r"C:\Users\Asus OLED\Desktop\Research\Telco_Churn.csv" A"V & F 0
df = pd.read_csv(file_path)

df.head()
customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity .. DeviceProtection TechSupport St

7590- No phone

0 VHVEG Female 0 Yes No 1 No service DsL No .. No No
5575-

1 GNVDE Male 0 No No 34 Yes No DsL Yes .. Yes No
3668-

2 QPYBK Male 0 No No 2 Yes No DsL Yes .. No No
7795- No phone

3 CFOCW Male 0 No No 45 No service DSL Yes .. Yes Yes

4 9237- Female 0 No No 2 Yes No Fiber optic No No No
HQITU P

Figure 4: Imported Telco dataset

Telco dataset called Telco_Churn.csv was imported then loaded into df dataframe
using Pandas function read_csv. The dataframe was checked by printing out to see if it
loaded succesfully.

df.drop(columns=["'customerID'], inplace=True)
df.shape
(7043, 20)

#checking for duplicate rows
df.duplicated().sum()

22

#drop dupes
df.drop_duplicates(inplace=True)

na = df.isna().sum().sort_values(ascending=False)
pct = 100 * na / df.shape[@
nan_stats = pd.concat([na, pct], axis=1)
nan_stats.columns = ['num_of_null', 'percentage_of_null
nan_stats

num_of null percentage_of_null

TotalCharges 1 0.156673

#drop null values in TotalCharges
df.dropna(subset=[ 'TotalCharges'], inplace=True)

Figure 5: Data cleaning process

The data cleaning process undertaken in figurds| show the steps to prepare the dataset
for analysis. Initially, the customerID column is dropped as it does not provide any
relevant important for the modeling process. Following this, the dataset was checks and
removed any duplicate rows to keep only unique data entries. Lastly, missing values were
identified in the TotalCharges column and they were dropped accordingly.



4.2 Exploratory Data Analysis

Figure [6] shows features with low unique counts were converted into categorical columns
and then grouped into similar list to facilitate easier visualization and better understand
the distribution of these features.

# Columns suitable for conversion to categorical

categorical_cols = |
'gender', 'SeniorCitizen', 'Partner', 'Dependents', 'PhoneService',
'Multiplelines', 'InternetService', 'OnlineSecurity', 'OnlineBackup’,
‘DeviceProtection’, 'TechSupport', 'StreamingTV', 'StreamingMovies'
‘Contract', 'PaperlessBilling', 'PaymentMethod', 'Churn

]

# Convert each column to categorical
for col in categorical_cols:
df[col] = df[col].astype('category")

Figure 6: Categorical features

Customer nf:gender Customer it senvorcitzen

H Fo
s 16200

Figure 7: Distribution of Customer Info: gender, SeniorCitizen, Partner, Dependents

Figure 8: Distribution of services subscribed by customers

Biling nfor Contract

Figure 9: Distribution of Billing Info: Contract type, PaperlessBilling, PaymentMethod



# Define numeric columns
numeric_cols = ['tenure', 'MonthlyCharges', 'TotalCharges']

Figure 10: Define numerical columns

X_train_backup = X_train.copy() TN EFE

# Apply SMOTE to the training set
smote = SMOTE(random_state=42)
X_train_res, y_train_res = smote.fit_resample(X_train, y train)

# Standardize the numerical features
scaler = StandardScaler()

num_cols = ['tenure', 'MonthlyCharges', 'TotalCharges']
X_train_res[num_cols] = scaler.fit_transform(X_train_res[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])

Figure 11: SMOTE and Standardize technique

Numerical columns were defined and visualized using box plots to explore their distri-
bution. The skewness was noticeable. Hence, the StandardScaler from the scikit-learn
library was used to standardize the numeric data. Additionally, SMOTE technique) was
used to handle class imbalance and the result was demonstrated in the research paper.

4.3 Data Transformation

# Selecting categorical columns
cat_cols = X.select_dtypes(include=["'category']).columns.tolist()
df = df.drop('Churn', axis=1)

encoder = OneHotEncoder(sparse_output=False, drop=None)
X_encoded = encoder.fit_transform(df[cat_cols])
X_encoded_df = pd.DataFrame(X_encoded, columns=encoder.get feature names_out(cat_cols))

X_encoded_df.reset_index(drop=True, inplace=True)
df.reset_index(drop=True, inplace=True)

X = pd.concat([df.drop(columns=cat_cols), X_encoded_df], axis=1)
print(X.shape, y.shape)

(7010, 46) (7010,)

X.head()

tenure MonthlyCharges TotalCharges gender Female gender_Male SeniorCitizen_0 SeniorCitizen_1 Partner_No Partner_Yes Depend  No ...
0 1 29.85 29.85 1.0 0.0 1.0 0.0 0.0 10 10 ..
1 34 56.95 1889.50 0.0 1.0 1.0 0.0 10 0.0 10 .
2 2 53.85 108.15 0.0 1.0 1.0 0.0 1.0 0.0 10 ..
3 45 42.30 1840.75 0.0 1.0 1.0 0.0 10 0.0 10 .
4 2 70.70 151.65 1.0 0.0 10 0.0 1.0 00 1.0

Figure 12: One-Hot Encoding

# Stratified train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

print(X_train.shape, y_train.shape)

(4907, 46) (4907,)

print(X_test.shape, y_test.shape)

(2103, 46) (2163,)

Figure 13: Train/Test Split
Figure [12] shows how OneHotEncoder from Scikit-learn library was used to assign a

numerical value to categorical features. Then the dataset was randomly split into training
and testing sets with train test_split function at 70/30 ratio.
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5 Implementation

5.1 Machine Learning Models & Explainable AI (XAI)
5.1.1 Random Forest

Random Forest was applied as baseline model and in XAI experiment. Code snippets
below is process of model training and applying proposed XAI methods to access feature
important. Model evaluation metrics was access and shown in classification report.

clf = RandomForestClassifier(random_state=42)
clf.fit(X_train_res, y_train_res)

v RandomForestClassifier

RandomForestClassifier(random_state=42)

y_pred = clf.predict(X_test)

print("Classification Report: Random Forest")
print(classification_report(y_test, y_pred))
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")

Classification Report: Random Forest

precision  recall fl-score support

] 0.84 .90 0.87 1546

1 0.65 0.51 0.57 557

accuracy .80 2103
macro avg 0.74 0.71 0.72 2103
weighted avg 0.79 0.80 8.79 2103

Figure 14: Random Forest Model

Random Forest: Feature Important

feature_importances = clf.feature_importances_
# Get feature names
feature_names = X.columns

# Pair feature names with their importance scores
feature_importances_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})

# Sort features by importance (descending order)
feature_importances_df = feature_importances_df.sort_values(by='Inportance', ascending=False).reset_index(drop=True)

Figure 15: Feature Important on Random Forest Model

Random Forest: SHAP

explainer_rf = shap.TreeExplainer(clf)
shap_values_rf = explainer_rf.shap_values(X_test)

# Verify the shapes of the SHAP values
print("Shape of SHAP values:", np.array(shap_values_rf).shape)
shap_values = shap_values_rf[:, :, 1]

# Verify the shapes

print("Shape of SHAP values (positive class):", shap_values.shape)
print("Shape of data matrix:", X_test.shape)

Figure 16: SHAP on Random Forest Model

Random Forest: LIME

# Create a LIME explainer
explainer = lime.lime_tabular.LimeTabularExplainer(
training_data=X_train_res.values,

. Churn®, 'Churn’],
mode="classification

)

instance_idx = @ # Index of the instance in X_test
instance = X_test.iloc[instance_idx].values

# Run LIME

explanation_lime = explainer.explain_instance(instance, clf.predict_proba, num_features=len(X.columns))
explanation_lime.show_in_notebook (show_table=True, show_all=False)

Figure 17: LIME on Random Forest Model



5.1.2 XGBoost

XGBoost ML algorithm was another model used as baseline model and in XAl-integration
experiment. Code snippets below is process of XGBoost model training with its default
parameters and applying proposed XAI methods to access feature important.

xgb_clf = xgb.XGBClassifier(random_state=42, use_label_encoder=False, eval metric='logloss')
xgb_clf.fit(X_train_res, y_train_res)

v XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None,
colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=None, device=None, early_stopping_rounds=None,
enable_categorical=False, eval_metric='logloss’,
feature_types=None, gamma=None, grow_policy=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_bin=None, max_cat_threshold=None,
max_cat_to_onehot=None, max_delta_step=None, max_depth=None,
max_leaves=None, min_child_weight=None, missing=nan,
monotone_constraints=None, multi_strategy=None, n_estimators=None,

n_iobs=l num_parallel tree=| random state=42, ...) b

y_pred = xgb_clf.predict(X_test)

print("Classification Report: XGBoost")
print(classification_report(y_test, y_pred))
print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")

Classification Report: XGBoost
precision recall fl-score support

] 0.83 0.88 0.85 1546

1 0.59 0.50 0.54 557

accuracy 0.78 2103
macro avg 0.71 0.69 0.70 2103
weighted avg 0.77 0.78 0.77 2103

Figure 18: Baseline XGBoost Model

XGBoost: Feature Important

# Get the feature importance
booster = xgb_clf.get_booster ()
importance_dict = booster.get score(importance type='weight')

# Convert to a DataFrame
feature_importance_df_xgb
feature_importance_df_xgb

pd.DataFrame({'Feature': list(importance dict.keys()), 'Importance': list(importance_dict.values())})

feature_importance_df_xgb.sort_values(by="Importance’, ascending=False)

# Plot feature importance

plt.figure(figsize=(10, 8))

sns.barplot(x='Importance’, y='Feature', data=feature_importance_df_xgb)
plt.title('Feature Importance')

plt.show()

Figure 19: Feature Important on XGBoost Model

XGBoost: SHAP

explainer_xgb = shap.TreeExplainer(xgb_clf)
shap_values_xgb = explainer_xgb.shap_values(X_test)

shap.summary_plot(shap_values_xgb, X _test, plot_type="bar")

Figure 20: SHAP on XGBoost Model

XGBoost: LIME

explainer = lime.lime_tabular.LimeTabularExplainer( AV E&EFE
training_data=X_train_res.values,
feature_names=X. columns,
class_names=[ 'No Churn', 'Churn'],
mode="classification’

)

instance_idx = @
instance = X_test.iloc[instance_idx].values

# Run LIME

explanation_lime = explainer.explain_instance(instance, xgb_clf.predict proba, num features=len(X.columns))
explanation_lime.show_in_notebook(show_table=True, show_all=False)

Figure 21: LIME on XGBoost Model



5.1.3 Logistic Regression

Lastly, Logistic Regression algorithm Was applied which the same approach as prior
models.

Logistic Regression

log_clf = LogisticRegression(random_state=42, max_iter=1000) B MV & F 8
log_clf.fit(X_train_res, y_train_res)
y_pred_log = log_clf.predict(X_test)

print("Logistic Regression model™)
print(classification_report(y_test, y_pred_log))
print(f"Accuracy: {accuracy_score(y_test, y_pred_log):.4f}")

Logistic Regression model

precision recall fl-score  support

2] 0.91 0.74 0.82 1546

1 9.53 0.80 0.63 557

accuracy 0.76 2103
macro avg 0.72 0.77 0.73 2103
weighted avg 0.81 0.76 .77 2103

Figure 22: Logistic Regression Model

Logistic Regression: Feature Important

feature_names = X_train_res.columns.tolist() BNV & FP 0

# Get the coefficients of the features
coefficients = log_clf.coef_[0]
# Create a DataFrame to display feature importances
feature_importance_df = pd.DataFrame({
'Feature': feature_names,
‘Coefficient': coefficients
b9}
# Sort the DataFrame by absolute value of coefficients
feature_importance_df[ 'Absolute Coefficient'] = feature_importance_df['Coefficient'].abs()
feature_importance_df = feature_importance_df.sort_values(by='Absolute Coefficient', ascending=False)
print(feature_importance_df)

Figure 23: Feature Important on Logistic Regression Model

Logistic Regression: SHAP

explainer = shap.Explainer(log_clf, X_train_res)
shap_values = explainer(X_test)

Figure 24: SHAP on Logistic Regression Model

Logistic Regression: LIME

explainer = lime.lime_tabular.LimeTabularExplainer(
training_data=X_train_res.values,
feature_names=X.columns,
class_names=[ 'No Churn', 'Churn']
mode="classification

)

instance_idx = @
instance = X_test.iloc[instance_idx].values

explanation_lime = explainer.explain_instance(instance, log_clf.predict_proba, num_features=len(X.columns))
explanation_lime.show_in_notebook(show_table=True, show_all=False)

Figure 25: LIME on Logistic Regression Model



5.1.4 Feature Selection

Following the training of these baseline models and XAl application, the next step was
to extract and select the top five features from each algorithm. Top ranked features
and their importance scores were recorded in a new dataframe for each XAI approach.
The top five features were selected as follows: top_5_features_importance, which includes
the most important features from the feature importance analysis; top_5_features_shap,
which ranks features based on their mean SHAP values; and top_5_features_LIME, which
identifies the top features from the LIME analysis. These selected features were then
prepared for retraining in experiments.

Random Forest: Select Top 5 Features

# Select top 5 features

top_5_features_importance = feature_importances_df.head(5)

top_5_features_shap = mean_shap_values_df.sort_values(by='Mean |SHAP Value|', ascending=False).head(5)
top_5_features_LIME = lime_features_df.head(5)

Figure 26: Selecting top 5 features from each XAI applied on Random Forest model

top_5_features_importance.head() top_5_features_LIME.head() top_5_features_shap.head()

Feature Importance Feature Importance Value Feature Mean |SHAP Value]|
0 TotalCharges  0.097101 0 Contract_Month-to-month <= 0.00 -0.158717 0 Contract_ Month-to-month 0062125
1 tenure 0088320 1 0.00 < OnlineSecurity_No <= 1.00 0.074065 1 PaymentMethod_Electronic check 0.048206
2 MonthlyCharges ~ 0.079223 2 000 < PaymentMethod_Electronic check <= 1.00 0073717 2 OnlineSecurity_No 0043793
3 Contract_Month-to-month 0072229 3 0.00 < TechSupport_No <= 1.00 0.069181 3 tenure 0040466
4 PaymentMethod_Electronic check  0.067569 4 0.00 < PaperlessBilling_Yes <= 1.00 0049151 4 TechSupport_No 0.037369

Figure 27: Top 5 features from each XAI applied on Random Forest model

XGBoost: Select Top 5 Features

# Select top 5 features from each XAI AL & F 0
top_5_features_importance_xgb = feature_importance_df_xgb.head(5)

‘top_5_features_shap_xgb = mean_shap_values_df_xgb.sort_values(by='Mean |SHAP Value|', ascending=False).head(5)

‘top_5_features_LIME_xgb = lime_features_df xgb.head(5)

Figure 28: Selecting top 5 features from each XAI applied on XGBoost model

top_5_features_importance_xgb.head() top_5_features_shap_xgb.head() top_5_features_LIME_xgb.head()
Feature Importance Feature Mean |SHAP Value| Feature Importance Value
1 MonthlyCharges 719.0 0 Contract Month-to-month 0.890333 0 Contract Month-to-month <= 0.00 -0.063309
2 TotalCharges 649.0 1 tenure 0654639 1 0.00 < OnlineSecurity_No <= 1.00 0026520
0 tenure 3920 2 ManthlyCharges 0464351 2 tenure > 0.85 -0.025281
3 gender_Female 146.0 8 GRS WSS 3 000 < OnlineBackup_Yes <= 1.00 0.020094
31 PaperlessBilling_No 1060 4 PaperlessBilling Yes 0338612 4 gender Female <= 000 -0.019692

Figure 29: Top 5 features from each XAI applied on XGBoost model

Logistic Regression: Select Top 5 Features

# Select top 5 features from each XAL
top_5_features_importance_log = feature_importance_df_log.head(5)

top_5_features LIME log = lime features_df log.head(5)

top_5_features_shap_log = mean_shap_values_df_log.sort_values(by="'Mean |SHAP Value|', ascending=False).head(5)

Figure 30: Selecting top 5 features from each XAI applied on Logistic Regression model
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top_5_features_LIME_log.head() top_5_features_importance_log.head() top_5_features_shap_log. head()

Feature Importance Value Feature Coefficient Absolute Coefficient Feature Mean |SHAP Value|
0 tenure > 0.85 0477547 0 tenure  -1.648048 1.648048 0 tenure 1529266
1 Contract_Month-to-month <= 0.00 -0.097497 2 TotalCharges 1.042179 1.042179 1 TotalCharges 0937313
2 Contract_Two year <= 0.00 0.083380 37 Contract_Month-to-month 0702564 0702564 2 Contract Month-to-month 0349949
3 IntemetService_Fiber optic <= 0.00 0044248 39 Contract Two year  -0.670594 0670504 3 Contract_Two year 0235226
4 0.0 < InternetService DSL <= 1.00 -0.039271 17 InternetService_Fiber optic ~ 0.358915 0.358915 4 InternetService_Fiber optic 0177803

Figure 31: Top 5 features from each XAI applied on Logistic Regression model

6 Experiments

6.1 Experiment 1: Retraining with Random Forest

The code snippets below demonstrate the process of retraining the Random Forest model
with features selected by LIME, SHAP, and Feature Importance. To determine if selected
features lead to improved model accuracy and interpretability.

Random Forest Retrain: Feature Important

# Using top 5 features from feature importance B ™MV & P B
top_5_features_fi_list = top_5_features_importance[ 'Feature'].tolist()

X_train_fi = X_train_res[top_5_features_fi_list]

X_test_fi = X_test[top_5_features_fi_list]

clf_fi = RandomForestClassifier(random_state=42)
clf_fi.fit(X_train_fi, y_train_res)
y_pred_fi = clf_fi.predict(X_test_fi)

print("Random Forest using top 5 features from feature importance")
print(classification_report(y_test, y_pred_fi))
print(f"Accuracy: {accuracy_score(y_test, y_pred_fi):.4f}")

Random Forest using top 5 features from feature importance

precision recall fl-score  support

] 0.83 0.82 0.83 1546

1 0.52 0.55 0.53 557

accuracy 0.75 2103
macro avg 0.68 0.68 0.68 2103
weighted avg 0.75 0.75 0.75 2103

Figure 32: Retrain Random Forest with top features from Feature Important

Random Forest Retrain: SHAP

# Using top 5 features from SHAP values

top_5_features_shap_list = top_5_features_shap| 'Feature'].tolist()
X_train_shap = X_train_res[top_5_features_shap_list]

X_test_shap = X_test[top_5_features_shap_list]

clf_shap = RandomForestClassifier(random_state=42)
clf_shap.fit(X_train_shap, y_train_res)
y_pred_shap = clf_shap.predict(X_test_shap)

print("\nRandom Forest using top 5 features from SHAP values")

print(classification_report(y_test, y_pred_shap))
print(f"Accuracy: {accuracy_score(y_test, y_pred_shap):.4f}")

Random Forest using top 5 features from SHAP values

precision recall fl-score  support

2] 0.84 0.81 0.82 1546

1 9.52 9.58 0.55 557

accuracy 0.75 2103
macro avg 0.68 0.69 0.68 2103
weighted avg 0.76 0.75 0.75 2103

Figure 33: Retrain Random Forest with top features from SHAP
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Random Forest Retrain: LIME

# Using top 5 features from LIME explanation
top_5_features_lime_list = top_5_features_LIME['Feature'].tolist()
X_train_lime = X_train_res[top_5_features_lime_list]

X_test_lime = X_test[top_5_features_lime_list]

clf_lime = RandomForestClassifier(random_state=42)
clf_lime.fit(X_train_lime, y_train_res)
y_pred_lime = clf_lime.predict(X_test_lime)

print("\nRandom Forest using top 5 features from LIME explanation™)

print(classification_report(y_test, y_pred_lime))
print(f"Accuracy: {accuracy_score(y_test, y_pred_lime):.4f}")

Random Forest using top 5 features from LIME explanation

precision recall fl-score  support

Q 0.84 0.84 0.84 1546

1 0.57 0.57 0.57 557

accuracy 0.77 2103
macro avg 0.71 0.71 0.71 2103
weighted avg 0.77 0.77 0.77 2103

Figure 34: Retrain Random Forest with top features from LIME

6.2 Experiment 2: Retraining with XGBoost

XGBoost Retrain: Feature Important

# Using top 5 features from feature importance

top_5_features_fi_list = top_5_features_importance_xgb[ 'Feature'].tolist()
X_train_fi = X_train_res[top_5_features_fi_list]

X_test_fi = X_test[top_5_features_fi_list]

xgb_clf_fi = xgb.XGBClassifier(random_state=42, use_label_encoder=False, eval_metric='logloss')
xgb_clf_fi.fit(X_train_fi, y_train_res)
y_pred_fi = xgb_clf_fi.predict(X_test_fi)

print("XGBoost using top 5 features from feature importance™)
print(classification_report(y_test, y_pred_fi))
print(f"Accuracy: {accuracy_score(y_test, y pred_fi):.4f}")

XGBoost using top 5 features from feature importance

precision recall fl-score support

2] 0.83 0.82 0.83 1546

1 0.52 0.53 0.53 557

accuracy .75 2103
macro avg 0.68 0.68 0.68 2103
weighted avg .75 0.75 .75 2103

Figure 35: Retrain XGBoost with top features from Feature Important

XGBoost Retrain: SHAP

# Using top 5 features from SHAP values 2N & F W
top_5_features_shap_list = top_5_features_shap_xgb[ 'Feature'].tolist()

X_train_shap = X_train_res[top_5_features_shap_list]

X_test_shap = X_test[top_5_features_shap_list]

xgb_clf_shap = xgb.XGBClassifier(random_state=42, use_label_encoder=False, eval_metric='logloss')
xgb_clf_shap.fit(X_train_shap, y_train_res)
y_pred_shap = xgb_clf_shap.predict(X_test_shap)

print("XGBoost using top 5 features from SHAP values")
print(classification_report(y_test, y_pred_shap))
print(f"Accuracy: {accuracy_score(y_test, y_pred_shap):.4f}")

XGBoost using top 5 features from SHAP values

precision recall fl-score  support

e 0.86 0.82 0.84 1546

1 0.55 0.62 0.58 557

accuracy 0.76 2103
macro avg 0.70 0.72 0.71 2103
weighted avg 0.78 0.76 .77 2103

Figure 36: Retrain XGBoost with top features from SHAP
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6.3

XGBoost Retrain: LIME

# Using top 5 features from LIME explanation

top_5_features_lime_list = top_5_features_LIME_xgb[ 'Feature'].tolist()
X_train_lime = X_train_res[top_5_features_lime_list]

X_test_lime = X_test[top_5_features_lime_list]

xgb_clf_lime = xgb.XGBClassifier(random_state=42, use_label_encoder=False, eval_metric='logloss')
xgb_clf_lime.fit(X_train_lime, y_train_res)
y_pred_lime = xgb_clf lime.predict(X_test_lime)

print("XGBoost using top 5 features from LIME explanation")
print(classification_report(y_test, y_pred_lime))
print(f"Accuracy: {accuracy_score(y_test, y pred_lime):.4f}"

XGBoost using top 5 features from LIME explanation

precision recall fl-score  support

] 0.84 0.81 0.83 1546

1 0.53 0.58 0.55 557

accuracy 0.75 2103
macro avg .69 0.70 0.69 2103
weighted avg 0.76 .75 0.75 2103

Figure 37: Retrain XGBoost with top features from LIME
Experiment 3: Retraining with Logistic Regression

Logistic Regression Retrain: Feature Important

# Using top 5 features from feature importance P & F 0
top_5_features_fi_list = top_5_features_importance_log[ 'Feature'].tolist()

X_train_fi = X_train_res[top_5_features_fi_list]

X_test_fi = X_test[top_5_features_fi_list]

log_clf fi = LogisticRegression(random state=42, max_iter=1000)
log_clf_fi.fit(X_train_fi, y_train_res)
y_pred_fi = log_clf_fi.predict(X_test_fi)

print("XGBoost using top 5 features from feature importance")
print(classification_report(y_test, y pred_fi))
print(f"Accuracy: {accuracy_score(y_test, y_pred_fi):.4f}"

XGBoost using top 5 features from feature importance

precision recall fl-score  support

] 0.93 0.69 0.79 1546

1 0.50 0.85 0.63 557

accuracy 0.73 2103
macro avg 0.71 .77 0.71 2103
weighted avg .81 0.73 0.75 2103

Accuracy: 0.7332

Figure 38: Retrain Logistic Regression with top features from Feature Important

Logistic Regression Retrain: SHAP

# Using top 5 features from SHAP values

top_5_features_shap_list = top_5_features_shap_log['Feature'].tolist()
X_train_shap = X_train_res[top_5_features_shap_list]

X_test_shap = X_test[top_5_features_shap_list]

log_clf_shap = LogisticRegression(random_state=42, max_iter=1000)
log_clf_shap.fit(X_train_shap, y_train_res)
y_pred_shap = log_clf_shap.predict(X_test_shap)

print("XGBoost using top 5 features from SHAP values")
print(classification_report(y_test, y_pred_shap))
print(f"Accuracy: {accuracy_score(y_test, y_pred_shap):.4f}")

XGBoost using top 5 features from SHAP values

precision recall fl-score  support

2] 0.93 0.69 8.79 1546

1 0.50 0.85 0.63 557

accuracy 0.73 2103
macro avg 0.71 0.77 0.71 2103
weighted avg 0.81 0.73 .75 2103

Accuracy: 0.7332

Figure 39: Retrain Logistic Regression with top features from SHAP
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Logistic Regression Retrain: LIME

# Using top 5 features from LIME explanation
top_5_features_lime_list = top_5_features_LIME_log|'Feature'].tolist()
X_train_lime = X_train_res[top_5_features_lime_list]

X_test_lime = X_test[top_5_features_lime_list]

log_clf_lime = LogisticRegression(random_state=42, max_iter=1600)
log_clf_lime.fit(X_train_lime, y_train_res)
y_pred_lime = log_clf_lime.predict(X_test_lime)

print("XGBoost using top 5 features from LIME explanation")
print(classification_report(y_test, y_pred_lime))
print(f"Accuracy: {accuracy_score(y_test, y_pred_lime):.4f}")

XGBoost using top 5 features from LIME explanation

precision recall fl-score support

] 0.92 0.69 0.79 1546

1 0.50 0.84 0.63 557

accuracy .73 2103
macro avg 0.71 0.77 0.71 2103
weighted avg 0.81 0.73 0.75 2103

Accuracy: 0.7337

Figure 40: Retrain Logistic Regression with top features from LIME
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