
Configuration Manual

MSc Research Project

Data Analytics

Nancy Saini
Student ID: x22236040

School of Computing

National College of Ireland

Supervisor: Vikas Tomer

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Nancy Saini

Student ID: x22236040

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Tomer

Submission Due Date: 12/08/2024

Project Title: Configuration Manual

Word Count: 1370

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nancy Saini

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Nancy Saini
x22236040

1 Introduction

This configuration manual details the steps necessary to set up and deploy an image
detection system that was developed for the MSc Research Project. The system utilizes
a multimodal approach, incorporating Histogram of Oriented Gradients (HOG), Local
Binary Patterns (LBP), and Convolutional Neural Networks (CNN) to extract features
from images. These features are then used by machine learning models, specifically
Support Vector Machines (SVM) and Logistic Regression, to distinguish between real
and AI-generated images. This system is intended for use in applications such as digital
forensics and content verification, providing users with a reliable method for assessing
image authenticity. By following this manual, users can replicate the research setup, train
models, and conduct evaluations to understand the system’s capabilities and performance.

2 System Requirements

This section has details about the hardware and software requirements for the AI-
generated image detection system, ensuring optimal performance and reliability.

Hardware Requirements: The system should have an Intel Core i7 processor or
equivalent, with a minimum of 16 GB RAM to handle computational tasks efficiently.
At least 100 GB of free disk space is advised for storing datasets and model files. For
smooth deep learning operations, an NVIDIA GPU with CUDA support is advised.

Software Requirements: The system should run Windows 10/11 or on a recent
Linux version, such as Ubuntu 20.04. Python 3.8 or higher is required, using Jupyter
Notebook or PyCharm as the development environment.

important Python libraries include TensorFlow and Keras for neural network develop-
ment, OpenCV for image processing, and scikit-learn for machine learning tasks. NumPy
and Pandas support numerical and data operations, while Matplotlib and Seaborn are
used for visualization. The imgaug library handles data augmentation, and joblib is used
for parallel computing and model serialization.

Additional Tools: For those utilizing Google Colaboratory, ensure account access
to this cloud-based platform with GPU support. If using a local NVIDIA GPU, install
the CUDA toolkit and cuDNN library for GPU acceleration.

3 Installation and Setup

This section outlines the steps to configure the environment for running the AI-generated
image detection system, based on the dataset downloaded locally.

1



3.1 Python Environment Setup

1. Install Python: Download and install Python from https://www.python.org/.

2. Create a Virtual Environment:

python -m venv ai_image_detection_env

3. Activate the Environment:

• Windows: .\ai_image_detection_env\Scripts\activate

• Linux/Mac: source ai_image_detection_env/bin/activate

3.2 Install Required Libraries

Run the following command to install necessary libraries:

pip install tensorflow keras opencv-python scikit-learn numpy pandas matplotlib seaborn imgaug joblib

3.3 Dataset Preparation

1. Download Dataset: The dataset was downloaded from https://www.kaggle.

com/datasets/xhlulu/140k-real-and-fake-faces/data.

2. Local Organization: Organize the dataset locally into TRAIN, TEST, and VALID

directories, placing these folders in the same directory as your Jupyter Notebook.

Figure 1: Local directory structure for dataset organization.

3.4 Optional Setup for GPU Acceleration

• Google Colaboratory: Access Google Colab for GPU support if needed.

• CUDA and cuDNN: Install for enhanced performance on local NVIDIA GPUs.

This setup ensures a consistent environment for executing and testing the image de-
tection models effectively.

2

https://www.python.org/
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces/data
https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces/data


4 Data Preprocessing

Data preprocessing is a crucial step in preparing the dataset for analysis and modeling.
This section describes the techniques used to preprocess the images for the AI-generated
image detection system.

4.1 Importing Libraries

To run the data preprocessing steps, many libraries are imported, including OpenCV for
image handling, NumPy for numerical operations, and others for additional processing
and analysis. These libraries provide the necessary functions and tools for efficient data
manipulation.

Figure 2: Screenshot of Imported Libraries in the Jupyter Notebook.

4.2 Image Preprocessing Steps

1. Image Loading: Images are loaded using OpenCV to read and process them from
the local directories.

2. Resizing: Images are resized to 128 × 128 pixels to ensure uniformity across the
dataset.

3. Grayscale Conversion: Images are converted to grayscale to simplify the feature
extraction process and reduce computational complexity.

4. Normalization: Pixel values are scaled to the range [0, 1] by dividing by 255 to
standardize the input data for the models.

3



Figure 3: Image Preprocessing Pipeline: Loading, Resizing, Grayscale Conversion, and
Normalization.

4.3 Stratified Sampling

• Balanced Dataset Creation: Stratified sampling is used to create balanced data-
sets for training, validation, and testing, ensuring equal representation of real and
fake images in each dataset split.

• Sample Sizes:

– TRAIN: 10,000 samples (5,000 real, 5,000 fake)

– TEST: 2,500 samples (1,250 real, 1,250 fake)

– VALID: 2,500 samples (1,250 real, 1,250 fake)

Figure 4: Stratified Sampling Process

4.4 Image Augmentation (Optional)

• Flipping and Cropping: Random horizontal flips and cropping are applied to
increase dataset diversity and improve model generalization.

• Contrast Adjustment: Image contrast is modified to enhance feature visibility.

Figure 5: Image Augmentation Techniques

This preprocessing pipeline prepares the data for feature extraction and subsequent
modeling steps, ensuring that the input data is both consistent and informative.

4



5 Feature Extraction

Feature extraction is an essential process in transforming raw data into a format suitable
for machine learning models. In this section, we describe the methods used to extract
meaningful features from the images.

5.1 HOG (Histogram of Oriented Gradients)

• Overview: HOG features capture the structure and edges of images by computing
gradients and orientation histograms.

• Extraction Process: Each image is divided into small connected regions, and for
each region, a histogram of gradient directions is calculated.

• Purpose: HOG is particularly useful for object detection and identifying spatial
patterns in the images.

Figure 6: HOG Feature Extraction Process

5.2 LBP (Local Binary Patterns)

• Overview: LBP is a simple yet powerful texture descriptor, used to summarize
local structures in images.

• Extraction Process: For each pixel in a grayscale image, compare it with its
neighbors and encode the result as a binary number.

• Purpose: LBP effectively captures local texture features, making it valuable for
image classification tasks.

Figure 7: LBP Feature Extraction Process

5



5.3 CNN Features using VGG16

• Overview: VGG16, a pre-trained Convolutional Neural Network (CNN), is utilized
to extract high-level features from images.

• Extraction Process: Images are resized to 224 × 224 pixels and passed through
the VGG16 model (without the top classification layers) to obtain feature maps.

• Purpose: These features capture complex patterns and hierarchies in images, en-
abling robust image classification.

Figure 8: CNN Feature Extraction using VGG16

5.4 Combined Feature Vector

• Integration: Features extracted from HOG, LBP, and VGG16 are concatenated
to form a comprehensive feature vector for each image.

• Advantage: This combination leverages the strengths of both traditional and deep
learning-based feature extraction techniques, improving model performance.

6



Figure 9: Combined Feature Vector Creation

This feature extraction pipeline transforms raw image data into a rich and informative
format, facilitating effective model training and analysis.

6 Model Training and Evaluation

The model training and evaluation process involves training machine learning models
using the extracted features and assessing their performance on the test dataset. This
section provides a detailed description of the models and evaluation techniques used.

6.1 Support Vector Machine (SVM) Training

• Overview: Support Vector Machines are used to classify the images based on the
extracted features.

• Training Process:

– The SVM model is trained using the combined feature vectors derived from
HOG, LBP, and CNN features.

– The hyperparameters for the SVM model, such as kernel type and regulariza-
tion parameter C, are optimized using grid search cross-validation.

• Purpose: SVMs are effective for binary classification tasks and can handle high-
dimensional feature spaces.

7



Figure 10: SVM Model Training and Hyperparameter Optimization

6.2 Logistic Regression Training

• Overview: Logistic Regression is a simple yet effective model for binary classific-
ation tasks.

• Training Process:

– The model is trained on the same feature set as the SVM.

– Regularization techniques are employed to prevent overfitting and improve
model generalization.

• Purpose: Logistic Regression serves as a baseline model to compare the perform-
ance of more complex models.

Figure 11: Logistic Regression Model Training

6.3 Model Evaluation Metrics Implementation

The author implemented key evaluation metrics to assess model performance, including
accuracy, precision, recall, F1 Score, ROC curve, AUC, and confusion matrix. These
metrics provided a comprehensive analysis of the classification models that highlights
their strengths and areas for improvement.

8



Figure 12: Implementation of Model Evaluation Metrics: Accuracy, Precision, Recall, F1
Score, ROC Curve, and Confusion Matrix.

This section details the methods used to train and evaluate the models, highlighting
the strengths and limitations of each approach. By using multiple evaluation metrics the
author ensures assessment of model.

References

9


	Introduction
	System Requirements
	Installation and Setup
	Python Environment Setup
	Install Required Libraries
	Dataset Preparation
	Optional Setup for GPU Acceleration

	Data Preprocessing
	Importing Libraries
	Image Preprocessing Steps
	Stratified Sampling
	Image Augmentation (Optional)

	Feature Extraction
	HOG (Histogram of Oriented Gradients)
	LBP (Local Binary Patterns)
	CNN Features using VGG16
	Combined Feature Vector

	Model Training and Evaluation
	Support Vector Machine (SVM) Training
	Logistic Regression Training
	Model Evaluation Metrics Implementation


