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Detection of AI-Generated Images Using Multimodal
Approach

Nancy Saini
x22236040

Abstract

Generative Adversarial Networks have come with great challenges in image
forensics, making it increasingly hard to distinguish an AI-generated image from
an authentic one. In this work, therefore, a multimodal approach using Histo-
gram of Oriented Gradients, Local Binary Patterns, Convolutional Neural Network
with Support Vector Machines, and Logistic Regression is proposed for improving
classification accuracy. The methodology combines various techniques of feature
extraction, which are applied in a unique way to address the deficiencies of single-
feature models in detection. On rigorous experimentation, while the SVM model
delivered an accuracy of 81.12%, Logistic Regression went a notch higher, with an
accuracy of 83.52%, thus outperforming several other existing models. The results
were driven by an emphasis on the effectiveness of feature integration in capturing
wide arrays of image artifacts for improving accuracy in detection. It points out the
requirement of more diverse datasets and sophisticated feature extraction method-
ologies to further make these detection systems even more robust. Even though
this research was focused on images produced by StyleGAN, future work shall be
organized with datasets from several GAN architectures in order to increase gen-
eralizability and adaptiveness for detection models. Future studies should also aim
at increasing the breadth of the dataset used and the adoption of hybrid method-
ologies so that more adaptability and applicability of the models to the real world
would be very possible.

1 Introduction

1.1 Background

Generative Adversarial Networks (GANs) have become advanced in generating Synthetic
Image Creation, produces near-real images. (Goodfellow et al.; 2014). proposed it way
back in 2014. Applications of GANs range from image synthesis and data augmenta-
tion to artistic creation. While there is much to the credit of GANs, they have serious
concerns attached to them about digital image authenticity since they can be used to
mislead people with realistic fake images in scenarios such as misinformation or even
identity theft. GANs involve two neural networks: one for generating synthetic images
and the other for ascertaining the genuineness of the images generated by the generator.
The adversarial process is bound to generate very realistic images that may turn out
to be pretty challenging for the present detection systems. Because of these attributes,
GANs have already started finding several applications besides image synthesis in medical
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imaging and the entertainment sector. However, such possible misapplications of GANs
underline the requirement for robust methods of detection.

1.2 Importance

It has become very critical to ensure digital content authenticity to maintain trust in
digital media, social networks, and other online platforms. Therefore, detecting GAN-
generated images becomes very important in digital content integrity, forensic analysis,
and security improvement. Although, many detection methods have been explored. How-
ever, there is still a scope for some hybrid approaches that can be robust and will have
high accuracy, and flexibility across a wide range of GAN architectures. Missing detec-
tion of GAN images can eventually turn into social media misinformation, false evidence
in courts of law, and an infringement of journalistic ethics. In this regard, develop-
ing effective techniques for detection is important. Most conventional image forensic
techniques leverage handcrafted features coupled with statistical analyses that are weak
against modern GAN techniques. The rapid development of GAN architectures enforces
continuous adaption of the detection methods to include new types of synthetic images.
Besides, the high quality of images generated by GAN especially GANs like StyleGAN
requires sophisticated techniques of detection that would allow differentiating these from
real photos.

1.3 Research Question and Objectives

The primary research question guiding this study is:

How effective is a multi-modal approach combining Local Binary Patterns
(LBP), Histogram of Oriented Gradients (HOG), Convolutional Neural Net-
works (CNN), and Support Vector Machines (SVM) in detecting GAN-generated
images?

This paper focuses on the integration of various feature extraction methods to enable
the detection of highly realistic AI-generated images. The research is guided by the
objective of harnessing the strengths of each method in improving the accuracy and
resilience of detection. Specific to this study are the following objectives:

1. Assess the contributions of LBP, HOG, and CNN-based features in
GAN-generated image detection. Check their effectiveness in the iden-
tification of synthetic imagery.

2. Assess the performance improvement from combining these features,
evaluating whether a combined feature set captures a wider range of
image artifacts than any single method.

3. Evaluate the performance of the model on a dataset of images generated
using a GAN. The effectiveness of the model can be defined by accuracy,
precision, recall, or any other relevant measure.

1.3.1 Novelty and Contribution

It proposes a novel method for detecting GAN-generated images with the help of an
integrated SVM-based model driven by different feature extraction techniques: LBP,
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HOG, and CNN. The novelty lies in the fact that this technique is built to leverage very
different strengths coming from these different methods of feature extraction in a bid
to improve both accuracy and resilience in detection. These features are concatenated
to include all varieties of image artifacts. As a result, this method does not face the
limitations of any one technique. This work will enrich the current methodologies and
provide with a more potent solution for detecting synthetic images. It will also provide
insight into how robust detection systems in the area of digital media forensics can be
built.

1.4 Limitations

This study has some limitations to its scope. First, the quality and diversity of images
generated by GANs significantly affect the performance of the model. Computational
resources come in at a second place, which is heavily required during the training of com-
plex models like CNNs. The current work mainly focuses on the images that well-known
GAN architectures like StyleGAN generate. Findings might need to be generalized or
validated across other variations of GANs. It is possible that publicly available datasets
do not hold all the varieties of GAN images existing in real life. While the ensembled
approach provides improved detection capabilities, the integration of several feature ex-
traction methods and classifiers adds computational overhead, which potentially limits
its applicability in every use. This fast-paced technology of GANs is hard to match.
With new architectures being brought out into the open, they might beat the current
detection techniques. It is by these challenges that a continuous search in the improve-
ment of detection models ensues, and ethics considerations ensure responsible use of the
technology.

This report is structured as follows:

• Related Work: Discussion of existing methods for detecting GAN-generated im-
ages and their strengths and limitations.

• Methodology: Describes the data collection, preprocessing steps, feature extrac-
tion techniques, and model training process.

• Design Specification: Outlines the design constraints and quality attributes of
the system.

• Implementation: This section describes how the multi-modal approach is imple-
mented.

• Evaluation: Presents the experimental setting, evaluation metrics, and results of
the model.

• Conclusion: This part will summarize the main contributions and state the re-
commendations for the future work.

Literature review critically evaluates any previous work and provides a context for
the current study. The methodology section explains the design and techniques that
shall be employed in the research. The design specification involves the identification of
constraints and attributes that help guide the development of the system. The imple-
mentation shows the practical application of the proposed methods. In the evaluation
section, results are analyzed together with key findings summed up and suggestions for
further work.

3



2 Related Work

This section puts the current study in the academic literature by providing a critical
review of similar work. The review entails the critical analysis of strengths and weaknesses
associated with different approaches towards detecting GAN-generated images. In order
to do this, nearly 25 papers were reviewed; however, 14 have been discussed in this
chapter.

The breakthrough of GANs in image synthesis has set enormous challenges for image
forensics. Accordingly, with the main emphasis of this paper being detection of images
generated by GANs, many methods have been proposed by researchers to tackle this
problem, and they have succeeded to some level.

2.1 Foundational and Traditional Approaches

The concept of GANs was first coined in Goodfellow et al. (2014), which established a
foundation for this rapid development in the field (Goodfellow et al.; 2014). Within the
framework of the GANs, there are two neural networks: a generator and a discriminator,
pitted against each other in a game-theoretic scenario. In this seminal piece of work,
many follow-ups and applications on image synthesis, data augmentation, and so forth
have been derived.

The techniques applied in detecting GAN-generated images were originally based
on traditional forensic techniques. Deep learning has changed this dramatically. That
is, in the framework of a full review, techniques for the detection of images generated
by GANs have been shown by way of proving the effectiveness of CNN combined with
Benford’s Law to assure an accuracy rate of 98.95% to 99.99% on different datasets for
GANs (Kit et al.; 2023). Although these results are very promising, the threat from
newer GAN architectures is ever-present. Hence, there is a continuous updating of the
training datasets for the sake of robustness. This exposes an important limitation of the
traditional methods due to their inability to keep up with the evolving models of GAN—a
core challenge that the research tries to bridge by putting in place adaptive techniques.

Transitioning from traditional approaches, researchers like Sharma et al. (2023) have
recently set up traditional forensic techniques against state-of-the-art deep learning mod-
els. Their study underscores the computational intensity of deep learning models but
also highlights their superior accuracy. This creates the need for lightweight models that
would sustain a high accuracy at a reduced computational cost (Sharma et al.; 2023).
The insight is going to be very important for the research, intended to balance accuracy
and efficiency with a multi modal approach.

In a novel approach, Monkam et al. (2023) proposed the Generative Joint Bayesian
Optimal Detector GAN (G-JOB GAN), encoding a Bayesian framework with a joint
optimization strategy. Although this model reached an accuracy of 95.70%, the model’s
complexity and computational requirements showed that designs more tractable are still
required (Monkam et al.; 2023). This complexity suggests that scalable solutions are
urgent; The multimodal approach that this author tries to solve is the detection process
with hybrid techniques that simplify it and make it more efficient.

Exploring some deep learning approaches, Nataraj et al. (2019) combined co-occurrence
matrices on RGB channels with a deep CNN framework, achieving high accuracy rates
for CycleGAN and StarGAN. But, their method is sensitive to image manipulations like
compression and resizing which higlights the necessity for robust preprocessing techniques
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(Nataraj et al.; 2019). This points out the importance of prepossessing in detection sys-
tems, a factor that this research integrates into its methodology to enhance resilience to
manipulations.

Building on this, Mandelli et al. (2022) have examined orthogonal training of multiple
CNNs, with patch-based score aggregation. This new strategy reached practically perfect
accuracy under some settings, but it also emphasized the growing demand for more
efficient training strategies to master the accruing complexity and resource consumption
(Mandelli et al.; 2022). Their work therefore highlights the need for efficient training
strategies, which this study wants to improve by resorting to simpler models combined
to achieve full detection capacity.

2.2 Advanced and Hybrid Approaches

In the realm of multi-spectral satellite images, Abady et al. (2024) utilized a Vector
Quantized Variational Autoencoder 2 (VQ-VAE 2) trained on pristine images to detect
GAN manipulations. Their method achieved a very high precision of 0.93, underpinning
the strength of one-class classifiers but also their low generalizability and large compu-
tational costs (Abady et al.; 2024). That is the search for generalizing classifiers across
domains to which this research aspired to make its contribution in cross-domain detection.

Further enhancing detection techniques, Tan et al. (2023) proposed the Learning on
Gradients (LGrad) framework, converting images to gradients using a pre-trained CNN
model. While this method showed high precision and recall, its computational intensity
necessitates further optimization (Tan et al.; 2023). The need for computational efficiency
is a critical consideration for my research, which aims to streamline detection without
sacrificing accuracy.

Such hybrid innovative approaches, like that by Fu et al. (2022), integrated LBP
for texture analysis and SPAM for sensor noise within an SVM classifier. This hybrid
approach reached as high as 97.60% in accuracy, although it underlined high-quality
sensor data requirements and high computational intensity(Fu et al.; 2022). The potential
of this technique in combining texture and noise analyses is clear, and the multimodal
approach proposed by this author incorporates to improve detection accuracy and reduce
dependency on data quality.

Arora and Arora (2022) explored the possibility of using GANs for the generation of
synthetic medical data that mimics trends and characteristics from real patient data. Al-
though there are significant benefits related to privacy that synthetic data brings—ethical
considerations aside—the large computational requirements call for robust metrics that
will capture both fidelity and anonymity (Arora and Arora; 2022). This research will
extend the scope of the GAN detection technique by applying it to a more general and
diversified methodological framework.

Adding to recent advancements, Chi Liu et al. (2023) proposed a methodologically
different approach in their work, ”Towards Robust GAN-Generated Image Detection:
A Multi-View Completion Representation.” Their new framework is then powered by a
multi-view completion strategy that confers a great deal of boosted robustness to the de-
tection systems against advanced GANs like StyleGAN, which typically generate highly
realistic and high-quality images. Their approach has the advantages of both high ac-
curacy and a solution scalable for new GAN architectures by fusing multiple data views
and using a complex completion task that exploits discrepancies in the image generation
process(Liu et al.; 2023). This confirms the problem of adaptability in detection systems
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and underlines the appropriateness of the multimodal strategy in this research.
It continued with the contribution in this area by Wang et al. in (2022), with the use

of an innovative method in augmenting GAN-generated image data in the fingerprint do-
main: ”General GAN-Generated Image Detection by Data Augmentation in Fingerprint
Domain.” This means that fingerprint perturbation of a fingerprint domain can increase
the generalization ability of GAN detectors, and cross-GAN detection performance could
be enhanced considerably with adjustment by different GAN fingerprints. Our results
showed significant improvements in mean accuracy and average precision over existing
state-of-the-art methods, which further gave credence to the potential of the proposed
approach in solving the restrictions introduced by the unseen GAN models (Wang et al.;
2022). This is in line to improve the generalizability of detection in research with an
emphasis on novel GAN architectures.

Besides, a transfer learning-based framework was proposed by Zhang et al. (2023),
which enhances detection through interleaved parallel gradient transmission between two
neural networks. This provided considerable performance improvement and reached the
best metric of 99.04% accuracy, attesting to its excellent generalization capabilities(Zhang
et al.; 2023). The use of transfer learning for enhancing generalization will be very relevant
to this research goal since adaptive models play a major role in learning.

Combining these innovative methods with traditional approaches, researchers have
achieved substantial progress. Martin-Rodriguez et al. (2023) further showed that pixel-
wise feature extraction with PRNU and ELA, combined with CNNs, makes it possible to
accomplish high accuracy and precision in the detection of AI-created images (Martin-
Rodriguez et al.; 2023). This further supports the power of hybrid feature extraction
techniques central to this research’s multimodal detection strategy.

2.3 Novelty and Contribution

While most conventional forensic techniques and state-of-the-art deep learning models
have already been applied to GAN-generated image detection, they mostly bear high
computational costs, poor generalizability, or even high sensitivity to image manipula-
tions. Most of them cannot keep pace with the rapid development of GAN technology.

The present research envisions a new fusion of LBP, HOG, CNN, and SVM. In view
of the above, this new combination is regarded as filling the gaps, by discussing hybrid
techniques that seldom have been pursued in the literature. Their synergistic applica-
tion has greatly improved the detection efficacy, extended generalizability, and reduced
susceptibility to common image manipulations in the respective field.

Beyond improving the accuracy in detection, this project has enormous impacts on
digital image forensics through computational performance optimization. This work is
the basis for future innovation in detecting synthetic media—an area of development that
is critical, as GAN technology is never good enough and always improving.

2.4 Summary of Reviewed Studies

The following table summarizes the methodologies, findings, and future directions from
the studies presented, which helps in quickly referring to the state of the art in GAN-
generated image detection research.
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Table 1: Consolidated Overview of Studies on GAN-Generated Image Detection

Authors Year Datasets
Used

Methodology Model
Used

Metrics Value Limitations Future Work

K. S. Kit
et al.

2023 Various
GAN im-
ages

CNNs and
Benford’s Law

CNNs Accuracy 98.95% to
99.99%

Struggles with
advanced GAN
models

Include ad-
vanced GAN
architectures

Preeti
Sharma
et al.

2023 Diverse
forgery
datasets

Forensic and
deep learning
methods

Forensic
methods,
CNNs

Accuracy 98.95% to
99.99%

High computa-
tional demand

Develop effi-
cient models

G.
Monkam
et al.

2023 CelebA,
200,000
images

Bayesian op-
timization in
G-JOB GAN

G-JOB
GAN

Accuracy 95.70% Needs scalabil-
ity

Optimize for
real-time ap-
plications

L. Nata-
raj et al.

2019 CycleGAN,
StarGAN
images

Co-occurrence
matrices with
CNN

CNN Accuracy 74.5%
(high qual-
ity image)

Sensitive to
image modi-
fications and
resizing

Improve ro-
bustness to
image changes

S. Man-
delli et
al.

2022 Real and
synthetic
images
from Styl-
eGAN

Orthogonal
CNN training

EfficientNet-
B4

AUC Up to
0.9999

Orthogonality
issues

Improve train-
ing strategies

L. Abady
et al.

2024 Multi-
spectral
satellite
images

VQ-VAE 2
with loss

One-Class
Classifier

Precision 0.93 Limited to
specific image
types only

Extend to
other image
types

C. Tan et
al.

2023 Mixed
datasets
including
ProGAN,
StyleGAN

Gradient con-
version using
CNNs

Gradient-
based
CNNs

Precision 0.92 Very High
computational
intensity and
uses single
extraction.

Optimize
gradient com-
putation

T. Fu et
al.

2022 100,000
images,
real and
GAN-
generated

LBP and
SPAM via
SVM

Hybrid
SVM

Accuracy Up to
97.60%

Requires high-
quality data for
good perform-
ance

Combine with
deep learning

A. Arora
and A.
Arora

2022 Various
types of
medical
images

GANs for syn-
thetic data

GANs
(StyleGAN2-
ADA)

Not ap-
plicable

N/A Ethical and
privacy con-
cerns

Develop quant-
itative metrics

D. Grag-
naniello
et al.

2021 LSUN,
ImageNet,
COCO

Systematic
experimental
study

Pre-
trained
CNNs
(Xception,
Inception)

AUC

Accuracy

> 0.9
for low-
resolution
images,

> 90%
for high-
resolution
images

Depends on im-
age quality

Improve gen-
eralization to
new GANs

F.
Mart́ın-
Rodŕıguez
et al.

2023 459 AI-
generated
and real
photo-
graphs

Pixel-wise fea-
ture extraction
with CNNs

CNNs us-
ing PRNU
and ELA

Accuracy PRNU:0.95
ELA:0.98

Issues with
non-JPEG
images

Include other
image engines

Chi Liu
et al.

2023 ProGAN,
Cramer-
GAN,
SNGAN,
MM-
DGAN,
Styl-
eGAN,
Styl-
eGAN2

Multi-view
completion
strategy

Multi-
View
Com-
pletion
Classi-
fication
Learning
(MCLL)

Accuracy 100% Overfitting on
Unstable Fea-
tures

Robustness
Against Per-
turbations

Simplify model
for broader
deployment

Huaming
Wang et
al.

2022 ForenSynths
dataset
with im-
ages from
ProGAN,
StyleGAN

Data augment-
ation in finger-
print domain

ResNet50 Accuracy Improved
mean Ac-
curacy by
7.0%

Dependency on
perturbation
strategy

Explore other
domains like
video GANs
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3 Methodology

This section provides a comprehensive account of the methodology employed in this re-
search, detailing the systematic procedures used to detect AI-generated images using a
multi-modal approach. The methodology is structured to ensure replicability and verifi-
ability by other researchers.

3.1 Research Setup and Environment

The research was conducted on a personally used laptop running a 13th Gen Intel(R)
Core(TM) i7-13700H processor at 2.40 GHz, 16 GB RAM, and a 64-bit operating system
having a x64-based processor, running Windows 11 Home, Version 23H2. All experiments
were conducted within Jupyter Notebook, which allowed iterative development and test-
ing due to its interactive environment that supports real-time code execution with visu-
alization. This codebase was developed in Python 3.8, and for the image processing part,
OpenCV was used; for machine learning, it used Scikit-learn; for deep learning, Tensor-
Flow/Keras; for data manipulation, NumPy and Pandas; and lastly, for the visualization
part, Matplotlib and Seaborn. All this setup helped much to deal efficiently with the
data and run complex algorithms needed for the goals of the study

3.2 Data Collection and Preparation

The study used Kaggle dataset of 140,000 images, where half of them were real and half of
them were fake. Originally, the real images came from Nvidia and were collected from the
Flickr dataset consisting of images of human faces in different conditions. The fake images
were generated through Bojan’s StyleGAN model, very similar to real human faces. Such
a balanced dataset contributed to very important training in enabling the model for
generalization onto unseen data, and it also helps in distinguishing between real and
synthetic images using a robust, efficient system. The dataset was managed through CSV
files that has metadata for each image, which supported data management across different
subsets such as training, validation, and test phases. These files contained key attributes
including the Original Path (the location of the image before preprocessing), ID (a
unique identifier for each image), Label (a binary indicator, where ’0’ represents fake and
’1’ represents real, to signify image authenticity), Label Str (the string representation
of the label, either ’real’ or ’fake’), and Path (updated post-processing path reflecting
changes due to preprocessing or restructuring). Programmatically updated to match with
the directory structure of the local setup, the path column facilitated efficient data loading
and preprocessing, ensuring seamless access and processing of images during training and
evaluation phases.

First, stratified sampling was done on the data to create subsets for training, valid-
ation, and testing. Each subset contained equal numbers of classes so as to be completely
representative of the sample population. First, it used a small subset of 5,000 images
(2,500 real, 2,500 fake) to test the pipeline and model performance, and this smaller set
allowed making changes and iterations quickly. Then, it used a test set of 10,000 images,
with 5,000 real and 5,000 fake, for a more accurate evaluation. In splitting, Python’s
stratified sampling ensured that this would be random and consistent concerning class
balance.
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3.3 Image Preprocessing

Preprocessing is one of the most important steps that help standardize the dataset for
feature extraction. All images were resized to a size of 128 x 128 pixels to provide
reduced computational complexity while retaining all the facial features. Conversion
into grayscale, which helped concentrate on intensity variation, reduces dimensionality,
helping in adopting some of these techniques in feature extraction. The pixel values
were further normalized by dividing them by 255 to put the data in the range [0, 1]. This
makes the data homogeneous and also provides improved convergence for the data during
training. Further, a Gaussian blur with a kernel size of (3,3) was applied on every image
to reduce noise and showing main features so that robust feature extraction is possible.

Figure 1: Representation of preprocessing steps applied to an image. From left to right:
Original, Grayscale, Blurred, HOG Image, and LBP Image.

These preprocessing steps prepare the data into a consistent format required by the
subsequent steps: analysis and modeling. Resizing maintains uniform input size through
all the images, hence feature extraction and modeling can be conducted uniformly over the
images. Grayscale conversion reduces the computational overhead of color information
toward concentration on texture and intensity information, which are critical means of
real-versus-fake image classification. Normalization gets pixel values on identical scales
in an attempt to get to convergence during model training more quickly.

3.4 Feature Extraction Techniques

Feature extraction can be used to transform raw data into a set of features that can be
effectively used by the machine learning algorithm. In this work, three feature extrac-
tion techniques will be applied, which are Local Binary Patterns, Histogram of Oriented
Gradients, and Convolutional Neural Networks.

LBP is a simple yet efficient texture descriptor, which encodes the patterns of intensity
differences around each pixel into a binary string and builds a histogram of those patterns.
The intensity of each pixel is compared with its eight surrounding neighbors. These binary
values are combined to form an 8-bit number. It builds up a histogram of the frequency
of each LBP code within the image, which thereafter gives a strong descriptor of texture.
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LBP has high computational efficiency and rotation invariance that can be applied in the
analysis of textures within images across different orientations. This has a radius of 3,
with points equating to 8 times the radius.

HOG describes the distribution of gradient orientations in small parts of an image,
thus emphasizing edge structures. This algorithm first breaks the image into small, con-
nected regions called cells and, for each cell, computes a histogram of gradient directions.
The descriptor is just the concatenation of these histograms. Parameters: pixels per
cell set at (8, 8) and cells per block at (2, 2). HOG focuses on the shape and structure
of facial features, which are very important in differentiating real from fake images. It
captures very well the local edge information that is robust to changes in illumination
and shadowing.

CNNs are deep learning models that perform automatic feature learning from raw
image data at high levels. An already pre-trained VGG16 model was used for the ex-
traction of features from images; high-level convolutional features will then be applied
without the classification top layer. The convolutional layers extract a complex pattern
and hierarchy of features in a way that projects subtle differences between genuine and
fake images. CNNs are used for learning abstract features, hence they are very successful
on tasks dealing with image data, mostly due to their capability of capturing spatial
hierarchies.

Each image was processed through LBP, HOG, and CNN feature extraction, and all of
them were used together for training and evaluation. Combinations of such very diverse
and different techniques of feature extraction improve the ability to capture comprehens-
ive image artifacts.

3.5 Model Training and Evaluation

In this research, a well-structured model training and evaluation process was applied to
ensure the effectiveness of this approach in classifying real and AI-generated images.

In PART A of the implementation, all features which were extracted using the three
extraction techniques were concatenated into one feature vector per image. This approach
was applied to obtain the appropriate strengths of each method and, consequently, build
an all-inclusive feature set that enables the detection of even minute details across differ-
ent dimensions in image data. After that, an SVM with a linear kernel was used because
this algorithm works very well in very high-dimensional spaces and performs excellently
in binary classification tasks. That would enable it to use the combined features set
for training an SVM with complementary strengths of LBP, HOG, and CNN features.
The main aim was the exploration of the holistic approach to the integration of multiple
feature extraction techniques into a robust classification.

Part B investigated each technique in feature extraction on its own so that it would
set out different contributions for the task of classification. By doing so, evaluation for
each type of feature gave information about LBP, HOG, and CNN features on their
own, showing the strengths and weaknesses. The author could assess the contribution
of each feature set by training individual SVM classifiers on LBP, HOG, and CNN. This
gave information about how good each feature type could be and which of the features’
contribution in differentiating real images from fake images is maximum.
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Figure 2: System architecture for GAN-generated image detection, illustrating the full
workflow from data collection to evaluation

As an additional exploratory method, logistic regression was applied to the combined
feature set to provide a baseline for comparison against the more complex SVM models.
The model fitted with 5000 maximum iterations and L2 regularization to avoid overfit-
ting helped in assessing the linearity of the features. It gave a notion of how the SVM
model could still be further optimized and hence showed the need for more advanced
classification techniques to deal with complex data distributions.

3.6 Evaluation Metrics

Model performance was assessed based on accuracy, precision, recall, the F1-score, and the
area under the ROC curve. Accuracy is the proportion of correctly classified instances
against total instances, and it gives a measure for model performance. Precision is a
measure of the number of true positive results against that of positive results predicted
by the classifier; that is, the proportion of actual positives among predicted positive
instances. Recall is the ratio of true positives to the number of positives that should have
been returned, measuring a model’s ability to get all relevant instances. The F1-score is
the harmonic mean of precision and recall and hence class-balance-aware. AUC gives a
notion of the model’s performance in class differentiation at various thresholds and thus
gives a feel for the sensitivity-specificity trade-offs.
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4 Design Specifications

This section provides information about the architecture and framework developed to de-
tect AI-generated images using various feature extraction techniques and their classifica-
tion. The system has been designed robustly to distinguish real images from synthetically
generated ones, keeping in mind the basic factors of scalability and maintainability. Fig-
ure 3 illustrates a flowchart showing the summary of the system architecture and process
flow.

Figure 3: Process flow for feature extraction, model training, and evaluation.

4.1 System Architecture

The system applies a multimodal system that combines HOG, LBP, and CNN for feature
extraction, whose features are afterward used with SVM classifiers for image classification.
This approach enhances the system’s ability to analyze and interpret complex image
data effectively. The system automates feature extraction from input images through
HOG, LBP, and CNN techniques to capture the essential characteristics of images for
classification. After extracting features, an SVM classifier is trained using these features
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and tested on its performance with a dataset to ensure its reliability and accuracy.
For high-performance needs, the minimum accuracy rate targeted by the system

should be 80% for both real and synthetic image datasets. The design allows the comple-
tion of image processing and classification to take just a few seconds per image, facilitates
quick throughput, and features optimized resource usage in order not to let peak opera-
tions consume more than 80% of the CPU and 4GB RAM. While currently no Graphical
User Interface is implemented, it envisions the development of a simple interface for easy
image uploading and handling, together with API access to be able to integrate with
other digital forensic tools and systems.

4.2 Algorithmic Specifications

The system incorporates several algorithmic specifications:
- Support Vector Machines (SVM): Used to classify images based on extracted

features, effectively separating high-dimensional data Cortes and Vapnik (1995).
- Histogram of Oriented Gradients (HOG): Utilized to detect edges and gradi-

ents, providing crucial shape and texture information Dalal and Triggs (2005).
- Local Binary Patterns (LBP): Applied to capture texture variations in images,

aiding in the distinction between real and synthetic faces Ojala et al. (2002).
- Convolutional Neural Networks (CNN): Deployed to automatically extract

and learn complex features from images, enhancing the classification process.
These algorithms form the core of the system, facilitating robust feature extraction

and classification.

4.3 Design Constraints and Quality Attributes

This system can work on both Windows and Linux environments and follows all rules of
data protection strictly, where personal data is kept only for as long as the processing
takes. Scalability is also targeted as one of the quality attributes, where architecture
supports the easy addition of new methods for feature extraction and model types. Its
modular design, with extensive documentation, will also enhance maintainability, thus
helping in the continuous updating process and maintenance of the system. It is a detailed
design specification for the delivery of a system that will not only be functional and
efficient but also adaptable with further developments in image processing and machine
learning technologies.

5 Implementation

In the last implementation phase, this research focused on the integration of the developed
models with applications into effective ways of differentiating real from GAN-generated
images. This phase consisted of a series of tasks done rather carefully in a way that
contributed collectively to the success of the project.

5.1 Transformed Data

First, the implementation transformed raw image data in order to prepare it for feature
extraction. This was critical to standardize the dataset in order to enrich learning within
the model. Thereafter, every image underwent preprocessing steps to make the dataset
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homogeneous. First, normalization adjusted pixel values to a consistent range between
0 and 1, which actually helped the model stabilize learning and greatly increased the
speed during training. After normalization, the images were resized to a standard size of
128x128 pixels, ensuring that each image has a regular size, which is a precondition for
effective feature extraction. Gaussian methods were applied to blur the images, reducing
noise and smoothing textures, avoiding model sensitivities for small variations and focus-
ing on key features of the image. This improved the robustness of feature extractors by
focusing model attention on the most relevant features.

5.2 Developed Models

In the implementation phase, machine learning models were created due to advanced
feature extraction techniques and classification algorithms invented. The LBP captured
the patterns of the differences in intensity to identify subtle textural variations between
real and synthetic images. The HOG detected edge orientations and geometric structures
critical for differentiating shapes and contours. Transfer learning helped leverage the
benefits of CNN, especially the pre-trained VGG16 model for abstracting patterns and
complex spatial hierarchies within the images through its convolutional layers. Its feature
set was trained on an SVM classifier owing to its characteristic capabilities to deal with
high-dimensional data and construct a hyperplane that maximizes the margin between
classes. Binary classification tasks were used in attempts to optimize models of SVMs,
seeking intricacies across multiple dimensions in images. Logistic regression provided
a baseline model against which to compare and gave a sense of the linear separability
for this dataset. In this way, the dual-model approach helped to perform comparative
analysis, showing the virtues and possible deficiencies in the SVM framework.

5.3 Code Implementation

The models were implemented in Python 3.8, which provides a robust environment in
dealing with complex data processing tasks. This project used major libraries like Tensor-
Flow and Keras for implementing CNNs that enable efficient deep learning model training
and integrate them together. These very pre-trained models, particularly VGG16, could
be used with ease in the TensorFlow ecosystem for transferring the learned features to the
task at hand, while not being as computationally resource-intensive. As for the SVM and
logistic regression models, scikit-learn would provide a full set of tools for the training
and evaluation of the models, including their hyperparameter tuning by cross-validation.
NumPy and Pandas would handle data handling and preprocessing, therefore playing an
important role in efficiently manipulating large datasets and ensuring a smooth flow of
data through the processing pipeline. These libraries and tools helped much in complet-
ing the project successfully. Using these tools, it was possible to train different models
that would tell the difference between real images and GAN-generated images. Thus,
these tools and their effectiveness in the detection task are proved by thorough testing
and optimization. The actual implementation ended with models far above the set ac-
curacy benchmark, turning out to be adaptable to further fine-tuning and extension if
need be.
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6 Evaluation

In-depth evaluation of all experiments carried out in this study investigates not only
individual feature effectiveness but also the strength of a multimodal approach. This is
shown through a detailed model performance metric analysis for each feature in terms
of confusion matrices and ROC curves, followed by their comparative analysis with a
multimodal approach.

6.1 Experiment 1: Evaluation of Individual Features

In the case of Experiment 1, three different types of features are used independently:
Histogram of Oriented Gradients, Local Binary Patterns, and Convolutional Neural Net-
works, all combined with Support Vector Machine classifiers. This experiment will meas-
ure their ability to differentiate between ’Real’ and ’Fake’ images.

6.1.1 Case A: SVM with HOG Features

The Histogram of Oriented Gradients descriptor ensures that gradient and edge informa-
tion is mapped, information highly useful in object detection having distinct shapes and
outline boundaries. The accuracy obtained on an SVM model trained on HOG features
was 78%, with precision and recall both at 78%, thus giving an F1-score of 0.78.

Looking at this confusion matrix, it is obvious that with HOG features, the SVM
model is pretty effective: It has correctly classified images that are ’Real’ by catching
edges and contours uniquely. But 268 ’Fake’ images have been misclassified as ’Real’,
thus proving some confusion with less defined features. Moreover, 968 ’Fake’ images were
correctly identified, and 282 ’Real’ were labeled as ’Fake’; therefore, the model seems to
be having trouble identifying the subtle features of real images.

The receiver operating characteristic curve of the HOG features, shown in Figure
5, fetches an area under the curve of 0.78 approximately, thus revealing class-moderate
discrimination.

6.1.2 Case B: SVM with LBP Features

The LBP features extract information about the texture by analyzing the patterns of local
pixels. In this experiment, LBP features produced an accuracy of 59.2% with precision,
recall, and an F1-score all at 0.59.

The confusion matrix at 4 for the SVM model using LBP is given below. In contrast
with HOG, it performed poorly. While it rightly identified 718 ’Real’ images, it wrongly
classified 488 ’Fake’ images as ’Real’, which means that LBP, with its features on local
texture pattern extraction, has a shortage of features in complex images. In addition,
762 ’Fake’ images were rightly identified, whereas 532 ’Real’ images were labeled ’Fake’,
which simply means that LBP has failed to extract fine patterns needed in classifying
’Real’ and ’Fake’ images with a high degree of accuracy.

The AUC value for LBP features was approximately 0.59, thus showing only a limited
ability to distinguish classes, particularly in the case of complicated textures.
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6.1.3 Case C: SVM with CNN Features

CNN features, which are derived from a pre-trained convolutional neural network, provide
meaningful hierarchical features that extract both low-level and high-level patterns. Spe-
cifically, after the inclusion of CNN features, accuracy was raised to 71.4% with precision,
recall, and F1-score at 0.71 for the SVM model.

The confusion matrix indicates that CNN features provide better balancing in clas-
sification. For instance, the model managed to classify 867 ’Real’ images correctly, thus
prove the efficiency of CNN in extracting features through its multiple layers. On the
negative side, it misclassified 332 ’Fake’ images as ’Real’ and managed to identify 918
’Fake’ images correctly. Notwithstanding these strengths, 383 ’Real’ images were labeled
’Fake’, thereby indicating scope for improvement in capturing weak genuine features
amidst noise.

The AUC for CNN features as shown in 5 was only around 0.71, which obviously
indicates stronger discriminative capability compared to LBP and extremely close per-
formance compared with HOG.

Figure 4: Confusion matrices for SVM with HOG, LBP, and CNN features.

Figure 4 illustrates the confusion matrices for SVM models using each feature type,
visually showing classification accuracy and the balance between true and false predic-
tions.

Figure 5: ROC curves comparing SVM performance with HOG, LBP, and CNN features

Figure 5 presents the ROC curves, illustrating each model’s true positive rate versus
false positive rate across varying thresholds, with CNN features showing a superior curve
compared to LBP and comparable to HOG.

6.2 Experiment 2: Multimodal Approach

Experiment 2 measures the performance of a multimodal approach by integrating HOG,
LBP, and CNN features within an SVM framework. The idea here is to leverage the
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strength of every kind of feature to improve overall classification performance. Moreover,
another model is Logistic Regression since it showed great promise in the initial tests.

The SVM model, utilizing the combined feature set, achieved an accuracy of 81.12%.
This demonstrates the advantage of leveraging diverse feature sets to improve classific-
ation performance. The Receiver Operating Characteristic (ROC) curve, illustrated in
Figure 6, shows an Area Under the Curve (AUC) of 0.85 for the SVM model, indicating
strong model discrimination between real and synthetic images. The efficacy of the model
can be viewed in the results on the confusion matrix, which returned a high degree of
correct classifications realized in 1,038 images being classified as ’Real’ and 1,007 classi-
fied as ’Fake’. However, this came with the presence of 212 false negatives and 243 false
positives, proving there is still much needed in the feature extraction process for further
accuracy.

The Logistic Regression model,applied to the same combined feature set, returned
an even better accuracy of 83.52%, making this technique very promising as a more robust
alternative for complex classification tasks. Logistics Regression also returned a better
AUC, as visible in the ROC curve in Figure (Figure 6), which means better traceability
between sensitivity and specificity concerning the SVM. This goes on to prove that logistic
regression not only realizes complementary strengths from combined features but also
handles the complexity of a dataset efficiently.

The precision-recall curves (Figure 7) further explain the models’ ability in relation
to class balance. In this case, both SVM and Logistic Regression models achieved a
precision and recall of 0.81, with an F1-Score of 0.81, thus proving to be quite effective in
the multimodal approach for the attainment of homogeneous and reliable classification
performance. This balance is quite important in applications of image classification where
misclassifications may have far-reaching impacts.

Figure 6: ROC curves for SVM and Logistic Regression with combined features
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Figure 7: ROC comparison between SVM and Logistic Regression using combined fea-
tures

6.3 Comparative Analysis

This section makes a comparison of the results obtained from this research with those of
selected studies in current literature. Such an analysis is purposed to contextualize the
effectiveness of this research’s developed multimodal approach: What were its strengths?
What were its unique contributions to the field of image classification?.

In this study, the author uses a multimodal approach with Histogram of Oriented
Gradients, Local Binary Patterns, and Convolutional Neural Network features. Combin-
ing these methods has considerably improved the metrics for performance classification
concerning models trained with singular feature sets. The results support the suggestion
that including different feature types in one model may explain more comprehensively
the diversity of characteristics found in image data, hence improving model accuracy and
resilience.
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Study/Author Year Methodology Accuracy Precision Recall F1-
Score

Other Studies
G. Monkam et al. 2023 Bayesian op-

timization in
G-JOB GAN

95.70% - - -

L. Natraj et al. 2019 Co-occurrence
matrices with
CNN

74.5% - - -

F. Martin-Rodriguez et
al.

2023 CNNs using
PRNU and ELA

- 0.93 0.99 0.95

C. Tan et al. 2023 Gradient-based
CNNs

- 0.92 0.88 -

This Research
Multimodal SVM
(HOG, LBP, CNN)

2024 SVM with com-
bined features
(HOG, LBP,
CNN)

81.12% 0.81 0.81 0.81

Multimodal Logistic Re-
gression

2024 Logistic Regres-
sion

83.52% 0.84 0.84 0.84

SVM on HOG 2024 SVM with HOG 78% 0.78 0.78 0.78
SVM on LBP 2024 SVM with LBP 59.2% 0.59 0.59 0.59
SVM on CNN 2024 SVM with CNN 71.4% 0.71 0.71 0.71

Table 2: Comparative Analysis of the Experiments with Relevant Studies

As illustrated in table in section 6.3, the multimodal approach in this research achieved
an accuracy of 81.12%, a marked improvement over the unimodal approaches tested and
compares favorably to several existing methods in the literature. Notably, the logistic
regression model, which emerged as an alternate analysis, showed even higher accuracy
at 83.52%, suggesting that the combined features provide rich information that enhances
performance beyond the capabilities of SVM alone.

This approach surpasses the performance of models such as those by L. Natraj et al.,
which achieved an accuracy of 74.5% using co-occurrence matrices with CNNs, under-
scoring the effectiveness of feature integration over singular methodologies. While the
results did not reach the exceptionally high accuracy of 95.70% reported by G. Monkam
et al. with GAN optimization, the methodology in this research offers a more accessible
framework that balances computational efficiency and accuracy.

These findings support the conclusion that a multimodal feature integration strategy
effectively addresses the complexities inherent in image classification tasks, leading to
robust model development that aligns with the research community’s ongoing efforts to
refine classification techniques.

6.4 Discussion

The research given here proves the effectiveness of a multimodal approach in image clas-
sification by using Histogram of Oriented Gradients, Local Binary Patterns, and Con-
volutional Neural Networks. The accuracy for the multimodal approach with SVM was
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81.12%, and logistic regression on the same set of features reached an accuracy of 83.52%.
These results are better than the single features-based models of Natraj et al. and Tan et
al., thus justifying the strength of diversification of features as a means to improve per-
formance. A few limitations were noted notwithstanding the above-mentioned results.
Although comprehensive, the dataset was less diverse and thus could further limit its
model’s generalization across different domains of images. Feature extraction methods
may miss some nuances in the images, thus setting improvements through other methods
or advanced preprocessing techniques. In future work, testing on more datasets would be
very interesting for the improvement of generalizability and the robustness of the model.
Generally, in comparison to many of the currently available methods, the multimodal ap-
proach within the context of prior studies performed better in this study. The fact that
higher accuracy was obtained by Monkam et al. may suggest that sophisticated optim-
ization techniques such as Bayesian optimization could be of benefit. This would involve
incorporating these techniques in future studies to achieve further enhanced robustness
and accuracy.

Design Considerations and Improvements Though the design of the experiment
was very strong for the combination of feature extraction and classification techniques
that were followed, there are still some scopes for improvement at different points. Ran-
dom sampling and inclusion of larger and more varied datasets may reduce sampling
biases, especially from advanced architectures like CycleGANs and others or hyperpara-
meter tuning could give more holistic insights.

Contributions to Knowledge It contributes to image classification by validating the
efficiency of integrating multiple features and outperforming models with a single feature.
This work paves the way for future research focused on multimodal techniques while
emphasizing the potential of these techniques in complex image analysis, opening up
avenues for commercial applications where strong requirements need to be placed on the
performance of image classification.

7 Conclusion and Future Work

This study aimed to enhance the detection of AI-generated images by employing a mul-
timodal approach integrating HOG, LBP, and CNN features with SVM and Logistic Re-
gression classifiers. The findings demonstrate that the multimodal strategy significantly
improves classification accuracy, achieving 81.12% with SVM and 83.52% with Logistic
Regression, compared to traditional single-feature models. This validates the hypothesis
that combining multiple feature types effectively captures complex image artifacts and
improves detection capabilities.

Despite these promising results, limitations were identified. The dataset, while ex-
tensive, lacked sufficient diversity, which may hinder the model’s ability to generalize
across different image domains. Additionally, processing large volumes of images was
time-consuming, requiring the division of data into subsets to manage computational
demands. Addressing these issues can further enhance model robustness and efficiency,
paving the way for more advanced detection systems.

Future research should focus on expanding datasets to include a broader variety of
GAN-generated images to improve generalization. Incorporating advanced hybrid ap-
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proaches and exploring novel feature extraction techniques could further enhance detec-
tion accuracy and resilience. Optimizing algorithms for faster processing will also be es-
sential, especially with large-scale datasets. Developing user-friendly interfaces and APIs
to integrate with existing digital forensic tools can broaden the practical applications of
this research.
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