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Targeted Detection of Steganographic Content in
Images Using Transfer Learning to Enhance

Cybersecurity

Nisarga Revannaradhya
x23110848

Abstract

Steganography is a technique used to conceal information within digital me-
dia while making it unrecognizable. It can serve for both secure communication
and malicious purposes, such as embedding malware in images for cyberattacks.
Through image steganography, malicious code can be hidden in natural images
without arousing suspicion. Steganalysis is the counter process of detecting stegano-
graphic content. This work introduces an image steganalysis approach designed to
identify images embedded with JavaScript code using spread spectrum stegano-
graphy. This is done by combining traditional feature extraction methods with
pretrained models, enhanced by an attention mechanism. However, despite the ad-
vancements, CNNs still tend to have some difficulty in recognizing subtle changes in-
troduced by spread-spectrum steganography, particularly when handling JavaScript
code embedding. This limitation highlights the value of the combined approach im-
plemented in this research. Among others, EfficientNet-b0 model achieved 94.7%
accuracy when trained on ImageNet, thus proving the effectiveness of the combined
approach. This approach can serve as a benchmark to detect the steganographic
data hidden within images.

1 Introduction

Steganography is an ancient technique of hiding data within media, has evolved signi-
ficantly. S et al. (2023)Euphrasi and Rani (2016) It was initially developed for secure
communication but now it can be used both positively and negatively. On one hand, it
can protect sensitive information, but it can also be used by cyber criminals to embed
malware, like JavaScript code, into images for cyberattacks. Hence it is important to
have strong steganography detection systems. This counter action to steganography is
called Steganalysis.

Among other advanced methods, spread spectrum steganography is a complex tech-
nique that makes traditional detection methods ineffective Chaudhary et al. (2023).
Spread spectrum steganography slightly modifies the frequency components of an im-
age for data embedding. The technique is proven to be highly undetectable by spreading
secret information over a large range of frequencies Chaudhary et al. (2023). The pro-
duced hidden signal is so subtle that it makes the hidden data less perceptible to human
eye and more robust against conventional steganalysis methods Euphrasi and Rani (2016).
hence more sophisticated steganalysis techniques are needed, especially where hidden data
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can be used for malicious intentions. This includes embedding malware scripts that can
be executed during cyber attacks. Criminals could use various social engineering tac-
tics to make the the user initiate a prompt as simple as clicking on a dummy button or
downloading an image.

To overcome these challenges, this study focuses on detecting images with hidden
JavaScript codes used commonly in cyber attacks by using both the conventional feature
extraction techniques and modern deep learning approaches. This could be termed as
targeted steganalysis as the embedding technique i.e., spread spectrum is already known
while developing steganalysis approach.

Research Questions

• Which is the most effective pre-trained model that can detect steganographic con-
tent when enhanced with attention mechanism?

• How can feature extraction steps affect the performance of transfer learning-based
steganalysis models in detecting spread spectrum-based images?

Convolutional Neural Networks(CNNs) can extract rich features that are required
in most cases for classification without any external need Reinel et al. (2019) Kheddar
et al. (2024) Wei et al. (2022). The hypothesis of this study is that, although CNNs
work well in extracting subtle spatial domain characteristics, it will not do the same for
frequency domain changes Li et al. (2024). Accordingly when frequency domain features
were explicitly extracted and combined with CNNs, they proved to be effective as demon-
strated by this study. Through domain knowledge and thorough understanding of the
steganography method used, effective feature extraction steps were implemented. For this
research, 10,000 color images from the ImageNet Large-Scale Visual Recognition Chal-
lenge 2012(ILSVRC 2012) dataset was used Russakovsky et al. (2015). A custom dataset
was created by embedding javascript code into these images. The classes were named
Clean and Stego(Steganographic). Various pretrained models like ResNet50, VGG19 and
Efficientnet-b0 were trained among which the hyper parameter tuned EfficientNet-b0
model has achieved an accuracy of 94.7% in detecting steganographic content.

Section 1 of this report presents the field of research, it’s objective, the research
questions and a brief overview of the whole research . In Section 2, existing research
works related to this are explored and analysed. Section 3 describes the methodology
followed throughout this work and Section 4 outlines the data pipeline of the project. The
implementation of the design is thoroughly discussed in Section 5. All the experiments
carried out and their results are evaluated in Section 6. The report ends with a critical
analysis of this work and the future directions in Section 7.

2 Related Work

The recent advances in steganalysis focus on neural network-based approaches that help
make the detection capabilities far more effective. This section discusses the different
steganography methods, effective steganalysis approaches, and the transition to deep
learning techniques.

2.1 Steganography and Steganalysis Techniques

To develop strong steganalysis tools, thorough understanding of steganography is needed.
Steganography can be broadly classified as spatial and frequency domain techniques. Spa-
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tial domain techniques directly hide data in the pixel values of an image, while frequency
domain techniques hide data within the frequency-transformed coefficients Euphrasi and
Rani (2016) S et al. (2023).Among them, frequency domain techniques are very hard to
detect. The work by Euphrasi and Rani (2016) and S et al. (2023) provide comparative
analysis of steganography techniques. Euphrasi and Rani (2016) compare these tech-
niques using metrics like Bit Error rate, standard deviation, embedding capacity and S
et al. (2023) compare these techniques with metrics like embedding capacity, security
against attacks, visual imperceptibitlty and computational requirement. Both the stud-
ies conclude that the frequency domain provides better imperceptibility for hidden data
compared to the spatial domain.

One of the evaluation metric used by Euphrasi and Rani (2016), showed that Bit
Error Rate(BER) of spatial domain was as high as 0.0194 and in frequency domain was
as high as 0.0673. The authors describe that a higher BER would indicate more harder
to detect the presence of steganographic content. In the proposed work, BER of spread
spectrum in spatial domain was 0.0 and in frequency domain was 0.504 when tested for
the same image proving that frequency domain steganography is harder to detect.

In frequency domain spread spectrum steganography, the image is first transformed
into transform domain like Discrete Cosine Transform(DCT) as described by Chaudhary
et al. (2023). In their work the authors describe the application of various frequency
domain methods, including the use of DCT for embedding data. It provides a clear
explanation of the steps starting from creating a pseudo sequence of message bits, con-
verting the image into DCT domain and subsequent embedding. However, a quantitative
comparison of techniques could have helped in a better understanding of these techniques.

2.2 Machine Learning Applications in Steganalysis

Steganalysis can be broadly categorized into targeted and universal methods Hermassi
(2021) Kheddar et al. (2024) Croix et al. (2024). Targeted steganalysis requires prior
knowledge of the steganography algorithm used, but universal steganalysis is a blind and
generic approach to detect steganographic content. In this research, the steganography
method used, Spread Spectrum is known prior and hence can be categorized as targeted
steganalysis. Further, Kheddar et al. (2024) categorize steganalysis into traditional ma-
chine learning approaches and advanced deep learning techniques. Traditional methods
mostly rely on handcrafted features and statistical analysis, while deep learning methods
like Convolutional Neural Networks (CNNs) use automatic feature extraction.

Spread spectrum steganography causes very subtle changes which may go unnoticed
by traditional machine learning models. Implementing feature extraction steps before
ML models can improve the classification abilities as demonstrated by Hermassi (2021).
They perform a blind steganalysis for JPEG images from BOSSbase v1.01 image database
embedded with nsF5 steganographic method which operates frequency domain mainly
on DCT coefficients. They extract inter and intra block relationships of DCT coefficients
and co-occurance matrices. They have achieved an Area Under the Curve (AUC) of
0.846. However, they could have addressed the trade-offs between accuracy and compu-
tational efficiency due to manual feature extraction which could be critical in real-world
applications.

The authors Croix et al. (2024) demonstrate statistical methods based steganalysis on
seven steganography algorithms including spread spectrum. The authors describe the use
of statistical properties like image histograms, color movements and higher order statist-
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ics for effective steganalysis. Similar features were extracted in this research for better
detection. Their research describes the shift of Machine learning(ML) based steganalysis
to Deep learning(DL) based techniques. The paper identifies challenges like the curse of
dimensionality in ML-based approaches which was encountered and taken care of in the
proposed work through Principal Component Analysis(PCA).

Another drawback of ML-based approach is that it depends on a small set of hand-
crafted features and may not generalize on new data. Qian et al. (2016) demonstrate
that CNNs automatically learn features from data, and simplifies the feature extraction
process and improves accuracy. They have an interesting approach to pre-train a CNN
on detecting steganographic algorithms with high payloads and then transfer the learned
feature representations to tasks involving lower payloads. They use a high pass filter
as a preprocessing step to highlight the steganographic content similar to DCT feature
extraction in the proposed work.

Another work that highlights Deep learning(DL) techniques over ML techniques is
presented by Reinel et al. (2019). The researchers have used BOSSBase, BOWS2 and
ImageNet datasets to show the superiority of DL based models over ML models. They
have used preprocessing steps which are tailored to highlight the steganographic noise
signals from the natural patterns of the image to detect frequency domain steganography.
This again shows that even with DL techniques, highlighting steganographic content in
some way is necessary for effective detection.

CNNs are mostly capable of statistical features, but may not effectively identify fre-
quency differences in classes. Hence, a hybrid model of both manual feature extraction
and features extracted from CNNs was implemented in the proposed research. A similar
perspective is implemented by Li et al. (2024) using a transformer-inspired blocks called
ResFormer - Residual transformer method. It combines the traditional feature extraction
with CNN-based deep learning for effective steganalysis. The method achieves detection
accuracy of 92.13% for algorithms like WOW, S-UNIWARD. Although it claims to be
lightweight, the two step process might in fact be computationally expensive which needs
further optimization.

The hybrid methodology implemented in this research involves explicitly extracting
features which makes the results mostly dependent on a particular dataset and may
result in overfitting. Boroumand et al. (2019) introduce a deep residual network SRNet
specifically designed to minimize manual design elements of the data pipeline. Although
their work aims to minimize design elements, they use heuristically selected channels for
better performance. A more data-driven approach during channel selection could have
been explored.

While implementing hybrid models including feature extraction and CNNs, computa-
tional efficiency becomes a major concern. Lin and Yang (2021) propose a method that
focuses on improving the detection performance of steganalysis for color images with a
lightweight network architecture. The network is designed to learn multi-frequency com-
ponents separately, which enhances the detection accuracy without significantly increas-
ing the network’s complexity. While the network is lightweight, the trade-off between the
model complexity and the overall network performance should be carefully considered.

The researchers Kheddar et al. (2024) have implemented a thorough comparative
analysis of various Deep Learning based steganalysis models. The metrics of evaluation
used to evaluate models used by them was a valuable guide for the evaluation of pro-
posed research. Their thorough research directs towards pretrained models and their
advantage of transfer learning over CNNs and RNNs built from scratch. They use their
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prior knowledge to understand features in images from large datasets. This makes it
suitable detect subtle patterns in steganalysis tasks without requiring much retraining.
EfficientNet which is a pretrained network, is particularly useful for steganalysis due
to its balances in accuracy and computational efficiency Chubachi (2020). The authors
Chubachi (2020) perform targeted steganalysis for JPEG images of ALASKA2 dataset in
both spatial and frequency domain and have achieved highest accuracies with pretrained
EfficientNet architectures. They have implemented EfficientNet-b2 and b5 models that
take DCT coefficients as input. EfficientNet for the frequency domain achieves a weighted
AUC of 0.9405. However computational efficiencies while using such pretrained models
could have been discussed more.

Other than a separate feature extraction step, the CNNs extract features from images
too. In the architecture of CNNs for steganalysis, use of attention mechanisms can be
highlight the features extracted from CNNs Kheddar et al. (2024) Fu et al. (2022). The
hybrid approach of feature extraction and attention mechanism in CNNs was implemented
in the proposed research to achieve effective steganalysis. The work by Fu et al. (2022)
uses a feature extraction step, channel attention mechanism and convolutional pooling to
improve the detection accuracy of steganalysis in spatial domain which inspired it’s use
in proposed work. They have implemented channel attention to capture color channel
wise features which was implemented by histogram feature extracted for color channels in
the proposed work. The scalability of the model could have been addressed more clearly
to facilitate real time implementation.

Most existing steganalysis methods are optimized for grayscale images as they as
computationally less expensive. The authors Wei et al. (2022) propose a universal deep
network designed for steganalysis of color images. The authors introduce a preprocessing
module that separates color channels and applies 62 high-pass filters to enhance the
steganographic noise signal. This helps preserving steganographic features across different
color channels using a carefully designed CNN architecture. The importance of analysis of
each color channel has been an inspiration in the proposed research where histogram and
other statistical features of RGB channels are separately computed and used as features.

During the implementation, slight overfitting could be observed with quite a bit of
difference in training and validation accuracies. Hyperparameter tuning was then per-
formed and the learning rate was decreased to reduce the overfitting. This issue of manual
tuning is solved to adaptive learning rate approach by Mustafa et al. (2019) They have
implemented Dynamic Learning Rate-Based CNN for flexible training of CNNs for WOW
and S-UNIWARD steganographic algorithms on BOSSbase 1.01 dataset. It shows signi-
ficant improvement from other CNN based architectures but at the cost of computational
efficiency. It requires powerful GPUs which may be less suitable for scenarios with limited
computational resources. Hence it could not be incorporated in this research.

2.3 Preprocessing for Frequency Domain Steganalysis

In this research, preprocessing is considered a critical step as it enhances the subtle
features indicating steganographic content that may otherwise be unnoticed in the raw
images especially in frequency domain. Although Spread specrum affects frequency do-
main components, the steganographic data is added to the original image in such a way
that it is distributed across the image’s pixels. This causes slight modifications to the
spatial domain too V.K et al. (2021) Xu et al. (2015). The spatial and frequency domain
analysis needed to detect for steganalysis is detailed by V.K et al. (2021). In frequency
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domain, DCT coefficients are analysed and in spatial domain, they examine the subtle
changes in pixel values across the images. This inspired the use of frequency and spatial
domain analyses to detect DCT based steganography. However, discussing the actual
datasets and evaluation metrics used could have been more helpful.

The authors Qian and Manoharan (2015) implement steganalysis on JPEG images
in spatial domain. Histogram features capture the distribution of pixel intensities across
different color channels essentially capturing spatial domain changes. This is a technique
used by Qian and Manoharan (2015) in one of their steganalysis models which works
quite well for Least Significant Bit(LSB) steganography. Although they evaluate color
and grayscale images with different JPEG compression rates, they could have highlighted
the effect of such compressions with quantitative results.

JPEG steganalysis is one of the frequency domain techniques dealing with DCT coef-
ficient changes Maryam Seyed Khalilollahi and Mansouri (2022) Cheng et al. (2024). The
researchers Cheng et al. (2024) implement a method that integrates frequency domain
analysis with deep learning to detect JPEG steganography. They describe the need to
highlight DCT coefficients before feeding the images to neural network architectures.
They have achieved over 95% accuracy in single compressed images. However, generaliz-
ability to other compression formats or non-JPEG images has not been addressed.

The DCT coefficient analysis is needed only for those parts of the image which may
contain steganographic content. Otherwise it may cause high dimensionality issues.
While in most cases, high frequency components are affected, in the proposed work,
the steganography mostly affects low to mid frequency components. Such mid-frequency
component analysis for steganalysis is implemented by Maryam Seyed Khalilollahi and
Mansouri (2022). Their work guides towards using extracting specific DCT coefficients
from the JPEG images and they have used 20 components to achieve balance between
accuracy and complexity. In the proposed work, 10 coefficients are utilized to achieve this
balance. With 20 DCT components, Maryam Seyed Khalilollahi and Mansouri (2022)
have achieved an accuracy of 97.75% which is quite high for the low complexity of their
network. It still seems like a shallow network which may not generalize well for larger or
complex datasets.

Apart from DCT features, spatial features like co-occurance matrix features were
extracted for texture analysis. The authors Xu et al. (2015) state that texture analysis
is needed to capture the correlation among neighboring pixels for steganalysis. Their
assumption is that pixels exhibit strong local correlations, which can be disrupted by
steganographic embedding. This theory seemed logical and hence texture related features
were extracted.

3 Methodology

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a a structured
approach used during development of data mining projects Sakly et al. (2022). It has six
steps which are elaborated as follows.

3.1 Business Understanding

This step defines the motivation and goal of this research. When used with wrong in-
tent, steganography can be used for dangerous cyberattacks S et al. (2023). Hence,
primary objective of this research is to develop a strong steganalysis technique to detect
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steganographic images using a hybrid approach. This includes combining traditional fea-
ture extraction methods with advanced deep learning models augmented with attention
mechanisms.

3.2 Data Understanding

There were no ready image datasets available with JavaScript embedding through spread
spectrum steganography. Hence a custom dataset had to be created. The images were
taken from the ImageNet Large-Scale Visual Recognition Challenge 2012(ILSVRC2012)
Russakovsky et al. (2015). About 10,000 JPEG images of the test subset of this dataset
were used in this work.The dataset was divided into 5000 cover and 5000 clean images.

Figure 1: Cover Images

Figure 1 shows the cover images used to create the Steganographic(Stego) images
through Javascript code embedding. As observed, the images were of varying dimensions.

3.3 Data Preparation

This step includes the steps involved in creating the custom dataset. The cover images
were first resized to 224x224 pixels for compatibility with the input size required by most
pretrained models. Resizing the images was done before embedding the data to avoid
any distortion of the steganographic content that might occur if resizing were done later
Reinel et al. (2019).

For the purpose of this research, a simple JavaScript code was created to act as a
placeholder for the malware inspired by Petrak (2019). This code included functions that
mimic typical malicious activities, such as manipulating the DOM or initiating HTTP
requests.

The JavaScript code was embedded into the cover images using Spread Spectrum
Steganography in both frequency domain and spatial domains. First the code was con-
verted to it’s binary equivalent. This sequence was then modulated by XORing with a
key to create a pseudorandom sequence Chaudhary et al. (2023). In frequency domain,
Discrete Cosine Transform (DCT) was applied to the image, and the code was embed-
ded within the DCT coefficients of RGB channels. In Spatial domain steganography the
code was directly embedded into the pixel values of the cover image but spread across
wide spectrum of pixels and not concentrated at a specific location Euphrasi and Rani
(2016). Hence this can be perceived as spread spectrum in spatial domain. Metrics for
comparison were as follows.

• Visual Imperceptibility: It can be observed in Figure 2 that both the frequency
domain and spatial domain stego images show no noticeable visual distortions.
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Figure 2: Visual Imperceptibitlity

• Bit Error Rate(BER): BER for frequency domain was 0.504 and spatial domain
was 0.0.

• Histogram of pixel intensities: Figure 3 shows that the histogram of pixel
intensities for frequency domain shows more noticeable differences between the ori-
ginal and the stego image than the spatial domain

Figure 3: Histogram comparison

It can be concluded that Spread Spectrum Steganography in the Frequency Domain is
the more challenging technique for decoding. Hence it was chosen over spatial domain.
Once the steganography techniques was chosen, 5000 cover images were used to create
5000 stego images containing the embedded JavaScript code. Clean images were also
resized. These images were then divided into 8000 train, 1000 test, and 1000 validation
sets of CLean and Stego classes.

Next, during Exploratory Data Analysis(EDA) basic image characteristics like channel
wise mean pixel values, brightness and contrast distributions in clean and Stego images
were analysed. The mean pixel values showed very small differences which were later
extracted as features during histogram analysis.

Figure 4: Brightness and Contrast Analysis
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Figure 4 shows the Brightness and Contrast distributions. The subtle variations
observed in Brightness and Contrast are further captured during the histogram analysis
and co-occurance matrix analysis respectively. Further feature extraction steps will be
discussed in implementation section.

3.4 Modeling

Data augmentation is usually used in image-based machine learning to enhance training
data diversity and prevent overfitting Li et al. (2024). Techniques like zooming, flipping,
and rotating images are common, but for steganalysis, these methods could distort the
hidden data by either making it too obvious or completely hiding it Boroumand et al.
(2019). To ensure the steganographic content remained intact and realistic, these aug-
mentations were intentionally excluded in this study. To test hypothesis that pure CNN
based techniques may fail in effective steganalysis in frequency domain, simple CNN mod-
els without any feature extraction steps were created. Then the extracted features were
combined with image data through data generators. This combined data was used as the
input for pretrained models. The results are discussed in further sections.

3.5 Evaluation

The models in this project are evaluated by key metrics like training & validation accuracy
and loss, test accuracy, precision, recall, F1-score, Receiver Operating Characteristic
(ROC) Curve and Precision-Recall Curve Kheddar et al. (2024)Lin and Yang (2021)Wei
et al. (2022).

3.6 Deployment

Deployment step involves implementing real-time detection of steganographic content in
images with the developed approach. This is not involved in the scope of this research.
The models are however saved in .h5 formats and can be exported to potentially integrate
them into existing cybersecurity frameworks.

4 Design Specification

Figure 5 shows the model architecture of this research. There are two parallel paths for
data processing. The first path contains image data as input to a pre-trained model. The
model, through transfer learning, extracts deep features of images and captures high-
level patterns and characteristics. Next is a global average pooling layer that reduces
the features further. Next is a self-attention layer is used to stress the most relevant
featuresRef5 Fu et al. (2022). In the other side, domain-specific features from the image
data are extracted. These features capture the frequency domain changes caused by
steganography which the CNN might not capture Li et al. (2024). The features are
reduced to keep only the most informative and relevant features. These features are then
combined with features extracted by CNN. The combined feature set captures hence both
high-level patterns and low-level domain-specific information. This combined feature set
is then passed through dense layers, and finally the classification layer.
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Figure 5: Model Architecture

5 Implementation

This section outlines the final implementation of the proposed steganalysis framework.

5.1 Tools and Technologies

The implementation is done using Python language. Python libraries used included
TensorFlow for building and training deep learning models, Pandas for data manipu-
lation, and NumPy for numerical computations Mustafa et al. (2019). Matplotlib and
Seaborn were used for data visualization. Scikit-learn provided tools for data prepro-
cessing. Google Colab was used as the development environment. Specifically, T4 GPU
and T2 TPU with High RAM were used to process the large datasets, the training of
deep learning models.

5.2 Feature Extraction and Dimensionality Reduction

The goal of feature extraction was to maximize the detection by focusing on features that
are most sensitive to the alterations caused due to steganography V.K et al. (2021) Xu
et al. (2015). The extracted features were saved in csv files.

5.2.1 Histogram Analysis

The histogram analysis captures the distribution of pixel intensities in an image Croix
et al. (2024) Qian and Manoharan (2015). Features extracted in this process are for the
RGB channels separately: peak frequencies, mean pixel value and standard deviation,
mid range frequency slope, and histogram entropy. The peak frequencies are calculated
for the darkest and brightest occurrences of a pixel. The mean and standard deviations
of pixel values capture the pattern of distribution of pixel intensities Fu et al. (2022). The
slope of the mid-range frequency shows the effect that embedding would have imposed on
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low to mid range pixels. Histogram entropy indicates the complexity of pixel distribution,
which may become greater due to data embedding Wei et al. (2022).

Figure 6: Mean Histogram Analysis

Figure 6 shows the differences in mean values between clean and stego classes across
various histogram features. Significant differences are observed in the frequency of ex-
treme pixel values (0 and 255) across all color channels (B, G, R), which suggests that
steganographic embedding affects these histogram characteristics.

5.2.2 Co-occurrence Matrix Analysis

The co-occurrence matrix captures the spatial relationships between pixels by computing
how often pairs of pixel values occur together in a specified spatial relationship within
the image Xu et al. (2015). High contrast indicates regions of high activity or noise,
which could be manipulated in steganography to embed data. Dissimilarity is calculated
to measure variations and edges of the image. Homogeneity was extracted to check
any irregular textures and energy was captured as hidden data may exhibit variations
in energy levels due to alterations in pixel patterns Croix et al. (2024). Deviations in
correlations may also indicate hidden data.

Figure 7: Co-occurance feature analysis

Figure 7 shows that when mean values are computed, most significant difference
between clean and stego images is observed in the contrast feature.

5.2.3 Discrete Cosine Transform (DCT) Coefficients

Spread spectrum is a frequency domain technique. Hence DCT coefficients analysis is
important Qian et al. (2016) Maryam Seyed Khalilollahi and Mansouri (2022). Low-
frequency coefficients were analyzed because they influence the overall image appearance,
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while high-frequency coefficients, which captured finer details, were also analysed to de-
tect hidden data Hermassi (2021)V.K et al. (2021) Cheng et al. (2024). The images were
divided into 8x8 blocks for DCT analysis for finer frequency analysis within each block. A
total of 10 DCT coefficients were extracted from each block, with both low-frequency and
high-frequency coefficients being analyzed to detect hidden data. This was chosen after
experimenting to observe the computational requirements needed for more co efficients.
10 coefficients with 8x8 block size showed optimum performance.

5.2.4 Higher-Order Statistics

Higher-order statistics includes skewness and Kurtosis. Skewness measures the asym-
metry of the pixel value distribution while Kurtosis measures the outliers in distribution
Chubachi (2020). Steganographic methods may vary these features of the image by in-
troducing more outliers and asymmetry compared to the clean images.

Figure 8: Skewness and Kurtosis analysis

Figure 8 shows that the mean skewness and kurtosis values have quite a bit of differ-
ence between clean and stego images.

5.2.5 Dimensionality Reduction with PCA

The extracted features had very high dimensions which can cause computational ineffi-
ciencies and overfitting during modeling Croix et al. (2024). Hence the extracted features
from the training, validation, and test datasets were combined and first normalized using
StandardScaler. Principal Component Analysis(PCA) was initially applied and cumu-
lative variance was used to determine the number of principal components needed to
capture at least 95% of the total variance in the data Maryam Seyed Khalilollahi and
Mansouri (2022). This analysis revealed that 3,927 components were necessary to meet
this threshold. These PCA-transformed features were then saved into CSV files for model
training and evaluation. This approach ensured that the most significant features, caus-
ing the majority of the variance of data, were retained while reducing the dimensionality
of the dataset.

5.3 Modeling

5.3.1 Baseline Models

In the initial modeling stage, baseline models were developed without data augmentation
or extensive preprocessing. This was to establish a reference point to evaluate more
complex approaches. A sequential model was created with six convolutional blocks, each
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followed by max-pooling. Then two dense layers with 256 and 128 units were added. The
final output layer used a sigmoid activation function for binary classification. The model
was trained using the Adam optimizer with a learning rate of 0.001 for 30 epochs. It
achieved moderate performance with a training accuracy of 49.67

Subsequently, a more advanced baseline was set using a pre-trained ResNet50 model,
leveraging its 50-layer deep architecture to handle complex features. This pre-trained
model was used to set a benchmark for measuring the effectiveness of additional feature
extraction techniques, such as PCA and attention mechanisms. The model was loaded
with ImageNet weights, excluding the top layers, and customized with a Global Average
Pooling layer and two dense layers, similar to the sequential model. The ResNet50 layers
were frozen, focusing training on the new layers. Despite the improved architecture, the
ResNet50 baseline achieved a training accuracy of 69.45%, showing only a modest im-
provement over the initial baseline, indicating the need for further enhancement through
feature extraction and attention mechanisms.

5.3.2 Pretrained models

A custom data generator was created to combine image data with PCA-extracted features.
This generator preprocessed images by resizing them to 224x224 pixels and then merged
them with the PCA features to help the models to learn from both spatial and statistical
information.

The ResNet50 model used as baseline was then adapted to incorporate PCA features
and a self-attention mechanism. The model was initialized with pre-trained ImageNet
weights. The last three layers of pretrained model was unfrozen for fine tuning to this
dataset. The combined data generator was used to feed the model with both image data
and PCA features. After the initial feature extraction by ResNet50, a self-attention layer
was introduced to help the model focus on important regions of the image. The ResNet
features from attention layer and PCA features were further trained on dense layers. The
final layer used a sigmoid activation function for binary classification. The model was
trained using the Adam optimizer with a learning rate of 0.001, a batch size of 32, and
for 30 epochs. It achieved a training accuracy of 99%. The testing accuracy was 92.90%
which indicated overfitting issues. It still showed significant improvements from baseline
ResNet model.

VGG19, with its 19-layer architecture, was also adapted to include PCA features and a
self-attention mechanism, resulting in a slightly better performance than ResNet50. The
VGG19 model achieved train accuracy of 98.9% and a test accuracy of 93.4%. This differ-
ence showed some reduced overfitting than ResnNet model. Despite these improvements,
more advanced EfficientNetB0 was chosen for further refinement.

EfficientNet-b0 which is known for its efficiency and performance, was utilized for its
balanced scaling of network dimensions. Consistent training parameters were applied to
maintain experimental uniformity. It achieved a training accuracy of 98.9% and testing
accuracy of 93.3%. Although its performance was almost same as VGG19, Efficientnet-b0
was chosen for further tuning due to the scalability of it’s architecture.

In the tuned EfficientNetB0 model, hyperparameters were adjusted to enhance per-
formance further. The learning rate was reduced to 0.0005 to allow more controlled and
gradual learning, and the dropout rate was increased to 0.6 to better prevent overfitting.
Additionally, all but the last layer of the pre-trained EfficientNet network were frozen,
allowing the model to retain valuable features from the ImageNet pre-training while ad-
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apting to the specific steganalysis task Kheddar et al. (2024). These adjustments resulted
in a significant improvement, with train accuracy of 99.40% and a test accuracy of 94.70%.
There is slightly reduced overfitting in this model.

6 Evaluation

Accuracy calculates the portion of correctly classified images. Precision calculates how
accurate the model is in classifying images. Recall (sensitivity) measures the ability to
identify all true images in the dataset. The F1-Score is a balanced metric of precision
and recall. The ROC curve shows how well the model distinguishes between classes. The
Precision-Recall Curve plots precision against recall for different threshold levels Kheddar
et al. (2024) Reinel et al. (2019) Li et al. (2024).

6.1 Baseline Sequential Model

Figure 9: Model accuracy and loss during training

Figure 9 shows considerable fluctuations around 50% accuracy, indicating that the model
is not learning effectively due to issues like insufficient model complexity.

Figure 10: ROC and Precision-Recall curve

The ROC curve in Figure 10 shows that the classification is equivalent to random
guessing, with an AUC of 0.51.
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6.2 Baseline Resnet50 Model

Figure 11: Model accuracy and loss during training

Figure 11 shows the loss curves that indicate a reduction in both training and valida-
tion loss, suggesting that the model is learning but may not be generalizing well to the
validation set.

Figure 12: ROC and precision-Recall curve

The ROC curve in Figure 12 shows a moderately better ability to distinguish between
classes, with an AUC of 0.68, indicating a performance better than random guessing.
However, the precision-recall curve reveals a decline in precision as recall increases, mean-
ing areas for further model optimization.

6.3 Resnet50 Model

Figure 13: Model accuracy and loss during training

The ResNet model with features and data augmentation demonstrates significant im-
provements in both training and validation accuracy. Figure 13 shows the convergence
of the model during training, with some reduced but presence of overfitting.
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Figure 14: ROC and Precision-Recall curve

The ROC curve in Figure 14 shows a improved ability to distinguish between classes
with an AUC of 0.98.

6.4 VGG19 Model

Figure 15: Model accuracy and loss during training

The accuracy and loss curves depicted in figure 15 demonstrate a strong learning process
with training accuracy reaching near 100%. However, there is a noticeable gap between
the training and validation accuracy, suggesting potential overfitting.

Figure 16: ROC and Precision-Recall curve

The ROC curve in figure 16 shows a high area under the curve (AUC) of 0.98, indic-
ating excellent classification performance. Similarly, the precision-recall curve suggests
high precision across most recall values, reinforcing the model’s strong performance in
distinguishing between classes.

6.5 EfficientNet-b0 Model

In the EfficientNet model, the accuracy and loss curves as shown in figure 17 indicate a
well-fitting model with high training and validation accuracy, approaching nearly 97%.
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Figure 17: Model accuracy and loss during training

Figure 18: ROC and Precision-Recall curve

The ROC curve in figure 18 demonstrates a strong ability to distinguish between
classes, with an AUC of 0.97.

6.6 EfficientNet-b0 - Hyperparameter tuned Model

Figure 19: Model accuracy and loss during training

From figure 19 the training and validation accuracy curves indicate high performance,
with training accuracy approaching 100% and validation accuracy slightly lower but still
high enough. The model’s loss curves exhibit a consistent downward trend, suggesting
effective learning with minimal overfitting.

Figure 20: ROC and Precision-Recall curve
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The ROC curve as shown in figure 20 shows an AUC of 0.99, highlighting the model’s
strong ability to differentiate between classes. The precision-recall curve also shows the
robust performance of the model. This model so far showed the highest accuracy and
hence is chosen for steganalysis task of spread spectrum steganography.

6.7 Discussion

Table 1: Summary of Model Performance
Model Accuracy Precision Recall F1-Score
Baseline 0.49 0.49 0.50 0.35
ResNet Baseline 0.61 0.61 0.61 0.61
ResNet50 0.93 0.93 0.93 0.93
VGG19 0.934 0.94 0.93 0.93
EfficientNetB0 0.933 0.93 0.93 0.93
EfficientNetB0 (Tuned) 0.947 0.95 0.95 0.95

Table 1 shows the weighted average metrics of model performances. It can be seen that
there is a slight improvement from each model to the next in almost all metrics. The
baseline models, such as simple CNN and ResNet50 without feature extraction or at-
tention mechanisms, showed limited effectiveness, with accuracy scores of 0.49 and 0.61.
This means that the basic architectures are not sufficient to extract the subtle changes
introduced by spread spectrum steganography. However, pretrained models like Res-
Net50, VGG19, and EfficientNetB0, combined with feature extraction and self-attention
mechanisms, showed significant improvement, with the tuned EfficientNetB0 achieving an
accuracy of 0.95. The previous work by Cheng et al. (2024) achieves a maximum accuracy
of 0.96 for different compression rates and another work by Maryam Seyed Khalilollahi
and Mansouri (2022) achieves the highest accuracy of 0.97 for JPEG staganalysis. Given
the complexity of steganography method, the accuracy achieved by the proposed method
seems acceptable. The final tuned EfficientNet model achieves an AUC of 0.99 which is a
significant improvement over other frequency domain steganalysis methods proposed by
Hermassi (2021) with AUC of 0.846 and EfficientNet based model proposed by Chubachi
(2020) with AUC of 0.95. Despite the improvements, there were subtle signs of overfitting,
suggesting a need for further tuning. This means more dropout layers or regularization
techniques are needed.

7 Conclusion and Future Work

This study explored how combining traditional feature extraction methods with advanced
deep learning models can effectively detect steganographic content, especially when using
spread spectrum techniques. By employing transfer learning and enhancing it with a self-
attention mechanism, the research achieved a notable detection accuracy of 94.7%. The
integration of PCA-extracted features with the deep learning model proved to be stable
and effective, capturing both spatial and frequency domain features essential for detecting
subtle steganographic changes.

However, some limitations were noted. The models showed signs of overfitting, par-
ticularly in the early experiments, suggesting that more aggressive dropout or data aug-
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mentation might be needed. While EfficientNetB0 was chosen for its balance between
performance and computational efficiency, exploring other architectures or more advanced
hyperparameter tuning could yield even better results.

Future research could expand this targeted steganalysis beyond spread spectrum
methods. Testing the developed algorithm on different steganographic datasets and
experimenting with other pretrained models could further improve performance. The
scalability of the algorithm is limited, so testing on larger datasets would help in drawing
more reliable conclusions.
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