~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Apoorva Vishwas Rasal
Student ID: 22225277

School of Computing
National College of Ireland

Supervisor: ~ Mr. Hicham Rifai

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Apoorva Vishwas Rasal
Student ID: 22225277
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Mr. Hicham Rifai
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 1520
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Apoorva Vishwas Rasal
22225277

1 Introduction

The presented configuration manual provides the description of the hardware and software
that is used in the present study along with the step-by-step explanation of the procedure
that has been adopted in the paper titled “Cognitive Captions: Empowering Images
with AI-Generated Descriptions”.

2 System Configuration

2.1 Hardware Configuration

In an image caption generation project, high GPU is useful for training models and
sufficient RAM and fast SSD storage is essential for handling large datasets for fast
data retrieval. Figure [I] illustrates the table of the recommended hardware components
necessary for the development of this project.

Hardware Configuration

GPU NVIDIA RTX 3080/3090, A100, V100, GTX 1660 Ti
CPU Intel Core 17/19, AMD Ryzen 7/9, Intel Xeon. AMD EPYC
RAM 32GB - 64GB (minimum), 128GB+ for large datasets
Storage (SSD) ITB SSD (NVMe preferred), 2TB+ for larger datasets
Networking Hardware Gigabit Ethernet, High-speed internet
Cloud Resources (Optional) Google Cloud TPU

Figure 1: Hardware Configurations

2.2 Software Configuration

The following Figure [2] presents all the softwares utilized in this study identifying their
respective version:

Visual Studio Code:

VS Code on the other hand is an IDE that is used for coding and debugging and man-
aging projects smartly. They support extension for Python and other languages, which
facilitates productivity of the image caption generation.

Software Configuration

Visual Studio Code 1.82.0
Python 3.8,3.9
Anaconda 2023.05
Flask 2.0.3

Figure 2: Software Configurations

Python Libraries:

Python[l]is the main working language for creating and executing the models and for most
of the data manipulation and library interfacing. It is also supporting several libraries
which are included in the presented study. The description and version of those libraries
are described in the following Figure

Package Version | Package Version
TensorFlow 2.17.0 PyTorch 1.10
Keras 2.8.0 OpenCV 454
Pillow 8.4.0 NLTK 3.6.5
NumPy 1.22.2 Pandas 1.4.3
h5py 3.4.0 tqdm 4.62.3

Figure 3: Python Libraries

Anaconda and Jupyter Notebook:

Anacondaﬂ offers solutions related to package management and deployment, which means
it takes care of all dependencies for Python projects, and the second tool is Jupyter
Notebook, which is an interactive tool for Data Science used for prototyping and Data
Visualization.

Flask:
Flaskﬂ is used to implement the web interface for deploying the image captioning models
where users can interact with the deep learning application through a browser.

"https://www.python.org/
?https://www.anaconda.com/download
3https://flask.palletsprojects.com/en/3.0.x/

https://www.python.org/
https://www.anaconda.com/download
https://flask.palletsprojects.com/en/3.0.x/

3 Environment Setup

3.1 Installing Required Packages and creating file structure

This section explains the installation of required packages for the project, which are pre-
requisite for the backend and model operations as part of the subsequent Section |4 and
Section [6] respectively. The Image Caption Generator project is organized as shown in
Figure [into several key directories: data for sample captions, models for the trained
models along with the other necessary files and documents, static for HTML CSS, logos
and images uploaded by the users, and templates/ for HTML files which in charge of the
handling of interactions from the users. Within it, the necessary scripts in Python are
stored among which it is possible to mention app.py file for the Flask application, cap-
tion_generator.py for caption processing and generation, and the create_model.py along
with custom_layers.py for model creation. A virtual environment also known as a venv/
and requirements.txt ensure that dependencies are dealt with in the most efficient manner
hence making the project easy to maintain as well as extend.

~ IMAGE_CAPTION_GENERATOR
~ data
captions.txt
~ models
img_features.pkl
mymodel.h5
tokenizer.pkl
™ static
~ css
styles.css
~ logo
2 caption_logo.png
& favicon.png
v uploads
109202801_c6381eef15.jpg
111766423_4522d36e56.jpg
: 485738889_c2a00876a6.,jpg
571507143_be346225b7.jpg
892340814_bdd61e10a4.jpg

| AL A A A

7]

~ templates

<> result.html

<> upload.html

> venv

@ app.py

@ caption_generator.py
@ create_model.py

@ custom_layers.py

@ custom_Istm_loader.py
&2 model_summary.png
T model_visualization.png

requirements.txt

Figure 4: File Structure

3.2 Importing Necessary Libraries

The libraries shown in Figure [5| are needed for various part of the project including
image processing which is explained in Section [4.2] model creation which is explained in
Section [6.2] and evaluation which is explained in Section [6.4]

Import necessary modules

import os

import pickle

import numpy as np

from PIL import Image

import warnings

from math import ceil

from collections import defaultdict

from tqdm.notebook import tqdm

import matplotlib.pyplot as plt

Deep learning framework for building and training models

import tensorflow as tf

Pre-trained model for image feature extraction

from tensorflow.keras.applications.vggle import VGG16, preprocess_input
g.image import load_img, img_to_array
ation

import Tokenizer

specific length

from tensorflow.keras. preprocessing. sequence import pad_sequences

Class for defining Keras models

s import model

import to_categorical, plot_model

from tensorflow.keras.layers import Input, Dense, LSTM, Embedding, Dropout, concatenate, Bidirectional, Dot, Activation, RepeatVector, Lambda
For checking score

from nltk.translate.bleu_score import corpus_bleu
warnings.filterwarnings(ignore")

Figure 5: Importing Necessary Libraries

4 Backend Implementation

4.1 Flask Application Setup

In this part, the creation of the web interface using Flask application as shown in Figure|[d]
and the routes that connect the image uploading and captioning services are described.
The real process of caption generation described in Section [4.2] is based on the image
preprocessing and model predicting stages described further.

from flask import Flask, request, render_template, redirect, url_for
from caption_generator import generate_caption

app = Flask(__name_)

@app.route('/")
def upload_form():
return render_template('upload.html"')

@app.route(’/generate_caption’, methods=['POST'])
def upload_file():
if 'file' not in request.files:
return redirect(request.url)
file = request.files['file']
if file.filename == '":
return redirect(request.url)
if file:
filename = file.filename.split('.')[@] # Get the base filename without extension
caption, bleu, meteor = generate_ caption(file, filename)
return render_template('result.html’', filename=file.filename, caption=caption, bleu=bleu, meteor=meteor)
return redirect(request.url)

@app.route(’ /uploads/<filename>")
def uploaded_file(filename):

return redirect(url for('static', filename='uploads/' + filename), code=301)

if _name__ == "'__main_ ":
app.run(debug=True)

Figure 6: Flask Application Setup

4.2 Image Preprocessing and Caption Generation

The steps explained in Figure [7] about image preprocessing and caption generation are
the fundamental steps of the application’s functioning. This section lays down the data
which is used in section [6.3] for building the model and caption generation.

Function to preprocess the image
def preprocess _image file(image file, target size):
image = Image.open(BytesIO(image file.read()))
image = image.resize(target size)
convert image to grayscale
image = image.convert('L")
image = np.array(image)
add batch and channel dimensions
image = image.reshape((1, target size[©], target size[l1l], 1))
normalize
image = image.astype(' float32') / 255.0
return image

Figure 7: Image Preprocessing Caption Generation

5 Frontend Implementation

5.1 HTML Templates

The HTMIH templates in this project constitute the front end for uploading images
and showing generated captions and associated accuracy measures. These templates are
important for the users to navigate and interact within the application.

5.1.1 Upload Form (upload.html)

This section provides information on the HTML code of the image upload form as shown
in Figure [8| which communicates with the backend routes explained in Section {4.1]

The upload.html template concerns the interface where a user can upload an image file
in the application to generate captions. The key elements include:

e Header Section: Has a title with the text “Image Caption Generator” and a logo
to provide a coherent and captivating appearance, which are written in HTML and

then styled with CSSﬂ.

e Upload Form: Enables a user to choose and upload a picture file. The form sends
data to the backend route named generate_caption through a Post method. Just
like in the previous form, the file input is mandatory to prevent the user from
submitting the form without choosing the image.

‘https://html.com/
Shttps://www.w3schools.com/css/

https://html.com/
https://www.w3schools.com/css/

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8"»
<meta name="viewport"” content="width=device-width, initial-scale=1.0">
<title>Image Caption Generator</title>
<link rel="stylesheet" href="{{ url for('static', filename='css/styles.css") }}?v=9.0">
<link rel="icon" href="{{ url for('static', filename='logo/favicon.png') }}" type="image/png">
</head>
<body>
<div class="header">
<h1 class="header-title">Image Caption Generator</hi>

</div>
<div class="container">
<h2»>Upload Image</h2>
<form method="post" enctype="multipart/form-data" action="{{ url for('upload file') }}"»
<input type="file" name="file" accept="image/*" required>
<button type="submit"»Upload</button>
</form>
</div>
</body>
</html>

Figure 8: Image Upload Form

Upon submitting the form with an image the file is sent to the server to begin the caption
generation process described in Section

5.1.2 Result Display (result.html)

This section describes the HTTML template to render the caption generated along with
the uploaded image and other performance metric in terms of BLEUH and METEORD
scores.

The result.html (Figure @ is used to display the results when an image has been processed
and a caption produced out of it. The key elements include:

e Result Display: The uploaded image is shown alongside the caption generated by
the model. The image is sourced from the server, and the caption is dynamically
inserted into the template.

e Evaluation Metrics: If the BLEU and METEOR scores are available, the scores are
given in tabular form and graphically with the help of Chart.

By using this template, the users have an easy way of making sure that the generated
caption is correct, and also comparing it with the reference captions using the defined
evaluation criteria.

5.2 CSS Styling (styles.css)

This section contains CSS that was used for the styling of the application and to enhance
the user experience as they complete the form in Section and while viewing the
results using the result display template.

Shttps://thepythoncode.com/article/bleu-score-in-python
"https://www.nltk.org/api/nltk.translate.meteor_score.html

https://thepythoncode.com/article/bleu-score-in-python
https://www.nltk.org/api/nltk.translate.meteor_score.html

<body >
<div class="header">
<hl classz="header-title">Image Caption Generator</hl:

<fdive
<div class="result-container">

<div class="container":
<h2>Generated Caption</h2:

<p clazs="caption"»"{{ caption }}"</p>
<@ href="{{ url_for{'upload_form') }}"»Upload Another Image</a»
<fdiv>
{% if bleu is not none and meteor is not none ¥}
<div class="scores-container™»
<h2>Evaluation Metrics</h2>
<canvas id="scoresChart"></canvas>
<table class="scores-table":
{ir>
<th>Evaluation Metrics</th>
<th>Value</th:
<ftre
Ltr:
<td>BLEU Score</td>
<td>{{ bleu }}«</td>»
<ftrs
<tr>
<td>METEQR Score</td:
<td>{{ meteor }}</td>
</trr
</table>
<fdiv>
{% encif %}
<fdive

{% if bleu is not none and meteor is not nons ¥}
¢scripte
var ctx = document.getElementById(’scoresChart').getContext{ ' 2d");
var scoresChart = new Chart(ctx, {
type: 'bar',
data: {
labels: ['BLEU Score', "METEOR Score'],
datasets: [{
label: 'Scores',
data: [{i bleu }l, {i meteor }ilb
backgroundColeor: [
‘rgba(54, 162, 235,

5
'reba(75, 192, 192,

@

5]

[)

1,

porderColor: [

Figure 9: Caption Generation Display

The CSS styles the whole UI as shown in Figure so the upload form and the results
display are made visually engaging and therefore, more user-oriented. Key elements
styled include:

e Body and Header: The application of gradient background and the layout with
objects centralized minimize design’s clutter look.

e Container Elements: The upload form and the displayed results are wrapped into
containers with padding, border-radius, and a boxes shadow for a clean look.

e Buttons and Links: Aligned for conformity, hover effects to increase usability for
the end user.

It should also be noted that this styling helps make the application not only functional
but also beautiful and therefore more enjoyable to use.

7

body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background: linear-gradient(12edeg, [#s4afabe &%, O#sfdifa 100%);
display: flex;
flex-direction: columnj
align-items: center;
justify-content: flex-start;
min-height: 108vh;
margin: @;
overflow: hidden;
¥

.header {
width: 100%;
padding: 1@px @;
margin-bottom: 20px;
text-align: center;
3

.header-title {
font-size: 3em;
background: linear-gradient(9adeg, M#eb5835, M#e65088, M#739939, M#4052¢9);
webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-shadow: 2px 2px 4px Orgba(e, o, 8, 8.2);
font-weight: bold;
letter-spacing: 2px;
display: inline-block;
margin: @;

—

Figure 10: CSS Styling

6 Model Training and Evaluation

6.1 Data Preparation

This section covers data pre-processing for model training which is applied in section [6.3
for training the model. The data is split into 90% train and 10% test as shown in

Figure [T1]

Creating a List of Image IDs

image ids = list(image to captions mapping.keys())
Splitting into Training and Test Sets

split = int(len(image ids) * ©.98)

train = image ids[:split]

test = image ids[split:]

Figure 11: Data Preparation

6.2 Model Definition

In this section as shown in Figure [I2] the model is configured with the above said archi-
tecture which is to be trained on the data set prepared in section [6.1}

Define the inputs
input 1 = Input(shape=(34, 34), name="input 1")
input_2 = Input(shape=(34, 512), name="input_2")

Define the Lambda layer with the custom function and output shape
lambda layer = Lambda(my custom function, output shape=my custom function ocutput shape)([input 1, input 27])

Adding more layers after Lambda
dense_layer = Dense(128, activation='relu')(lambda_layer)
output layer = Dense(1, activation='sigmoid')(dense layer)

Define the model
model = Model(inputs=[input_1, input 2], outputs=output layer)

Compile the model
model.compile(optimizer="adam’, loss="binary_crossentropy')

Figure 12: Model Definition

6.3 Model Training

This section develops from the findings made in section [6.1] and Section In this
case, the data prepared earlier are used to train the model and separate training and
validational sets are defined as shown in Figure

Set the number of epochs, batch size
epochs = 58
batch_size = 32

Calculate the steps_per_epoch based on the number of batches in one epoch
steps_per_epoch = ceil(len(train) / batch_size)

Calculate the steps for validation data

validation_steps = ceil(len(test) / batch_size)

Loop through the epochs for training
for epoch in range(epochs):
print(f"Epoch {epoch+1}/{epochs}")

Set up data generators

train_generator = data_generator(train, image_to_captions_mapping, loaded_features, tokenizer, max_caption_length, vocab_size,
batch_size)

test generator = data_generator(test, image to captions_mapping, loaded features, tokenizer, max_caption_length, vocab size,
batch_size)

model.fit(train_generator, epochs=1, steps_per_epoch=steps_per_epoch,
validation_data=test generator, validation_steps=validation steps,

verbose=1)

Save the model
model. save (OUTPUT_DIR+'/mymodel.h5")

Figure 13: Model Training

To train the model, over multiple epochs, the training process uses the training set defined
in Section and the data split defined in Section [6.1, whilst testing the validation of
the model on an independent test set.

6.4 FEvaluation Metrics

This section (Figure explains how to compute evaluation metrics like BLEU and
METEOR from the model of Section [These metrics are widely employed in the assess-
ment of the quality of the generated captions with the help of the reference captions.

Tokenize the sentences (split by spaces)
references = [ref[@].split() for ref in references]
hypotheses = [hyp.split() for hyp in hypotheses]

Calculate BLEU score
def calculate bleu(reference, hypothesis):
return sentence bleu(|reference], hypothesis)

Calculate METEOR score
def calculate meteor(reference, hypothesis):
return single meteor score(reference, hypothesis)

Figure 14: Evaluation Metrics

e BLEU Score: The calculate_bleu function performs BLEU, which is the Bilingual
Evaluation Understudy, to determine the precision of the n-gram in generated cap-
tion up to the standard captions. As a result, the higher BLEU is closer to the
reference captions, which makes it possible to use the score to evaluate the per-
formance of generated captions.

e METEOR Score: The calculate_meteor function EST (METS, Metric for Evalu-
ation of Translation with Explicit ORdering) score is calculated for assessing the
caption quality based on synonymy, stemming and word order. Therefore, MET-
EOR can be considered as an extension of BLEU which gives a finer analysis and
measures specific aspects such as the extent of reference’s coverage by the generated
text, its comprehensibility.

When combined, these scores provide a holistic assessment of the model’s ability to create
technically correct and semantically relevant captions as discussed in Section [6.3]

10

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Environment Setup
	Installing Required Packages and creating file structure
	Importing Necessary Libraries

	Backend Implementation
	Flask Application Setup
	Image Preprocessing and Caption Generation

	Frontend Implementation
	HTML Templates
	Upload Form (upload.html)
	Result Display (result.html)

	CSS Styling (styles.css)

	Model Training and Evaluation
	Data Preparation
	Model Definition
	Model Training
	Evaluation Metrics

