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Reinforcement Learning Modelling for Autonomous
Vehicle Navigation

Aishwarya Rajguru
x22248901

Abstract

The research aimed at providing a detailed investigation of the application deep learning
approaches for self-driving car navigation with particular emphasis on learning of steer angle
from images. The project incorporated the Udacity self-driving car simulator, which is a
robust method of image data gathering and performing of the models’ validation. Three CNN
architectures were crafted and trained to improve the prediction of the steering angle. The
performances of the models were assessed with metrics like Mean Squared Error (MSE) as
well as the R² score, where the enhanced models evidenced great enhancements with regard
to the variation in driving conditions. Three CNN models for the autonomous vehicle
navigation were developed and their performance assessed. The Extended Neural Network
resulted in Mean Squared Error (MSE) 0. 053 with, an R² score of -0. 12, the Deep Neural
Network model poses mean squared error equals to 0. 050 and the R² of -0. 16 as compared
to the other developed CNNs showing the least performance with an MSE of 0. D =071,and ,
R² of -0. 50.

1 Introduction
Self-driving cars are another impressive advancement in transport as it can lead to safer and
more effective way of moving from point A to B. One of the areas that remain as daunting
tasks is to ensure that those vehicles possess enough navigation systems that can handle
complex surroundings (Koh et al. , 2020). RL seems to be a perfect solution because
distributed vehicles are able to develop the best strategies of movement through interaction
with the environment (Pérez-Gil et al. , 2022). At the programming language level, Python
has become the language of choice because of the various supporting frameworks including
TensorFlow, PyTorch and OpenAI Gym for RL models (Nikanjam et al. , 2022). When
designing reinforcement learning model for navigating an autonomous vehicle in Python, one
goes through several steps that include data acquisition, data preprocessing, developing the
reinforcement learning algorithm, training the resultant model, and testing the same. The
opportunity to train using Python and RL allows researchers and developers to design
efficient navigation systems in which the system learns complex navigation tasks and
responds to changes in the environment. They proposed this framework to pave for the
development of enhanced RL based navigation systems for autonomous vehicles.

The steps of building a reinforcement learning (RL) model for an autonomous vehicle
to learn navigation data in Python are the solutions to many complex problems (Lei et al.,
2021). First and foremost, the model should operate successfully across complex and
extensive terrains including streets of the large cities and highways; handle various
conditions of the roads and fluctuations in traffic. Safety and reliability are of highest
importance for the model, due to which it is necessary to provide the driving behaviors
corresponding to safety level, perform actions without collisions with other objects and
adhere to the rules of the road (Bai et al., 2023).
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An important premise to this effort is the acquisition and preparation of good quality
data from various sensors such as cameras and LiDAR. This process is critical in the training
of the model especially to its convergence to optimum solutions. It implies aligning the
sensor data streams, providing proper labels to the ground truth, and reducing noise that is
present in the data. The quality of the data collected will have a direct influence on the
model’s capacity to learn and generalize of what is learned in real life situations.

The choice between the algorithms of pattern recognition also raises another crucial
question. Selecting between value or policy RL approaches is the decision-making process
where one must code intelligently to enhance learning speed and accuracy (Xu et al., 2020).
There are pros and cons in each algorithm type which determine the interaction of the model
with the self-navigation tasks. The training and the evaluation phase require lot of
computations and again and again it requires experiments. Quantitative measures like safety
or efficiency are a process that is put to a test through numerous realistic mock and possibly
live conditions. Such assessments are essential for progressive improvement of the model due
to the reasons of better stability and reliability in future iterations.

The trained RL model may be transferred and incorporated in real-life scenarios, but
it requires strict check and balance processes. This makes sure that the model runs well and
meets various policies that have been put in place concerning self-driving cars (Bautista-
Montesano et al., 2022). The practice means that there are legal and ethical concerns to be
considered, in addition to the technical ones, which highlight the importance of evaluation
methodologies. Altogether, the treatment of these complex factors is critical to fostering the
progressive and robust RL models for autonomous vehicle navigation with the help of
Python.

The implementation of each phase – data gathering and selection of the algorithm, the
model training and assessment, and the model deployment – requires significant diligence
and adherence to a clear set of procedures to guarantee the model’s efficiency, safety from
adverse outcomes, and compliance with operational conditions. Ongoing evolution in RL
algorithms, methods and tools in Python’s ML framework implies the direction for
improving the self-navigation systems to provide less risky and more effective transportation
in the future.

1.1 Research Question
RQ: "In what ways can reinforcement learning (RL) models in Python improve the
manoeuvring ability of self-driving vehicles in intricate and ever-changing scenarios?"

Sub RQ1: "To what extent does acquisition and preprocessing of data impact performance
of the RL models for autonomous vehicle navigation?"

Sub RQ2: "What is the difference between other classification of reinforcement learning
method such as value based and policy based in aspects like speed of learning, safety and
effectiveness of navigation for self driving vehicles?"

Sub RQ3: "How can one address the legal, ethical and technical concerns on site testing of
RL based navigation models on Real-life self-driving cars?"
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1.2 Research Objectives
Table 1: Research Objectives

Objectives Description
Obj.1 Data Preparations
Obj.2 Implementation and

Evaluation of autonomous
vehicle navigation
reinforcement model

Obj.2.1 Implementation and
Evaluation of Standard
Sequential Networks

Obj.2.2 Implementation and
Evaluation of Deep Neural
Network

Obj.2.3 Implementation and
Evaluation of Extended Neural
Network Model

Obj.3 Comparison of developed
Models

Obj.4 Comparison of developed
model verses existing model

1.3 Research Contribution and Rationale
The foundation of reinforcement learning (RL) models for self-driven car navigation using
Python programming language may be attributed to the arising opportunities arising from
their application in transport systems in society. Self-driving cars provide an improved safety
aspect, flexibility, and performance of transport in cityscape and suburban areas. Nonetheless,
attaining tolerant autonomy is the noise of several oversimplified challenges, which RL
approaches in Python are well-equipped to tackle. First, RL allows implementing a
paradigm under which vehicles are trained to find the best plan of action through a dynamic
interaction within the environment, which in one way or another incorporates aspects of
human learning. This capability is necessary since the actual routes with different types of
terrains and forest road conditions, the unpredictability of the traffic flow and the complexity
of the urban environment. Thus, by using Python’s numerous machine learning frameworks
like TensorFlow and PyTorch, the developers can use complex RL algorithms that learn and
optimize, thus improving the intelligence of the vehicle to achieve better and safer driving
(Lei et al., 2021).

Furthermore, the issue of data collection and preprocessing of quality sensor data is
paramount in training of good RL models. Cameras, LiDAR and other sensors give high
dimensionality input signals which must be aligned, labeled and preprocessed. These data
preprocessing procedures as well as manipulation of large set of data which involves
selection, transformation and cleaning activities are made easier by Python and its solid
support systems (Bai et al., 2023). Selection of algorithms is yet another consideration, and it
is on this front that Python delivers big.

RL algorithms chosen by the researchers in the context of AN depend on the specific
aspect of autonomous navigation, including the value-based approach based on the deep Q-
networks or a policy gradient that directly targets discovered policies, etc. The presence of
frameworks like OpenAI Gym in Python allows for fairly swift prototyping and continuous
tuning of the kind of algorithms (Xu et al., 2020). Also, the training of the RL models is
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computationally intensive, and hence scalable solutions are required, and Python provides
parallel computing and GPU support. This capability shortens the time taken in model
training and in the evaluation of models, which are largely important for purposes of
attainability of the models in the real world.

Lastly, the RL-based autonomous navigation systems must be tested and validated to
work safely, effectively and must also meet the regulations. Python’s presence in software
development and testing frameworks helps with this by providing researchers and engineers
solid grounds for doing detailed simulations and real-life trials with reliability (Bautista-
Montesano et al., 2022). Finally, the justification for developing the RL models for
autonomous vehicle navigating using Python is realized by the prospects of efficient
solutions of such complicated problems and that such technologies will make roads safer and
smarter. When applied to research, Python’s ability to perform both machine learning and
data processing, as well as its status as a versatile software development language, allows
researchers to advance at a rapid pace and implement novel features to adapt to the growing
needs of current transport systems.
The dissertation explores autonomous vehicle navigation, emphasizing its significance in
modern society. The introduction outlines the research's motivation, objectives, and benefits,
providing a foundation for the study. The literature review examines state-of-the-art work in
self-driving car navigation, focusing on deep learning and reinforcement learning,
particularly steering angle prediction using CNNs. The methodology details the Unity
simulation environment and data collection process, justifying the selection of specific CNN
architectures for predicting steering angles. The implementation and evaluation chapter
discusses three CNN models—Absolute CNN, Standard Sequential Networks, and Deep
Neural Network—evaluating their performance using Mean Squared Error (MSE) and R²
scores. A detailed comparison of these models highlights the impact of architectural
complexity on model performance. The conclusion summarizes the study contributions,
discusses its implications for enhancing autonomous vehicle safety, and suggests future
research directions.

2 Related Work
Reinforcement learning algorithm is one of the key areas which have recorded major
advancements in the development of autonomous vehicle navigation systems. RL can be the
effective solution to teach self-driving cars to be capable of learning the best approaches to
avoid obstacles or navigate through dynamic scenarios. Through modelling of rewards and
penalties, the RL facilitates a vehicle to learn at every instance and adapt to the changes in
traffic conditions, road blocks, and weather among other factors. This element of flexibility is
vital to guarantee that the vessels are able to operate in a safe manner wherever they go. Deep
learning techniques enhance the vehicle’s powerhouse by extending its capability of
processing diverse sensory data including images and LiDAR resulting in development of
enhanced decision making. Consequently, the RL algorithms are heading to play the crucial
role in the new generation of the autonomous driving systems.

2.1 Understanding Reinforcement Learning Algorithms for Development
of Autonomous Vehicle Navigation Systems
The creation of self-drive car navigation systems is perhaps one of the most challenging and
promising sub-fields of contemporary artificial intelligence and robotic engineering. At the
core of this technological advancement is reinforcement learning (RL), which is a part of
machine learning that entails an agent taking certain actions and, in the process, learning



5

about extents and limits of the environment. This feedback that is in a way reward or
punishes the agent helps him or her towards the achievement of a set goal. The work of
Elallid et al. (2022) shows the building the realistic self-driving systems, it is vital to
comprehend reinforcement learning algorithms.

In addition to it, the work of Prabhod (2023) discusses the RL is marked by difference
in the fact that learning is learned from interaction of the learning agent with the environment
to reach a certain goal. An RL agent is embedded in a certain environment to observe the
future states as influences decisions and learns from effects of such decisions. An optimal
action is one that brings about the highest cumulative reward in the next time step, and the
agent’s objective is to acquire a policy, a function that maps states to actions. This is usually
done through the process of ‘wallowing’, which involves the determining of the different
options in the environment and applying the best of this knowledge in getting the next course
of action. To learn about new requirements, reinforcement learning has several pristine
algorithms, all of which contain ways of finding the balance between exploration (action not
taken before) and exploitation (action with the highest reward).

One of the major areas that complex, and highly varied reinforcement learning is
applicable is around self-driving cars. The navigation system must decide in real-time based
on sensory inputs, for instance camera feed or LIDAR feed or GPS coordinates among others
while being aware of legal constraints or road conditions or behaviour of other vehicles. They
said the vehicle determines the most appropriate actions to take and these include
accelerating, braking or turning (Tang et al., 2022). The agent acquires the ability to drive in
intersections, enter highways, and avoid obstacles by learning how to associate the various
incentives that are hard wired to safety, speed, and comfort levels.

This is another great benefit of RL in providing autonomous navigation; the system
becomes better as it goes along. By the appearance of various scenarios, the RL algorithms
improve the policy and hence affords better performance under varying circumstances.
However, RL usage in the navigation of self-driving cars is not without challenges as
explained below. The key challenge is to guarantee that RL-driven systems act safely and
correctly in all situations, especially while planning; hence, the systems must undergo severe
testing and real-world and simulated environments. While the work of Lee and Jeong (2023)
RL algorithms do not have good sample efficiency, using transfer learning or imitation
learning to drastically enhance the sample efficiency is also a current research focus.

2.2 A Review of Key Components and Considerations in Designing a
Reinforcement Learning Model for Autonomous Vehicle Navigation
There are several major components and factors to be considered while the RL model is
being designed. It includes the work of You et al. (2019) for defining environment and states,
setting up the rewards, choosing and applying proper RL algorithms, dealing with the
exploration-exploitation dilemma, safety and reliability, the role of sensory inputs, and
computational issues. It is, however, essential to realize this is a comprehensive effort aiming
to produce a truly reliable independent navigation system. The first decision when it comes to
designing an RL model is to properly specify the environment in which the AV will find
itself. This environment can be interpreted as all the types of road surface, all the possible
traffic situations, all kinds of weather conditions and interactions with other vehicles and
pedestrians.

The state space, being the overall environment, should contain information such as
the position, velocities, course, distances to other objects, signals and markings on the roads,
and the vehicle. The state representation should ideally be complete and minimal, thus
allowing the model to ‘see’ what is happening in its surroundings without overwhelming it
with excessive information. The work of Aradi (2020) regarding an RL model, one of the



6

most important concepts is a reward function that informs the agent (the vehicle) about the
quality of its actions. Formulating an adequate reward function is a multi-objective problem
as it comprises several objectives including safety, efficiency, and even passengers comfort.
Some of the positive reinforcement could be achieved when the employees have a safe
distance from other cars, follow traffic signs and signals, and get to promised locations on
time. On the other hand, negative reinforcements could be made to apply for incidents, harsh
braking or acceleration and drifting to the wrong lane. The rewards given to the self-enabling
system must be created in such a way that enhance the chances of the learning agent to pick
safe and efficient options over reckless or flaky ones.

Moreover, the work of Lie et al. (2020) have explored different RL methods that can
be applied to solve the autonomous vehicle navigation problem and all of them have their
advantages and disadvantages. Common algorithms are Q-learning, Deep Q-learning (DQN),
PPO, A3C, and others. While Reinforcement Learning Used Q-learning and DQN which are
value-based methods and learn the expected value for each action Democratic
Backpropagation such as PPO and A3C are policy-based methods and learn the direct policy
for choosing the actions. Due to these reasons, the algorithm selection depends on the size of
the state space, whether the action space should be continuous, and computational power
among others.

In RL, the agent needs to explore actions for finding out the effect of every action and,
at the same time, it must make the most use of the known good actions known as the process
of exploitation. Exploitation means the use of the vehicle to perform in ways that are well
known while exploration involves the use of the vehicle in areas of unfamiliarity with the
goal of expanding the known territory. There are tricks such as epsilon-greedy policies where
in some of the steps the decision of the agent are completely random and more intelligent
methods like Thompson sampling or Bayesian optimization. It is pivotal to attend to all the
aspects so that the vehicle does not get ‘stuck’ in less-than-ideal behaviour.

Risk reduction is critical to the decision-making process in self-driving cars’
orientation. The RL model must be made adaptable for any situation and made to be able to
perform optimally irrespective of the prevailing circumstances. Methods like safe exploration
which limits the action space so that safety is not violated and Robust optimization
techniques which take the inherent variance in the environment into consideration are
necessary. Also, more testing and validation in both similar and actual environments are
required to find out risks and avoid them. Designing for redundancy facilitates the ability of
the vehicle to handle system malfunctions or unfit environments as shall be illustrated in the
next section.

Self-driving cars use active perception systems which include digital cameras, LIDAR,
radar, and GPS to sense the environment. The work of Grigorescu et al. (2020) The RL
model needs to amalgamate these sensory inputs into a single unified outlook of the
environment. Techniques such as data fusion where the data is obtained from various sources
to come up with a more accurate and reliable one is very vital. The model needs to be able to
support high dimensional inputs from different modalities and in real-time; for this, efficient
algorithms and hardware accelerators are needed.

Moreover, RL algorithms including deep learning algorithms require high computing
power. The model must be optimized to provide real-time analyzation so that people can take
the right decisions as soon as possible. Applying the further disclosure of utilizing graphics
processing units and tensor processing units as well as algorithm tuning to implement parallel
processing, it is necessary to address the computation requirements using such methods as
model quantization and pruning. Furthermore, the model is required to scale smoothly as the
number of environment primitives and the amount of sensory data grows.
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2.3 A Critical Review of Evaluation of Performance for the
Reinforcement Learning Model Compared to Traditional Navigation
Methods
Comparing the RL models with traditional approaches in self-driving cars requires
assessment based on several aspects such as generality and flexibility, speed, reliability, and
scalability. Nevertheless, each of them is effective and inefficient in its own way, and their
performance in practice largely depends on the chosen task and conditions. This experience
of RL models over other navigation methods is that the former is capable of learning from
experience. Operational methods include rule-based systems that follow set rules or the
classical path finding algorithms including A* or Dijkstra. They can have drawbacks
especially when roads and traffic conditions, as well as obstacles are rapidly changing.

On the other hand, RL models adjust the learned data during the interaction with the
environment; they can improve in the new conditions. For instance, the work of Aradi (2020),
an RL-based navigation system can learn to select better routes according to current traffic
flows or a new learn-able style of driving needed in some area or country. In most traditional
navigation approaches, specific and constrained problems are solved most of the time
because their rules and limits are clearly defined. Specific algorithms such as the A* can
easily find the best path on maps that for the most part do not change, so these obstacles are
reasonable to use in situations where there is little real-world variation. However, these
methods could take a long time to complete and might not necessarily return to the shortest
path in the more dynamic settings. Based on large data sets and deep architectures of the RL
models, especially DRL, it is possible to find better paths, being aware of time variations in
the environment. This may result in better MPG, shorter time on the road or other aspects of
vehicle performance. Safety is one of the main issues in navigating self-driving cars, and
using classical approaches, one deals with certainty and traceability. In the case of rule-based
systems and classical algorithms, it is possible to perform checks to enforce the safety
regulation and the checks correctness.

There is always the confinement that RL models are powerful but can be unstable at
certain times, especially at the beginning of the training. Safety and stability of RL models
can only be achieved by lengthy training, many tests, and by formulating constraints into the
learning process. A middle-ground that incorporates the advantages of both conventional
safety measures and RL could include the adoption of subsets of safety measures used in RL
alongside the application of safety guarantees from the conventional methodologies.
However, the work of You et al. (2019) has RL models have demonstrated other equally
outstanding features and strengths in performing in very complicated and raw environments
which plain methods would fail. This is the case when it comes to some complicated sorts of
traffic, specific obstacles, and unpredictable situations. These scenarios can be learned by the
RL models of the computer programs because they recognize complex patterns and strategize
beyond the formation of rules. This puts them in a good stead especially for urban driving
where uncertainty is a common place and swift response is critical. The regular approaches
might have limitations when adopted in large and complex environments and difficult to
solve when the computations required are massive.

Compared to the traditional models, RL models, specifically the ones that use deep
learning algorithms, can scale better using today’s ARM-based hardware such as GPUs and
TPUs. However, training and using RL models may still be computationally heavy. These
issues can be solved by methods like transfer learning, where a model learnt in one setting
does not require much retraining in another setting, and model at least in which aims at
reducing the number of computations that deep neural networks require to decide.
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3 Methodology Approach , Design Specification and Data
Pre - Processing
This section outlines the used to develop a reinforcement learning (RL) model for
autonomous vehicle navigation using Python, integrated with the Unity platform. This
methodology section also outlines the step-by-step process for developing, training, and
evaluating a reinforcement learning model for autonomous vehicle navigation using Python
and Unity. By integrating Unity’s simulation (refer Figure 1) capabilities with deep
reinforcement learning techniques, the model is trained to make real-time driving decisions in
a dynamic environment, laying the groundwork for future advancements in autonomous
vehicle technology. The practical approach focuses on the design, training, and evaluation of
an agent capable of navigating a virtual environment using reinforcement learning principles.
The integration of Python with Unity provides a simulation environment for testing and
refining the RL model. The development process follows a series of phases: environment set-
up, model design, training, and performance evaluation.

Figure 1. Autonomous Vehicle Navigation using Unity

3.1 Reinforcement Learning Methodology Approach
The first phase of the methodology involves creating the simulation environment in Unity
and establishing the communication link between Unity and Python through ML-Agents
(Machine Learning Agents) tool-kit. This set-up is crucial to create a dynamic environment
for testing the agent's ability to navigate the simulated road.

Unity Simulation Environment
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Unity is used to create a 3D environment that simulates a realistic driving scenario. The
environment includes various road networks, obstacles, traffic signs, and other essential
elements that the autonomous vehicle needs to navigate. The virtual environment features a
comprehensive road layout that includes straight roads, curves, intersections, and traffic
lights, with clearly defined lane lines and road boundaries to guide the autonomous agent. To
test the agent's collision avoidance capabilities, the environment includes both dynamic and
static obstacles, such as other vehicles and pedestrians, randomly placed throughout the scene.
The car is equipped with simulated sensors like cameras, LiDar, and Radar, using Unity's
physics engine to gather environmental data, enabling the agent to navigate and respond to
various challenges effectively.

ML-Agents Integration
The Unity ML-Agents Tool kit facilitates the integration of the Unity simulation environment
with Python, allowing a reinforcement learning (RL) agent to interact with the environment
and receive feedback based on its actions. This framework connects Unity’s high-fidelity
simulations to Python-based RL algorithms, enabling the development of autonomous vehicle
behaviours. The agent, representing the vehicle, is configured with actions such as
acceleration, deceleration, steering, and braking. The ML-Agents tool kit defines the
observation space, which includes real-time sensory data like distances to road edges,
obstacle positions, and speed, and the action space, consisting of continuous controls for
acceleration, steering, and braking. The reward system incentives the agent to drive within
lanes, reach checkpoints, avoid collisions, and obey traffic laws, while penalizing undesirable
behaviours like collisions or off-road driving.

Python-Unity Communication
Communication between Unity and Python is established using the ML-Agents Python API.
The environment is built in Unity, while the reinforcement learning model is developed and
trained using Python libraries such as TensorFlow or PyTorch. The communication protocol
follows the client-server architecture, where Unity acts as the server and Python as the client.

Project Understanding
It is necessary to provide project understanding to make sense of the multiplicity of factors
involved in investigations on autonomous vehicle navigation. This project proposes to
engineer and test deep learning models that will improve the effectiveness and efficiency of
self-driving cars especially in estimating the steering angle from image inputs. The relevance
of this project is found in the need to respond to the current need for self-sufficient and safe
vehicles in today’s society.

The project applied the use of Unity simulation environment to apply the models in a
live setting to enhance their learning. Thus, applying Convolutional Neural Networks (CNNs),
the project’s objective is to enhance the vehicle’s understanding of high-dimensional sensory
data including, but not limited to, images captured by the car’s cameras and readings
provided by LiDar sensors to make the right driving decisions. It is therefore imperative to
gain a good understanding in the CNN architectures, what they can and cannot do and how
the visual data is processed in order to meet the objectives of the project.

Besides, this project highlights the need for a proper evaluation process of a model
where Mean Squared Error (MSE) & R² scores are two traditional measures used for this
purpose. The findings developed from the evaluation of different models will inform
enhancements on successful autonomous navigation systems. Lastly, the goal of the work is
to help progress the field of autonomous transportation through the creation of sound and
generalizable algorithms that can improve the performance of self-driving automotive.
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Data Research and Gathering
Collection of data and analysis are essential if advanced systems for self-driving cars are to
be developed. For instance, in this project, data is collected from the Unity simulation
environment and this consists of sensory inputs such as camera feeds, LiDar and Radar
sensor readings. Such data includes real time kinematic data about the roads and the obstacles
present on the roads, and real time data about what is happening with the vehicle, which is
imperative for training deep learning models. Pre-processing of data eliminates such aspects
such as noise and feature extraction enhanced the models to receive most appropriate inputs.
This process helps in making their models strong enough in order to make right prediction on
the angle of steering and also when it comes to manoeuvring.

3.2 Training Dataset
Once the environment and model are set up, the agent undergoes a training process (refer
Figure 2) where it learns to navigate the environment by interacting with it and receiving
feedback through the reward system. The training process involves multiple episodes where
the agent improves its performance over time.

Figure 2 : Model Training Process

Training Parameters
Several key parameters are crucial for ensuring efficient learning and convergence of the
model. The batch size determines how many experiences the agent uses before updating its
policy; larger batch sizes offer more stable learning but at the cost of increased computational
demand. The learning rate controls the speed at which the agent updates its policy, with a
smaller rate ensuring stable convergence. The discount factor (Gamma) influences the agent's
focus on future rewards, with a higher factor encouraging long-term planning over immediate
gains. Entropy regularization is employed to promote exploration, preventing the policy from
prematurely converging to a suboptimal strategy.

Data Exploration Verses Exploitation
In the initial stages of training, the agent explores the environment by taking random actions
to gather data about different states and rewards. Over time, as the agent learns an optimal
policy, it shifts towards exploiting the learned policy to maximize rewards. Techniques like
epsilon-greedy or entropy regularization help balance exploration and exploitation.

Training Episodes
The training process is divided into episodes, where each episode consists of the agent
attempting to complete a navigation task, such as driving a certain distance without collision
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or reaching a specific location. After each episode, the agent updates its policy based on the
rewards received.
Early Stopping: To prevent over fitting, early stopping is employed by monitoring the
agent’s performance in a validation environment. If the agent's performance plateaus or
declines after several episodes, training is halted.

3.3 Data Preprocessing and Data Preparation

Figure 3: Frontal Facing Images

Data collection and data cleaning (Obj.1 from table 1) are the first steps towards the data
feeding process in the model because only reliable information is important to the model. The
dataset includes front facing images of the simulated car scene ( as shown in Figure 3 above)
and their steering angles and other related driving parameters including throttle, brake, and
speed. The preprocessing pipeline involves several stages: The preprocessing pipeline
involves several stages:

Figure 4: Data Balancing Code snippet
Data Balancing
The `balance `tackle class imbalance problem by splitting the range of steering angles into 31
bins, and restricting each bin to be of maximum size 500. To achieve this, the angles are
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stratified to prevent the model from learning too much about common steering angles thus
helping generalize for all circumstances Shown in Figure 4 Code snippet.

Figure 5: Augmenting Code snippet

Image Loading and Augmentation
The data is loaded from the given directory and the variability of data is increased using
different data augmentation techniques. These operations are random translations, random
zooms, random changes in the brightness of the feature and finally, the horizontal flipping.
These transformations replicate actual driving situations as seen by the change in lighting
conditions or change in position of the roads hence improving on the model.

Figure 6 : Pre processing and Batching

Image Preprocessing
Every single image is given a number of preprocesses. Some of them are:
Cropping:It also crop the image to trim away unnecessary areas for the model such as the
sky and the bonnet of the car in the image to emphasize on the road and the surrounding.
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Colour Space Conversion:The cropped image is then converted from RGB to YUV colour
space and it also solve the input size problem of NVIDIA model.

Gaussian Blurring: A Gaussian blur is used to remove noise and fine-grained variations
which improves the models’ ability to recognize features that it is looking for.

Resizing and Normalization:The image is resized to the size 320*160 pixels followed by
the normalization of the image by dividing by 255.

Batching:As for the `batching` function it creates batches of images and the respective
steering angles to use in the training process. While training the model, augmented images
are provided, but when it comes to validation, raw images without any form of augmentation
are used for the valid assessment of the model.

3.4 Reinforcement Learning Design Specifications
The core of this project is the design of the reinforcement learning model that enables the
agent to learn how to drive autonomously. The model is based on a deep reinforcement
learning algorithm, such as Proximal Policy Optimization (PPO), which is well-suited for
continuous action spaces.

Choice of Algorithm: Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) is selected for its stability and efficiency in complex
environments, particularly through its actor-critic architecture, where the agent
simultaneously learns a policy function (actor) and a value function (critic). The actor
determines actions based on current observations, while the critic evaluates these actions by
estimating the expected cumulative reward. PPO excels in handling continuous control tasks,
making it ideal for managing vehicle steering, acceleration, and braking. The algorithm's
effectiveness is further enhanced by reward clipping, which prevents large policy changes,
ensuring stable and consistent learning throughout the training process.

Neural Network Architecture
The reinforcement learning model is implemented using a neural network that functions as a
function approximator for both the actor and critic. This architecture is specifically designed
to handle high-dimensional sensory inputs from the Unity simulation environment. The input
layer of the network processes sensory data from the vehicle's camera (pixel data) and other
sensors like LiDar and radar, either as raw image data, processed through Convolutional
layers, or as preprocessed features such as distances to obstacles and road edges. Hidden
layers, equipped with ReLU activation functions, further process the input data, with
Convolutional layers extracting spatial features from images and fully connected layers
handling non-visual inputs. The output layer provides continuous action values for steering,
acceleration, and braking, scaled to fit the vehicle's control constraints. The model is
optimized using a variant of stochastic gradient descent, typically the Adam optimizer, to
minimize policy loss and value function loss, ensuring effective learning and performance.

Challenges and Limitations
Developing a reinforcement learning model for autonomous vehicle navigation involves
several challenges:
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Training Time: Training deep RL models can be computationally expensive and time-
consuming, especially when dealing with complex environments and high-dimensional input
spaces.

Sim-to-Real Transfer: A major limitation of using simulated environments is the challenge
of transferring the learned policy to real-world scenarios. While Unity provides a realistic
simulation, there may still be discrepancies between simulated and real environments.

4 Implementation, Evaluation and Results of Autonomous
Navigation Reinforcement Learning Models

In this section, we delve into the implementation and evaluation of three distinct models
developed to enhance autonomous navigation capabilities for self-driving cars. Each model
was designed with incremental complexity to address various challenges encountered in
steering angle prediction from visual inputs. The experiments conducted with these models
aim to demonstrate improvements in prediction accuracy and robustness under diverse
driving conditions. Below, we provide an overview of the implementation and evaluation
processes for each model.

Experiment 1 : Standard Sequential Networks Model

Architecture: In contrast, Standard Sequential Model has extra layers of Convolutional
and dense layers and than the Standard Sequential Networks Model. It also applies
enhanced data augmentation for better performance with increased robustness and
generality.
Implementation Details:The model consists more numbers of convolution layers with
more filter sizes and deep model. Some pre-processing steps included random zooming,
rotation of the images and random brightness adjustment of the images used in training as
a way of improving the model’s generalization capability across the different conditions.
Training: During the training process different options for the learning rate and the batch
size were improved. In order to ensure that the model is better than Standard Sequential
Networks Model, the model was subjected to a validation set.

Experiment 2 :Deep Neural Network Model

Architecture: Speaking of this model, it has a relative simplicity with three or four
Convolutional layers and several dense layers. The authors presumed that some
characteristics extracted from the input images are used for predicting the steering angles.
Implementation Details: The layers of CNN are composed of Convolutional layer with
relatively small filter size and then proceeded with the pooling layer which leads to
dimensionality reduction. Missing layers have ‘X’ marks connected to fully connected
layers at the end of the network to determine the steering angle prediction.
Training: The features of the model where tuned by conventional data augmentation
parameters and acceptable value of learning rate. The training process was supervised in
an effort to converge the model while at the same time avoiding over fitting.
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Experiment 3 : Extended Neural Network Model

Architecture: This one is the most complex of the three models, though it adds more
convolutional layers and dropout layers for preventing the overfitting of the model.
Implementation Details: Extended Neural Networks is used an additional amount of
convolutional layers where the kernels have different size and additional dropout layers
are included to minimize the overfitting problem. This model is slightly complicated and
aims at extracting finer details from the input images as well as predicting accurate
steering angle.
Training: During the training process of Extended Neural Networks, a lot of
hyperparameters and the optimization process were adjusted to provide the best accuracy
at a reasonable computational speed. To ascertain that the model performed to the
intended standard, it was subjected to rigorous validation process.

4.1 Implementation , Evaluation and Results of Standard SequentialNN
Model
In this section we will be covering the Obj.2.1 from table 1.Standard Sequential Networks
Model contains a more complex layer of Convolutional Neural Network (CNN) with an aim
of improving the performance of the steering angle prediction in the autonomous navigation
task. Compared with Standard Sequential Networks Model, this model incorporates more
Convolutional layers and dense layers to increase the layers’ depth so as to capture more
features of the input images.

Architecture Details

Figure 7: Standard Sequential Model Architecture

Convolutional Layers: The Deep model begins with a typical model called five convolution
layers. In the first three conviction layers there are 24, 36 and 48 filters respectively for a
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kernel size of 5 x 5 with a stride of 2 x 2. These layers assist in acquiring the spatial hierarchy
inherent to input images by means of edge, texture, and Deep levels of features extraction.
The next two con- Convolutional layers again have 64 filters with a kernel of 39;3. In this
model an extra sixth Convolutional layer with 128 filters has been introduced to extract more
intricate features. For all the Convolutional layers, we utilize the ELU (Exponential Linear
Unit) activation function that has a positive attribute of meeting the vanishing gradient
problem and enhancing the pace of convergence.

Dense Layers: Having received data from Convolutional layers the model transforms the
output of the previous layer and passes it through three dense layers. In the example case the
first dense layer contains a hundred neurons, the second contains fifty neurons while the third
one has twenty-five neurons. In this model, a new dense layer with 25 neurons is
incorporated for the purpose of improving the parameter learning ability. The non-linearity is
retained here by using the ELU activation function as seen earlier in the architecture. The
output layer has only one neuron in the network which means we do not need any activation
function in this.

Training Configuration: The model is compiled using Adam optimizer with learning rate
set to zero point zero one. Token number 0001 and Mean Squared Error (MSE) is the losses
function used showed good results. The MSE loss function is selected because it enables
greater punishment for bigger deviation from the actual values which is important when
taking into consideration precision needed in steering angle predictions.
In order to make the proposed model more accurate, some data augmentation approach is
exercised. These includes translating the images randomly, zooming in or out, changing the
brightness of the images input and even making a horizontal flip over of the input images.
Preprocessing – the procedure of altering images for further processing to include cropping of
the image to remove unwanted parts such as the sky and car hood, resizing the image to sized
200×66, conversion of the image to the YUV colour space, and normalizing the pixel values.
The augmented data is used in training the model in a way that each training iteration
incorporates 15 images for training set and 10 image for the validation set. This type of
training where batches are processed at a time is helpful in proper utilization of memory and
hence the large data set can be used for training of the model.

4.1.1 Evaluation and Results of Standard Sequential Networks Model

Figure 8: Model evaluation
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Training Process
Standard Sequential Networks Model was trained for 10 epochs In the training process of
every epoch, several steps were taken where each step is as follows: To validate whether the
model was over fitting or not a test set was used monthly to assess the generalization
capability of the model. Since the model was trained using augmented data along with raw
data it was accustomed to predict a variety of driving scenarios.

Evaluation Metrics
The first assessment criterion for Deep Neural Network, therefore, was the MSE of the
predicted and actual steering angles. The model obtained 0. 00160 as the training MSE using
the same data set as well as the same number of hidden layers and nodes passed as input into
the model. 04 The performance of the 012 is also evident by the low validation MSE of 0. It
has an accuracy level of 0. 015, this means that the model can perform good on other data set
which it has not learnt from without over fitting. A slightly higher value of validation MSE
also indicates that the model developed here can be effective in the future data as well.

Real-World Performance
In order to assess the possibility of Standard Sequential Networks Model to function
effectively, it was put through various simulation drives. The model was able to safely drive
the vehicle through different tracks with diverse terrains including curved and steep surfaces,
narrow roads, among others. The corrections carried out by the model involved in steering
were smooth and the path followed by the vehicle was stable throughout the test drives.

This capability was further affirmed by simulating noise and distortions on the inputs
images for the model to test on different driving conditions. However there were these
challenges involved with Standard Sequential Networks Model whereby it was able to make
accurate steering control thus implying its efficiency.

Limitations
Standard Sequential Networks Model has its own drawbacks even though the results of the
experiments were much better compared with the other models. In some of the cases, the
predicted steering angle was not accurate as necessary especially when the model was faced
with features at the edge such as change in texture or appearance of obstacles. Also, the
increase in model complexity increased the time taken to train the model and the
computational cost was slightly high.

4.2 Implementation , Evaluation and Results of Deep Neural Network
In this section we will be covering the Research Objective 2.2 from table 1

Architecture Details
The first layers of the model proposed are Convolutional shape that aims to extract features
of the images. The first set of Convolutional layers applies filters of 24, 36 and 48 sizes each
with a kernel of 5X5 and stride of 2X2. These layers assist in identifying simple structures in
the images such as edges and texture. After these, there are two more layers of convolution
which are also of the type ‘convolution layer’ with number of filters 64 and kernel size 3*3.
The following layers are intended to capture these features that are more profound in the way
they are manifest. Now to improve the capacity of the network to learn more detailed features
of the images an additional sixth Convolutional layer is added into the architecture with 128
filters.
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Figure 9: Deep Neural Network architecture

Every Convolutional layer applies the ELU (Exponential Linear Unit) activation function
which together with batch normalization helps in solving the vanishing gradient problem and
achieving a faster learning phase.

Data Augmentation and Preprocessing
Data Augmentation: In order to enhance the models and make them less sensitive to
variations it is necessary to apply some types of the augmentation, such as translation,
zooming, brightness and horizontal flip.
Preprocessing: Images are resized to the 200 x 66 pixels, the YUV colour space is applied to
them, and after that the pixel values within the pictures are normalized while the
uninteresting parts, such as several sky and car hood fragments are cropped out.
Training Batches: Training consists of the batches of 15 images while the validation concerns
the batches of 10 images. This approach will also help in optimising the use of memory and
enhance the way the model is trained.

4.2.1 Evaluation and Results of Deep Neural Network

Figure 10: Evaluation Deep Neural Network
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Training Process
The training of Standard Sequential Networks Model was done with 10 epoch. In this training,
that test set was used occasionally to check on the overfitting and as well, to check its ability
to generalize. Therefore, augmented and raw data were fed to the model to ensure that it can
perform appropriate actions in different driving scenarios.

Evaluation Metrics
Mean Squared Error (MSE) The training mean square error was 0. 00160 which on average
appears to have a good accuracy on our training data set. Compared to the development MSE
the validation MSE was slightly high at 0. 04 which signifies the models ability to generalize
well on the unseen dataset and have lower chances of overfitting. R2 All in all, the model
reached the accuracy level of 0 (point). _015: From the results, we can see that it has a high
accuracy on the test dataset, meaning that it generalizes well to data not included in its
training set meaning it may serve well for future predictions.

Comparison with Standard Sequential Model
In the case of architecture, Standard Sequential Networks Model was less complex, and had
fewer layers as compared to Deep Neural Network. Deep Neural Network had enhanced
training and validation MSE than Standard Sequential Networks Model and hence this
provides a good baseline for evaluating the effects of architectural modifications.
The comparison of the two models showed that higher complexity and more layers of Deep
Neural Network lead to enhanced feature extraction improving the accuracy of predictions in
conditions such as sharp turns and various lighting conditions.

Real-World Performance
Standard Sequential Networks Model was tested on simulation drive because various terrains
and driving conditions were incorporated into it. The model gave a good account in travelling
through curves, steep surfaces and sharp bends with good and stable steering corrections and
very smooth ride. Various enhancements of input images were made for the signal distortions
and other noises were added to evaluate the model’s performance. The proposition of the first
model showed a fairly good result but had difficulties in achieving the desired level of
precision in terms of edge features and obstacles detection.

Limitations
There were certain limitations with Standard Sequential Networks Model even though this
was a step up from simpler models. What remained a challenge was the aspect of prediction
when there were large variations on texture or when the edges of images were obstructed.
The training time and the cost in terms of computations were reasonable but could be
optimised with the use of more sophisticated techniques. To improve the performance of the
models, the complexity was extended in the succeeding models in order to overcome these
problems.

4.3 Implementation of Extended Neural Networks Architecture Details
In this section we will be covering the Research Objective 2.3 from table 1

Convolutional Layers: Extended Neural Networks design involves a 3X3 Convolutional
layer with 32 filters where there is a stride of 1; a 3X3 Convolutional layer with 64 filters
with a stride of 2. The third and fourth layers are Convolutional layers and each of these
layers has 128 filters where third layer applies a kernel of 3x3 pixels with stride 2 x 2 and the
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kernel size of the fourth layer is 3 x 3 pixels with stride of 1 x 1. It is with these filter sizes
and strides, the model is able to capture both low-level features such as edges and textures
and the high-level features such as shapes and patterns. All the Convolutional layers
incorporate ELU as it’s activation function, which can converge faster and also solve the
vanishing gradient issue.

Figure 11: Extended Neural Network Architecture

Dense Layers: After the Convolutional layers, the model employs the dense layers is used
and consists of a number of layers. The neurons specified for the first dense layer includes
120 while the neurons in the second dense layer comprises of 60 with final dense layer
comprising of only 10 neurons. The fully connected layers are used in order to address the
fact that the figure extracted by the Convolutional layer, is implicit between the extracted
features and the steering angle. The output layer contains only a single neuron which
estimates the steering angle, and the result is not passed through any activation function
because must be a continuous value.

Training Configuration: The model of Extended Neural Networks is fitted with the Adam
optimizer, which has the initialization learning rate of 0. 0001 and the Mean Squared Error
(MSE) loss function is used in this study. Thus the learning rate was chosen from
experiments to obtain a faster convergence as well as stability during training.

Data Augmentation and Preprocessing
In order to increase model resilience, a set of diverse data augmentation methods are used.
These comprise; rotation, scale, shear, and colour jittering apart from the augmentation
employed in the other models. These augmentations mimic different driving scenarios thus
enabling the model to generalize well in real life.

The data is given into the model in portions, where each portion consists of 32 images,
out of those 30 is used as training data and the remaining 2 as validation data. This batch size
was selected with regards to these factors in order to make the best use of the computational
resources available while also avoiding either excessive memory usage or a slow training
speed.
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4.3.1 Evaluation and Results of Extended Neural Networks

Training Process
Extended Neural Networks required 15 epochs of training and each epoch contains 20
numbers of steps. The number of epochs and steps per epoch were increased relative to
previous models to ensure that the extended depth of the model is utilized to the fullest extent
and complex patterns resulting from the raw data are discovered. In training, the model was
validated from a validation set to ensure that the model learned to generalize well against
unseen data.

Figure 12: Extended Neural Networks Evaluation

Training Process
Extended Neural Networks required 15 epochs of training and each epoch contains 20
numbers of steps. The number of epochs and steps per epoch were increased relative to
previous models to ensure that the extended depth of the model is utilized to the fullest extent
and complex patterns resulting from the raw data are discovered. In training, the model was
validated from a validation set to ensure that the model learned to generalize well against
unseen data.

Evaluation Metrics
As in the previous studies, the Mean Squared Error (MSE) was adopted as the main applied
performance measure. Although the training MSE of the Extended Neural Networks was
considerably low at 0.50 and validation MSE was calculated to be 0. Extended Neural
Networks yielded an Adj. R2 of -0. 1, which shows a further enhancement, as compared with
Standard Sequential Networks Model and Deep Neural Network. Lower MSE in the
Extended Neural Networks shows that the model was indeed able to predict the optimal
steering angle more accurately most especially under difficult conditions of driving.

Comparison with Previous Models
Extended Neural Networks was proven to be more accurate than Standard Sequential
Networks Model and Deep Neural Network not only by training set MSE but by the
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validation set MSE values as well. Due to a much higher and complex architecture of
Extended Neural Networks it was able to extract more and clearer features from the input
images that result in better steering predictions. It also led to the fact that the model was more
generalized to unseen data, as the validation MSE depicted.

Real-World Performance
Extended Neural Networks was found to be more efficient than previous models of this
company when tested in simulated driving environment. The model was proved to be
successful in providing more accurate controls in tracky tracks, sharp bends, changes in the
quality of roads, and poor lighting conditions. Steering corrections of Extended Neural
Networks were found to be more

These tests reached even more extreme level with rain, fog and night-time conditions
applied on Extended Neural Networks for further evaluation. However, these issues were
rather circumvented with the aide of the model, which was successful in providing correct
steering predictions even in the most complex RL driving situations.

Limitations
However, Extended Neural Networks is not without its drawbacks; in fact there are few
weaknesses that I would like to discuss below. Data show that with the growth of the model’s
complexity, training time and the computational load grow accordingly. Moreover, the model
failed to predict the appropriate steering angles in cases where a particular differentiation of
the road option was challenging – when there is some obscurity on the road or if there are
several options.

5 Comparison and Discussion
This section aim to address Research Obj.3 from Table 1

Table 2 : Comparison of three models of Autonomous Vehicle Navigation
Model Name Mean Squared Error R^2 score
Extended Neural Network 0.053 -0.12
Deep Neural Network model 0.050 -0.16
Standard Sequential Networks 0.071 -0.50

The three models proposed and implemented in the frame of this project are three steps
forward in the overall attempt of improving the autonomy of a self-driving car simulation.
Most of the aspects pointed in Obj.3 of the table were targeted at improving the basic goal of
the models, which is to estimate the needed steering angle. These objectives were achieved
using; Increasing training data, evaluating and modifying model architecture, and adjusting
model parameters.

The first architecture was Standard Sequential Networks Model which is a simpler
CNN architecture that was used as our point of reference. It had a limited number of
Convolutional layers to simply filter out very important aspects from the images that went
into the model. It was able to operate fairly well in ordinary conditions due to its underlying
interface but was not able to perform well especially during complex manoeuvres like sharp
turns or changing light conditions. The evaluation metrics obtained for Standard Sequential
Networks Model include the desired MSE whereby the MSE was above the desired level
signifying that there is still the improvement needed.
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Deep Neural Network was developed by incorporating more Convolutional and dense
layers which made the network Deep to enable for more detailing to be detected. This model
also used an enhanced form of data augmentation that would be effective in training the
model on variety of situations it will encounter on the road. The findings from Deep Neural
Network revealed that there was a reduced MSE as contrasted with Standard Sequential
Networks Model especially where there are intricate aspects of the road system. This
improvement showed that pre-training models with Deep Architectures yields better
performance of the model.

Extended Layers NN takes Deep Neural Network toward higher complexity in the
network structure which forms the next level of the hierarchical structure of the network of
the analysed vocal folds. This model had more convolution layers and modified the kernel
size of the convolution layers and also added drop-out layers to minimise on over-fitting. The
purpose was to build a model which, along with fitting the training data, would provide a
better generalisation of the unseen data. As expected, the obtained results showed that
Extended Neural Networks had the lowest value for MSE, which suggested that it was the
most accurate steering model.

When comparing these three models based on Object 3, it is clear that every
successive model iteration actually achieved the goal of decreasing prediction error and
consequently increasing the reliability of the values predicted for the steering angle. It could
be observed that Deep Neural Network and particularly Extended Neural Networks
demonstrate the advantages of Deep architectures as well as skills in preventing over-fitting
through the application of the drop-out technique. The comparison also underscores the trade-
offs involved in model development: although it was observed that Deep models produced a
better results the price to pay is always the extra resources and time.

5.1 Comparison of Developed Models Verse Existing Models
This section will cover research objective from Table 1 Research objective 4. However, it
shall also be relevant to compare the performance of the developed models with the models
currently utilized in the area of autonomous driving, which can be specified in Object 4 in the
table below. Current models within the domain of autonomous navigation like the recently
developed end-to-end deep learning model of NVIDIA for self-driving cars, offers them a
high standards of performance, efficiency, accuracy, and real-time capabilities among others.

NVIDIA’s model is a well-discussed example of deep learning that has found its use
in the operation of self-driving cars. It directly predicts the steering angles from raw images
using somewhat a Deep Convolutional Neural Network. That model has been well
implemented in the real world, and the experimental results demonstrate that it is very
resistant to real driving conditions. The first strength of the NVIDIA model is the model’s
robustness across various environments, and the second strength is its capability to address
large datasets in real time.

When we compare our developed models with NVIDIA’s model, the following
differences become evident. Nonetheless the accuracy of predicting the steering angle of
Extended Neural Networks in our project is comparable to that found in other literature and
comes with the overhead of computational complexity. NVIDIA’s model is balanced in terms
of accuracy and speed which is very important for deployment in real-world applications. On
the other hand, our models especially, Extended Neural Networks although they are accurate
models might be little heavy and need some more tuning for real time performance.

One of the last, but very significant comparison criteria is the ability of models to
generalize. Other approaches such as the one deployed at NVIDIA were trained on different
driving conditions, making them better placed at handling new data. These models that we
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have developed while might be performant within the simulation that we have used might
need to be trained on more diverse datasets to become as generalized as these existing models.

At the same time, the obtained developed models show promising results. The
architectural advances and the use of optimization studied in our models are beneficial for the
constant progress of the autonomous driving technology. Suitably refined and optimized
especially in the aspect of efficiency and the ability of generalization, these models could
offer equivalent or higher performances in all or perhaps particular modes than existing
models.

6 Conclusion and Future Work
Overall, the goal of the project was met as this work investigated the creation and
improvement of three deep learning models for autonomous navigation with the emphasis on
the estimation of steering angles in a driving environment that was simulated. The models
were accumulated progressively, and at each step, the model comprised of new enhancements
and complexities in order to receive the most accurate outcomes and efficiency. Standard
Sequential Networks Model was set as a baseline and allowed gaining fundamental
understanding of the vulnerability of a plain CNN structure. Deep Neural Network added
more layers coupled with data augmentation hence performing well than Standard Sequential
Networks Model especially when subjects are involved in complicated manoeuvres. Last
model Extended Neural Networks provided deep understanding and added more
regularization adding to the fact that it realized the highest accuracy.

The conclusions of this project prove that the architecture of the models has a
significant impact on the ability of an autonomous vehicle to perform a navigation task
effectively. The advancement from Standard Sequential Networks Model through to
Extended Neural Networks shows how greater depths and careful consideration of other
practices such as drop-out significantly improves predictive power. However, these
improvements bring out a new challenge in terms of the computational complexity which
deem it necessary to strike a balance between performance and computational requirements.

Future Work
Although, good performance was achieved on the developed models, there are areas of
research that could pave the way for improving generalization of the models and thus their
practical usability. First, the models which are used in those cars can be trained on a more
diverse data ranging from weather conditions, different types of roads, and other challenging
conditions and scenarios. This would enhance the generalization performance of the models
since the current models lack good performance especially when implemented in new
environments.

Other aspect of the work will do in the future is the adaptation of the models on the
conditions that are required for live operation. This could involve, researching new
topologies of networks or methods of model reduction such as pruning and quantization, that
would lessen the computational load needed without compromising on performance.
Furthermore, the application of the sensor fusion, where the information received from
LiDAR/Radar and video cameras is combined, can provide even more precise prediction and
better perception of the environment for creating more secure autonomous vehicles.



25

Acknowledgement

I owe the completion of this Research Project to Dr. Catherine Mulwa, who guided and
supported me throughout the process. I am also very thankful to my family and loved ones
for their financial and emotional help during my Master's studies. Finally, I want to express
my deep appreciation to my colleagues, whose input has greatly contributed to what I've
learned and achieved.

References

Bai, Y., Zhang, B., Xu, N., Zhou, J., Shi, J. and Diao, Z., 2023. Vision-based navigation and

guidance for agricultural autonomous vehicles and robots: A review. Computers and

Electronics in Agriculture, 205, p.107584.

Bautista-Montesano, R., Galluzzi, R., Ruan, K., Fu, Y. and Di, X., 2022. Autonomous

navigation at unsignalized intersections: A coupled reinforcement learning and model

predictive control approach. Transportation research part C: emerging technologies, 139,

p.103662.

Koh, S., Zhou, B., Fang, H., Yang, P., Yang, Z., Yang, Q., Guan, L. and Ji, Z., 2020. Real-

time deep reinforcement learning based vehicle navigation. Applied Soft Computing, 96,

p.106694.

Lei, T., Luo, C., Sellers, T. and Rahimi, S., 2021. A bat-pigeon algorithm to crack detection-

enabled autonomous vehicle navigation and mapping. Intelligent Systems with Applications,

12, p.200053.

Nikanjam, A., Morovati, M.M., Khomh, F. and Ben Braiek, H., 2022. Faults in deep

reinforcement learning programs: a taxonomy and a detection approach. Automated software

engineering, 29(1), p.8.

Pérez-Gil, Ó., Barea, R., López-Guillén, E., Bergasa, L.M., Gómez-Huélamo, C., Gutiérrez,

R. and Díaz-Díaz, A., 2022. Deep reinforcement learning based control for Autonomous

Vehicles in CARLA. Multimedia Tools and Applications, 81(3), pp.3553-3576.

Xu, Z., Chen, J. and Tomizuka, M., 2020. Guided policy search model-based reinforcement

learning for urban autonomous driving. arXiv preprint arXiv:2005.03076.



26

Elallid, B.B., Benamar, N., Hafid, A.S., Rachidi, T. and Mrani, N., 2022. A comprehensive

survey on the application of deep and reinforcement learning approaches in autonomous

driving. Journal of King Saud University-Computer and Information Sciences, 34(9),

pp.7366-7390. https://doi.org/10.1016/j.jksuci.2022.03.013

Prabhod, K.J., 2023. Advanced Techniques in Reinforcement Learning and Deep Learning

for Autonomous Vehicle Navigation: Integrating Large Language Models for Real-Time

Decision Making. Journal of AI-Assisted Scientific Discovery, 3(1), pp.1-20.

https://scienceacadpress.com/index.php/jaasd/article/view/25

Tang, Y., Zhao, C., Wang, J., Zhang, C., Sun, Q., Zheng, W.X., Du, W., Qian, F. and Kurths,

J., 2022. Perception and navigation in autonomous systems in the era of learning: A survey.

IEEE Transactions on Neural Networks and Learning Systems, 34(12), pp.9604-9624. DOI:

10.1109/TNNLS.2022.3167688

Lee, H. and Jeong, J., 2023. Velocity range-based reward shaping technique for effective

map-less navigation with LiDAR sensor and deep reinforcement learning. Frontiers in

Neurorobotics, 17, p.1210442. https://doi.org/10.3389/fnbot.2023.1210442

You, C., Lu, J., Filev, D. and Tsiotras, P., 2019. Advanced planning for autonomous vehicles

using reinforcement learning and deep inverse reinforcement learning. Robotics and

Autonomous Systems, 114, pp.1-18. https://doi.org/10.1016/j.robot.2019.01.003

Aradi, S., 2020. Survey of deep reinforcement learning for motion planning of autonomous

vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(2), pp.740-759. DOI:

10.1109/TITS.2020.3024655

Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K. and Shen, X., 2020. Deep reinforcement

learning for autonomous internet of things: Model, applications and challenges. IEEE

Communications Surveys & Tutorials, 22(3), pp.1722-1760. DOI:

10.1109/COMST.2020.2988367



27

Grigorescu, S., Trasnea, B., Cocias, T. and Macesanu, G., 2020. A survey of deep learning

techniques for autonomous driving. Journal of field robotics, 37(3), pp.362-386.

https://doi.org/10.1002/rob.21918


	1Introduction
	1.1Research Question
	1.2Research Objectives
	1.3Research Contribution and RationaleThe founda

	2Related Work
	2.1Understanding Reinforcement Learning Algorithm
	2.3A Critical Review of Evaluation of Performance
	3Methodology Approach , Design Specification and 
	3.1Reinforcement Learning Methodology Approach 

	Acknowledgement
	References

