ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

Research Project
MSc.Data Analytics

Aarthi Rajendran
Student ID: 22224947

School of Computing
National College of Ireland

Supervisor: Ahmed Makki

‘——
National College of Ireland \ National

. o Collegeof
MSc Project Submission Sheet
Ireland
School of Computing

Student ... AArthi RaJENAIrAN. ... i e e
Name:
Student ID: 22228947 ...
Programme:...... Data Analytics.........oooiiiiiii e Year: 2024.................
Module: ... MSC RESEAICH PrOJEC. ... et e
Lecturer: ANMEA MAKKI. ... e
Submission
Due Date: L2/08/2024 ...
Project Configuration ManUal............c.oiiiii i
Title:
Word
CouNnt: ceeeeeeeeens 1031, Page Count: 10

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is illegal
(plagiarism) and may result in disciplinary action.

Signature: Aarthi Rajendran

Date: ... LL/I08I2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) O
Attach a Moodle submission receipt of the online project submission, to each project a
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own i
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Physical Exercise Pose Detection using BlazePose and
Machine Learning Framework

Aarthi Rajendran
22224947

1 Introduction

This manual contains all the details involved in implementation of the research project
‘Physical Exercise Pose Detection using BlazePose and Machine Learning Framework’. It
begins with an overview of the project's objectives and significance. The second section
details the system specifications, including hardware, software, and necessary libraries.

The third part covers the data collection and preprocessing methods, followed by the
development and evaluation of machine learning models used for pose detection.

Finally, the manual explains how to utilize BlazePose for detecting exercise poses from
images, integrating it with machine learning models for accurate predictions. The conclusion
summarizes the results and discusses potential improvements and future directions for the
project.

2 Hardware Requirements

2.1 Hardware Specification:

Processor: 11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40GHz (base frequency) 2.42
GHz (boost frequency)

Installed RAM: 16.0 GB (15.7 GB usable)

System type 64-bit operating system, x64-based processor

Storage: 500 GB SSD

GPU: 4 GB, Intel(R) UHD Graphics

2.2 Operating System Specification:

OS Name: Microsoft Windows 11 Home Single Language
Version 23H2
Experience Windows Feature Experience Pack 1000.22700.1020.0

3 Software Requirements

Programming Language: Python

Cloud Platform: Google Drive for Data Storage
IDE: Google Colab

Other Tools: Microsoft Excel and PowerPoint

4 Library Requirements

To work with physical activity pose detection, Google Colab is a cloud-based platform
accessed via a web browser. After signing in, by creating a new notebook or uploading the
file. it is important to use specific machine learning libraries. MediaPipe provides advanced
capabilities for detecting and analyzing physical activity poses. H20 provides a
comprehensive suite of machine learning tools and algorithms for predictive modeling and
data analysis. This setup is essential for predicting and evaluating the strength training
exercise poses and for performing sophisticated predictive modeling tasks.

%pip install -q mediapipe
s h2

p install h

se_landmarker_heavy. task

Figure 2: All Required Python libraries and Packages

5 Dataset Description
5.1 Dataset selection

Dataset is downloaded from the UCF 101 Human Action Recognition data which are
collected from youtube and have a fixed rate frame.

The UCF101 data set can be downloaded by clicking here.

Revised annotations have been made available at http://www.thumos.info/download.html

The Train/Test Splits for Action Recognition on UCF101 data set can be downloaded by clicking here.
The Train/Test Splits for Action Detection on UCF101 data set can be downloaded by clicking here.
The STIP Features for UCF101 data set can be downloaded here: Part1 Part2.

If you use this data set, please refer to the following technical report:

Khurram Soomro, Amir Roshan Zamir and Mubarak Shah, UCF101: A Dataset of 101 Human Action Classes From

Videos in The Wild., CRCV-TR-12-01, November, 2012.

For questions regarding this data set, please contact Khurram Soomro (khurram [at] knights.ucf.edu).

Figure 3: Dataset

2

https://www.crcv.ucf.edu/data/UCF101.php

5.2 Dataset Collection and Loading

The dataset is downloaded and manually five strength training videos are filtered and
uploaded to the Google Drive and accessed by mounting Google Drive in the Colab
environment at the specified directory path. This allows seamless integration between the
Colab notebook and the dataset which is stored in the Drive, which makes the data

manipulation and data analysis directly from the cloud storage.

from google.colab 1 rt drive

drive.mount("/ tent/dr , force_remount=

Mounted at fcontent/drive

Figure 4: Dataset Loading

6 Data Transformation

After installing the packages, video data is processed to extract pose landmarks from
each frame and store the results in a Pandas DataFrame. MediaPipe’s pose detection
model identifies key landmarks, and the coordinates are organized into a structured
DataFrame for detailed analysis and visualization of body movements.

def format_frame_landmarks(frame, detector):

rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

mp_image = mp.Image(image_format=mp.ImageFormat.SRGE, data=rgb_frame)

landmark_coords = {}

detection_result = detector.detect(mp_image)

if detection_result.pose_landmarks:

for pose_landmarks in detection_result.pose_landmarks:
for idx, landmark in enumerate(pose_landmarks):

body_part = mp.solutions.pose.Poselandmark(idx).name
landmark_coords[f'x_{body part}'.lower()] = landmark.x
landmark_coords[f'y_ {body part}'.lower()] = landmark.y
landmark_coords[f'z_{body_part}'.lower()] = landmark.z

return landmark_coords
def extract_pose_landmarks(path, input_type = "video™):
options = vision.PoselandmarkerOptions(
base_options=base_options,

output_segmentation_masks=True)

detector = vision.Poselandmarker.create_from_options(options)

base_options = python.BaseOptions(model_asset_path="pose_landmarker.task"')

Figure 5: Extract Pose Landmarks from Frames

At this stage the video files are processed to extract the frames and annotate them
with the pose landmarks using the MediaPipe Library and using the process_video
function reads the frames from a video and process each frame to detect the pose
landmarks and saves the annotated frames as images in the output directory (video

dataset/pose_landmark_images)

mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
base_path = '/content/drive/MyDrive/video dataset/Jumpinglack’

output_dir = '/content/drive/MyDrive/videc dataset/pose_landmark_images/Jumpinglack'’

if not os.path.exists(output_dir):
os.makedirs(output_dir)
def process_video(video_path, output_dir, video_name):
cap = cv2.VideoCapture(video path)
frame_count = @
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = pose.process(image_rgb)
if results.pose_landmarks:
mp.solutions.drawing_utils.draw_landmarks(
frame, results.pose landmarks, mp_pose.POSE_CONNECTIONS)
frame_filename = os.path.join(output_dir, f'{video_name} frame_ {frame_count:84d}.png')
cv2.imwrite(frame_filename, frame)
frame_count += 1
cap.release()
return frame_count
video files = [f for f in os.listdir(base _path) if f.endswith('.avi')]
total frames_processed = @
for video_file in video_files:
video_path = os.path.join(base_path, video_file)
video_name = os.path.splitext(video_file)[@]
frames_processed = process_video(video_path, output_dir, video_name)
total frames_processed += frames_processed
print(f'Processed {frames_processed} frames from video {video_file}.')
print(f'Total processed frames: {total frames_processed} and saved to {output_dir}')

Figure 6: Pose Landmark Extraction for Videos

The below Figure 7 has processed video files from specific exercise folders and extracts pose
landmarks from each video using the ‘extract pose landmarks’ function and then
consolidates the results into a CSV file. This iterates through folders and video files and
performs pose landmark extraction and saves the aggregated results to a CSV file for further

process.
base_path = '/content/drive/MyDrive/video dataset’
csv_file_path = '/content/drive/MyDrive eo dataset/Blazepose_custom_ds_final (4).csv
custom pose points dataset = '/content/drive/MyDrive/video dataset/Blazepose_custom_ds_final.csv’

for folder in os.listdir(base_path):
master_df_list = []
if folder in ['PushUps’', 'Jumpinglack’, 'PullUps’, 'BodyWeightSquats', 'BenchPress’]:
folder_path = os.path.join(base_path, folder)
for files in os.listdir(folder_path)
if files.endswith('.avi’):
video_path = os.path.join(folder_path, files)
print("Processing ", video_path)
vid_frames_results_df = extract_pose_landmarks(video_path)
if vid_frames_results_df is None:
continue

vid_frames_results_df['exercise’] = folder
vid_frames_results_df['vid name'] = files
master_df_list.append(vid_frames_results_df)

else:
continue
combined_df = pd.concat(master_df_list, ignore_index=True)
write_header = not os.path.isfile(csv_file_path)
combined_df.to_csv(csv_file_path, mode='a’, header=write_header, index=False)

Figure 7: Video Pose Data Extraction and Save to CSV

4

7 Exploratory Data Analysis

combined_df.shape

(58166, 101)

combined_df.info()}

<class "pandas.core.frame.DataFrame’ >
RangeIndex: 58166 entries, © to 50165
Columns: 181 entries, x_nose to vid name
dtypes: float64(99), object(2)

memory usage: 38.7+ MB

duplicate rows

duplicate_rows = combined_df[combined_df.duplicated()]
num_duplicates = len(duplicate_rows)

print(f'Number of duplicate rows: {num_duplicates}')

Number of duplicate rows: @

Figure 8: Data information

The generated CSV file from the video folders for five strength training excercise consists of
101 features including exercise name and the video file name and 50166 rows.

print(combined_df.dtypes)

X_nose float64
y_nose floate4d
Z_nose floaté4d
x_left_eye_inner floate4d
y_left_eye_inner floate4d
x_right_foot_index floate4d
y_right_foot_index floate4
z_right_foot_index floate4
exercise object
vid name object

Length: 181, dtype: object

print(combined_df.describe())

X_hose ¥_hose z_nose Xx_left_eye_inner \
count G50166.000200 50166.000000 50l166.000000 50166 .000000
mean ©.499458 ©.345463 -8.189184 8.582353
std 9.122187 2.187205 ©.398930 9.125673
min ©.849007 -9.140063 -2.407700 ©.035841
25% ©.445906 9.202554 -8.377798 8.449915
50% ©.501440 ©.306598 -9.201130 9.504931
75% ©.549420 ©.473567 -8.035501 8.5508993
max 9.978234 9.956553 1.677968 8.984543

Figure 9: Data type and Data Description

null wvalues

null wvalues = combined df.isnull().sum()
print{"Null values in each column:™)
print{null values)

Mull values in each column:
¥_nose
y_nose
z _nose
¥ _left eye inner
v _left eye inner

v I o I I B

¥_right_ foot_index
v_right foot index
7z_right_foot_index
exercise
vid name
Length: 181, dtype: intec4

OO0 © .

Figure 10: Checking for Null VValues

8 Data Preprocessing

The figure below depicts the function ‘calculate_required_files’ helps in identifying the
additional files needed to reach a desired threshold for each folder. This function calculates
80% of the total files for each folder as training set. It then subtracts the number of files that
have already been processed to find out how many more files are required for the testing set.

def calculate_required files(total files, processed_files=8, percentage_threshold=0.8):
Calculate the number of files needed to reach 88% for each folder.

Parameters:

total files (dict): A dictionary with the total number of files for each folder.

processed_files (int): The number of already processed files.
Returns:
dict: A dictionary with the remaining number of files needed to reach 88% for each folder.

required_files = {}

for folder, total in total_files.items():
eighty_percent = int(percentage_threshold* total)
remaining = eighty percent - processed_files
required_files[folder] = max(remaining, @) # Ensure non-negative

return required_files

Figure 11: Splitting Training and Testing data

The total number of files for each exercise class and the number of files required for training
each class are as follows:

total files for each class: {'BodyWeightSquats': 112, 'BenchPress': 168, 'PullUps': 188, 'PushUps': 182, "JumpingJack': 123}
{ 'BodyWeightSquats': 89, 'BenchPress': 128, 'PullUps': 88, 'PushUps': 81, 'JumpingJlack': 98}

Processing exercise: weighted squats, Training files needed: 89

Processing exercise: bench press, Training files needed: 128

Processing exercise: pull ups, Training files needed: 80

Processing exercise: push ups, Training files needed: 81

Processing exercise: jumping jacks, Training files needed: 98

39985

10181

True

Figure 12: Exercise Class File Counts and Training Requirements

9 Model Training

Now, the classification model is trained using H20 library as shown below:

Training DRF, GBM and XGboost

1 # Model Training

from h2o.estimators import H20RandomForestEstimator

drf_model = H20RandomForestEstimator(

ntrees=208,
max_depth=78,

balance classes=True,
seed=22224947

drf_model.train(x=x, y=y, training_frame=train)

Figure 13: Model Training using H20

The above figure demonstrates the training of three different machine learning models using
the H20 library. First, the necessary classes are imported, and each model is initialized with
specific hyperparameters. The models are then trained on the provided dataset using the
specified features and target column, allowing for a comparison of their performance.

DRF model saved to: fcontent/drive/MyDrive/video dataset/classification_model/DRF_model_ python_1721988811695_1
GBM model saved to: fcontent/drive/MyDrive/video dataset/classification_model/GBM model python_ 1721988811695 2
XGBoost model saved to: /content/drive/MyDrive/videc dataset/classification_model/XGBoost_model_python_1721988811695_3

Figure 14: Locations of Stored Trained Models

The trained models are saved in the specified directory, and their file paths are recorded in a
JSON file named “model_paths.json” within the same directory.

10 Model Evaluation

At this stage evaluating the classification model by calculating accuracy, precision, recall,
and F1 score and generates a classification report. The below figurell includes a function to
preprocess exercise names for consistency. These tools helps to assess and interpret the
effectiveness of the model's predictions.

Plot the confusion matrix heatmap
def plot_confusion_matrix(y_true, y_pred, class_names):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class names, yticklabels=class names)
plt.ylabel('Actual’)
plt.xlabel('Predicted")
plt.title('Confusion Matrix')
plt.show()

Evaluate the classification
def evaluate classification(y_true, y_pred, class names):
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted')
recall = recall _score(y_true, y_pred, average='weighted')
1 = f1_score(y_true, y_pred, average='weighted')

print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print(f"F1 Score: {f1:.2f}")

print("\nClassification Report:")
report = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
print(classification_report(y true, y pred, target names=class names))

plot_confusion_matrix(y_true, y_pred, class_names)

return report

Figure 15: Classification Evaluation and Confusion Matrix

DRF Classfier Evaluation

Evaluating DRF

y_true = list(test_df['exercise’'].apply(preprocess_pose_exercise_str))
y_pred = list(test_df['drf_prediction'])

class_names = set(y_true)

evaluate_classification(y_true, y pred, class_names)

Figure 16: DRF Classfier Evaluation

Gradient Boosting Machine (GBM) Evaluation

Evaluating GBM
y _pred = list(test_df['gbm prediction’'])
evaluate_classification(y_true, y pred, class_names)

Figure 17: Gradient Boosting Machine Model Implementation

Extreme Gradient Boosting (XGBoost) Evaluation

Evaluating XGboost
y_pred = list(test_df['xgb_prediction"])

evaluate_classification(y_true, y pred, class_names)

Figure 18: XgBoost Evaluation

The below figure 15 consolidates the prediction of each video by selecting the most frequent
prediction from three models and it creates * result_df * Data frames map the most common

predictions for each model.

drf_predicted_values

test_df.groupby('vid name')['drf_prediction'].agg(lambda x: x.value_counts().idxmax())

gbm_predicted_values = test_df.groupby('vid name')['gbm_prediction’].agg(lambda x: x.value_counts().idxmax())

xgb_predicted_values

result_df = test_df[['exercise’', 'vid name']].drop_duplicates().copy()

result_df['drf_prediction'] = result_df['vid name'].map(drf_predicted_values)
result_df['gbm_prediction'] = result_df['vid name'].map(gbm_predicted_values)
result_df['xgb_prediction'] = result_df['vid name'].map(xgb_predicted_values)

test_df.groupby('vid name')['xgb_prediction'].agg(lambda x: x.value_counts().idxmax())

Figure 19: Consolidated Model Prediction

11 Model Prediction

Using pre-trained H20 model, a person’s workout pose detection is detected by extract pose
landmarks from the video which is given in base path and the extracted data converted into

H20 frame

prediction = predict_exercise(gbm_model, input_type = "video", path = "")

print(f"\n\nlle have predicted that the person in the image is doing the following exercise: {prediction}\n")
Measure runtime

start_time = time.time()

end_time = time.time()

runtime = end_time - start_time

print(f"Prediction took {runtime:.2f} seconds.")

Saving 5025960-hd_1080_1920_25fps.mpd to 5025960-hd_1080_1920_25fps (2).mpd

Uploaded file: 502596@-hd 1088 1928 25fps (2).mp4d

Can't receive frame (stream end?). Exiting ...

Parse progress: | [N N RN A RN A AN RN (conc) Leos
gbm prediction progress: ||| EEEEEEEEERERENNRNNNIRN RN IR | (cone) 100%

Prediction counts for each label

predict

Jjumping Jacks 467
weighted squats 102
bench press 5
pull ups 2

Name: count, dtype: int64

The most common prediction across frames is: jumping jacks

We have predicted that the person in the image is doing the following exercise: jumping jacks

No file chosen Upload widget 1s only available when the cell has been executed in the current browser session. Please reru

Figure 20: Testing Prediction

from google.colab import files

def upload or_image():
uploaded = files.upload()

for filename in uploaded:
content = uploaded]filename]
with open(filename, 'wb') as f:
f.write(content)

if len{uploaded.keys{}):
FILE = next{iter(uploaded))
print{ Uploaded file:"; FILE)
return FILE

else:
return None

h

def preprocess_pose_exercise_striexercise str):
exercise_map = {
"Squats': 'weighted squats',
"Pull': "pull wps®,
"Push’: "push ups®,
"Jump': "Jjumping jacks"',
"Bench’: 'bench press’

for keyword, exercise in exercise_map.items():
if keyword in exercise str:
return exercise
return exercisa_str

def predict_sxercize{model, input_type = "image", path = ""):
if mot path:
file_path = upload_vid_or_image()
else:
file_path = path

df = extract_pose_landmarks(file_path, imput_type = input_type)
df_hZo frame = hio.H20Frame(df)

prediction = model.predict{df_h2o_frame).as_data_frame()
final_prediction = prediction[’predict’].value_counts() .idsmax()

return final_prediction

prediction = predict_exercise(drf_model, input_type = "wideo™, path =
‘\ne have predicted that the person in the image is doing the following exercise: {prediction}\

print(f

Figure 21: Strength Training Exercise Prediction

10

