ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc. Research Project
MSc. in Data Analytics

Ramam Rajdev
Student ID: X22237216

School of Computing
National College of Ireland

Supervisor: Mr. Vikas Tomer

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing

Student ... RAMaM RAJAEV.....ooiiiii ettt ettt sre e
Name:
Student ID: D G Y 0 | < T SRR
Programme:......... MSc. in Data Analyticsccccooeeeinnenne Year 2023-24.....
Module: ... MScC. Research Projectcccooieiie i s
Lecturer: ... T T e V=T
Submission
Due Date: ... 1670972024ttt et e aae s
Project ... Music Recommendation System Based On The Analysis Of The
Title: |0 1= Lo 1TSS SRS OURP RSP
Word
Count: ... 943 Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ... RAMaM RAJAEY ..ot

Date: = ... 16/09/2024 ...

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

&

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

&

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

&

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ramam Rajdev
Student ID: x22237216

1 Introduction

The following configuration manual aims at outlining the processes that have to be followed
in order to create a duplicate of the music recommendation system that was designed given
the mood detection. The project has used image processing, machine learning and deep
learning for recommending musicals in accordance with the mood of the user. The manual
divided into sections such as environment, data capturing, data analysis, model deployment,
and the evaluation part.

2 Environment

2.1 Hardware Requirements
The project is implemented using the Google Colab platform, which provides the following
hardware specifications:
e Processor: Intel Xeon CPU @ 2.20 GHz
e RAM:13GB
e GPU: Tesla K80 with 12 GB GDDR5 RAM or Cloud TPU with 180 teraflops
computational power

2.2 Software Requirements
To execute the code, ensure you have access to the following software:

o Web Browser: Google Chrome (version 100+), Microsoft Edge (version 100+),
Mozilla Firefox (version 100+)
e Python Libraries:
o 0, cv2, shutil, warnings, numpy, pandas, PIL, tqdm, matplotlib, keras,
tensorflow, sklearn

Figure 1 below depicts the importing of important libraries for the study.

import os

import cv2

import shutil

import warnings

import numpy as np

import pandas as pd

from PIL import Image

from tqdm import tqdm

import matplotlib.pyplot as plt

from keras.utils import to_categorical

from tensorflow.keras import regularizers

from tensorflow.keras.utils import get file

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import plot model

from sklearn.neighbors import mearestdeighbors

from sklearn.preprocessing import standardscaler

from sklearn.model_selection import train_test split

from tensorflow.keras.models import model, Sequential

from tensorflow.keras.applications.vggls import veals

from tensorflow.keras.applications.vggld import VGG19

from tensorflow.keras.applications.resnet_v2 import Resmetseva

from tensorflow.keras.applications.inception_v2 import Inceptionvz
from tensorflow.keras.preprocessing.image import ImageDatacenerator
from tensorflow.keras.callbacks import Earlystopping, sedelcheckpoint, ReduceLROnPlateau
from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling2D, BatchMormalization,ConviD,MaxPooling2D

warnings.filterwarnings{ " ignore")

Figure 1: Necessary libraries for the implementation

3 Data Collection

The dataset used in this project is hosted on Kaggle and can be accessed at the following
locations:

« Emotion Detection Dataset: https://www.kaggle.com/datasets/ananthu017/emotion-
detection-fer

Figure 2 below shows the contents of the test dataset.

O O O O

angry disgusted fearful happy
958 files M files 1024 files 1774 files

O 8 5

neutra sad surprised
1233 files 1247 files 831files

Figure 2: Directories in Test Data Folder

e Spotify Music Dataset: https://www.kaggle.com/datasets/musicblogger/spotify-
music-data-to-identify-the-moods

Sample contents of the dataset obtained from the Kaggle website is shown in Figure 3
below.

https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer
https://www.kaggle.com/datasets/ananthu017/emotion-detection-fer
https://www.kaggle.com/datasets/musicblogger/spotify-music-data-to-identify-the-moods
https://www.kaggle.com/datasets/musicblogger/spotify-music-data-to-identify-the-moods

A name = A album = A artist = A jd = A release_date = *

Various Artists 1% 2020-05-01 1%
686 661 Wilson Trouvé 1% 686 2020-04-24 1%
unique values unique values unique values
Other (671) 98% Other (670) 98% 0
1999 1999 Prince 2H7PHVdQ3mXgEHXcvelT 1982-10-27 6
BO
23 23 Blonde Redhead 4HIWL91i9CcXpTOTZzMq@ 2087-04-16 4
MP
9 Crimes 9 Damien Rice 5GZEeowhvSieFDiR8fQ2 20086-11-06 6
im
99 Luftballons 99 Luftballons Nena 6HA97vAWEGQ5TUC1RMBX 1984-88-21 2
Le
A Boy Brushed Red They're Only Chasing Underoath 47IWLfIKOKhFnz1FUEUI 2064-61-01 6
Living In Black And Safety kE

White

Figure 3: Data Snippet of Spotify Music Dataset

Upload these datasets to the Google Colab environment to ensure easy access during
execution.

4 Data Preparation
4.1 Data Exploration
The emotion detection dataset is structured into train and test directories, each containing

images categorized by emotions (angry, happy, neutral, etc.). Use Python libraries like os and
shutil to organise these images into appropriate directories for processing.

dataset_path = 'image-data/'
folders = os.listdir(dataset_path)
folders

['test', 'train']
for folder in folders:
print(folder, len(os.listdir(dataset_path + '/' + folder)))

test 7
train 7

Define the paths to the dataset directories
train_dir = 'image-data/train/’
test_dir = 'image-data/test/'

Define emotions
emotions = ['angry', 'disgusted’', 'fearful', ‘'happy', ‘'neutral', 'sad', ‘surprised']

Figure 4: Data Exploration

Figure 4 above shows the code for the data exploration part of the study.

4.2 Data Preprocessing

Balancing the Dataset: Use the script to distribute images evenly across different emotions.
The data is then split into training and test sets.
Figure 5 below shows the Python code for reading and balancing the dataset.

def generateData(emo):
1st = os.listdir(train_dir + '/' 4+ emo)
for i in range(436):
if(i<=(len(lst)-len(lst)*.2)):
destination=os.path.join({train_path, emo)
else:
destination=os.path.join(test_path, emo)
img = train_dir + /' + emo + /' + 1st[i]
shutil.copy(img, destination)

for emo in tgdm(emotions):
generateData(ema)

100%| | 7/7 [e0:02<00:00, 2.35it/s]
Data Balancing

train_path = 'data/train’
test_path = 'data/test’

os.makedirs{train_path,exist_ok=True)
os.makedirs(test_path,exist_ok=True)

try:
for emo in emotions:
path = os.path.join{train_path, emao)
os.makedirs(path)
path = os.path.join(test_path, emo)
os.makedirs(path)
print("Folders created™)
except:
print({"Folders already created")

Folders already created

Figure 5: Code snippet for Data Balancing

Image Resizing and Normalization: Images are resized to (224, 224) and normalized using
ImageDataGenerator from Keras. Figure 6 below shows the data loading through scaling and
resizing.

Balanced Data Loading

train_dir = 'data/train/’
test dir = 'data/test/’

Create batches from the train and test directories

image_size = (224, 224)

datagen = ImageDataGenerator({rescale=1/255.)

train_generator = datagen.flow_from_directory(train_dir, target_size=image size)

test_generator = datagen.flow_from_directory(test_dir, target _size=image size)

Found 2965 images belonging to 7 classes.
Found 87 images belonging to 7 classes.

Figure 6: Resizing and Normalisation using the ImageDataGenerator

4.3 Data Visualisation

Data is visualised before modelling to ensure correctness of the variable names as well as the

emotions. Figure 7 depicts the code snippet to visualise the dataset contents.
Get a batch of images and labels from the generator
®_batch, y batch = next(train_generator)

G@et the emotion labels from the generator class indices
emotion_labels = list(train_generator.class_indices.keys())

Plot the images and labels
fig, axes = plt.subplots(4, 8, figsize=(15, B8))
axes = axes.rawvel()

for 1 in np.arange(@, 4%3):
axes[i].imshow(x_batch[i])
axes[i].axis('off")
emotion_idx = np.argmax(y_batch[i])
axes[i].set_title(emotion_labels[emotion_idx])

plt.subplots adjust(wspace=8.5, hspace=8.5)
plt.show()

Figure 7: Code snippet to visualize dataset contents

5 Model Implementation

5.1 Pre-trained Models
The project uses several pre-trained models available in Keras

5.11 VGG16

Fine-tuned for emotion classification. Figure 8 below shows the implementation of the
VGG16 model for the presented study.

VGG16

o # Load the pre-trained VGG16 model
vggle = VGGl6(input_shape=(224, 224, 3), weights="imagenet', include_top=False)
Freeze the layers of the pre-trained VGG16 model
for layer in vggl6.layers:
layer.trainable = True
Add additional layers to the model
x = Flatten()(vggl6.output)
x = Dense(1824, activation='relu')(x)
x = Dense(len(emotions), activation="relu')(x)
model = Model(wvggl6.input, x)
Compile the model
model.compile(loss="categorical_crossentropy’, optimizer='adam', metrics=["accuracy'])
model. summary ()

Figure 8: VGG 16 implementation

Create Early Stopping Callback to monitor the accuracy

Early Stopping = EarlyStopping(meniter = 'wal accuracy', patience = 3, restore_best weights = True, verbose
Create ReduceLROnPlateau Callback to reduce overfitting by decreasing learning rate

Reducing LR = ReducelLROnPlateau(monitor="val loss', factor=8.2, patience=2, verbose=1)

callbacks = [Early Stopping, Reducing LR]

Figure 9: Code snippet for creating early stopping callbacks to avoid overfitting

Train the model
history = model.fit(train_generator, validation_data= test_generator, epochs=58, callbacks=callbacks)

Figure 10: Fitting the VGG16 model with 50 epochs and callbacks

5.1.2 VGG19

Figure 11 below shows the implementation of the VGG19 model in the study.
Load the pre-trained VGG16 model
base = VeG19(input_shape=(224, 224, 3), weights="imagenet', include_top=False)
Freeze the layers of the pre-trained VGG1l6 model except the last block
for layer in base.layers[:-4]:
layer.trainable = False
Add additional layers to the model
= Flatten()(base.output)
= Dense(1824, activation="relu')(x)
Dropout(@.2)(x) # Add dropout regularization
= Dense(512, activation='relu')(x)
= Dropout(@.2)(x) # Add another dropout regularization
= Dense(len(emotions), activation='softmax')(x)
Create the fine-tuned model
vggl9 = Model(inputs=base.input, outputs=x)
Compile the model
optimizer = Adam(learning_rate=le-4)
vggl9.compile(loss="categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

T
n

-
1]

vggl9. summary()

Figure 11: VGG19 Implementation

Train the model
history = wggla.fit(train_generator, validation_data= test_generator, epochs=52, callbacks=callbacks)

Figure 12: Fitting the VGG19 model

5.1.3 ResNet50

A powerful CNN model used after freezing initial layers to improve accuracy. Figure 13
below shows its implementation.
base = ResNetS@V2(input_shape=(224, 224, 3), weights="imagenet', include_top=False)
Freeze the layers of the ResNet5® model:
for layer in base.layers:
layer.trainable = False
Add additional layers to the model
= Dropout(.25)(base.output)
= BatchMormalization()(x)
= Flatten()(x)
Dense(64, activation='relu')(x)
= BatchMormalization()(x)
= Dropout(.5)(x)
= Dense(len(emotions), activation='softmax')(x)
resnet = Model(base.input, x)
Compile the model
optimizer = Adami{learning_rate=le-4)

I A - A
n

resnet.compile(loss="categorical_crossentropy', optimizer=optimizer, metrics=["accuracy'])
resnet. summary()

Figure 13: ResNet50 Implementation

Train the model
history = resnet.fit(train_generator, validation_data= test generator, epochs=58, callbacks=callbacks)

Figure 14: Fitting ResNet50 model

5.1.4 Custom CNN

A simple CNN model designed specifically for this task. The construction of the CNN model

as a sequential network is shown in Figure 15.

cnn = Sequential()

cnn.add({Conv2D(32, (3,3), activation='relu', input_shape=(224, 224, 3)))
cnn.add({MaxPooling2D(pool size=(2,2), padding='same'))

chnn.add({Dropout(@.25))

cnn.add(Flatten())

cnn.add({Dense(64, activation="relu'))

chnn.add(BatchNormalization())

cnn.add({Dense(len{emotions),activation="softmax"))

Compile the model

optimizer = Adam(learning_rate=le-4)

cnn.compile(loss="categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
cnn. summary ()

Figure 15: CNN Implementation

Train the model
history = cnn.fit(train_generator, validation_data= test_generator, epochs=58, callbacks=callbacks)

Figure 16: Fitting CNN Model

Each model is trained using the training set, with early stopping and learning rate reduction
applied to prevent overfitting.

5.2 Training and Evaluation

The models are trained for 50 epochs, and their performance is monitored using validation
accuracy. The best model is selected based on the highest accuracy on the test set.

6 Music Recommendation System
The music recommendation system is built on the Spotify dataset. Key steps include:

6.1 Data Normalization

Features like danceability, acousticness, energy, etc., are normalized. Figure 17 below shows
the python code to normalise the relevant features from the Spotify songs dataset.
Normalize relevant features

features = ['danceability', 'acousticness', 'energy', 'valence', 'tempo']
data[features] = StandardScaler().fit_transform{data[features])

Figure 17: Normalisation of features using Standard Scaling

6.2 Mood Mapping

Predicted emotions are mapped to corresponding moods in the Spotify dataset. Figure 18

shows the mapping of the moods in the FER dataset to the ones in Spotify dataset.
Mapping of input moods to dataset moods

mood_map = {
'disgusted': 'Happy',
‘happy': ‘Happy',
‘sad': 'Happy',
'fearful': "Calm',
‘angry': 'Calm',
"surprised’': 'Energetic’,
"neutral': "Energetic’

}

Figure 18: Mapping the moods in the songs dataset with the ones in the FER dataset

6.3 KNN Model

The NearestNeighbors model from sklearn is used to find similar songs based on the
normalized features. Figure 19 below shows the implementation of the KNN model and a
recommendation system based on it.
Function to train KNN model for a specific mood
def train_knn_for_mood(data, mood, n_neighbors=5):
moeod_data = data[data[‘'mocd’] == mood]
knn = NearestNeighbors(n_neighbors=n_neighbors, metric="euclidean')
knn.fit(mood_data[features])
return knn, mood_data

Function to recommend songs based on a predicted mood
def recommend_songs(data, predicted mood, k=5):
target_mood = mood_map.get(predicted_mood, 'Happy')
knn, mood_data = train_knn_for_moodi{data, target_mood, n_neighbors=k)

Get the closest songs

distances, indices = knn.kneighbors(mood_data[features])

recommended_songs = mood_data.iloc[indices.flatten()].drop_duplicates().head(k)
return recommended_songs[['name’, ‘artist’, 'mood’, 'popularity’]]

Figure 19: Training the KNN model to identify top K recommendation

6.4 Querying an image and getting the recommendation
Figure 20 below shows the function to detect the faces in the images given to the system.

def imageFaceDetect(filename, img_shape = 224):
img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(img, 1.1, 4)
for w,y,w,h in faces:
rol Img = img[y: y + h , ®x: ®x + w]
roi Img = img[yv: ¥y + h , x: ® + w]
cv2.rectangle(img, (x,y), (x+w, y+h), (@, 255, @), 2)
plt.imshow(cv2. cvitColor{img,cv2.COLOR_BGR2RGE))
faces = faceCascade.detectMultiScale(roi_Img, 1.1, 4)
if len(faces) == @:
print("No Faces Detected")
else:
for (ex, ey, ew, eh) in faces:
img = roi_Img[ey: ey+eh , ex: ex+ew]
img = cv2.cvtColor(img,cw2.COLOR_BGR2RGE)
img= cv2.resize(img, (img_shape,img_shape))
img = img/255.
return img

Figure 20: Face Detection

Figure 21 below shows the code to detect the emotion for the query image.
def emotionPrediction(filename, class_names):
Import the target image and preprocess it
img = imageFaceDetect(filename)
Make a prediction
pred = resnet.predict({np.expand dims(img, axis=a))
G@et the predicted class
pred_class = class_names[pred.argmax()]
Plot the image and predicted class
plt.imshow(img)
plt.title(f"Prediction: {pred_class}")
plt.axis(False);
return pred_class

Figure 21: Emotion Prediction

7 Model Evaluation and Results

After training, the accuracy of each model is compared. A bar plot visualizes the performance
metrics. The best-performing model is then used to predict emotions on new images, and
corresponding song recommendations are generated.

Bar plot for accuracy Scores

plt.figure(figsize=(8, 6))

plt.bar(result['"Models'], result['Scores'])

plt.xlabel('Models")

plt.ylabel('Accuracy')

plt.ylim([@, 1])

plt.show()

Figure 22: Model Results

L0

0.8

0.6 1

Accuracy

0.4 1

0.2

0.0 T
VGG16 VGG19 ResNet50 CNN

Models

Figure 23: Modelling Results

pred_class = emotionPrediction("image-data/test/angry/im@.png", emotions) # with Resnet50
pred_class

1/1 ————————————— 0s 22ms/step
‘angry’

Prediction: angry

Figure 24: Querying Image for Emotion Prediction

recommendations = recommend_songs(data, pred class, k=5)
display(recommendations)

name artist mood popularity

5 A Burden to Bear Emmanuelle Rimbaud Calm 27
636 While the Rest of the World Sleeps Josh Kramer Calm 35
28 Anaviosi Alexi Musnitsky ~ Calm 38
43 Back+ Ton Snijders Calm 26
418 Pierre Hicham Chahidi Calm 3

Figure 25: Song recommendations for the above prediction

10

pred_class = emotionPrediction("/kaggle/input/emotion-detection-fer/test/neutral/iml.png", emotions) # with ResNet56V2
pred_class

No Faces Detected
1/1 ———————————— @s 22ms/step

‘neutral’

Prediction: neutral

recommendations = recommend_songs(data, pred_class, k=5)
display(recommendations)

name artist mood popularity

4 A Boy Brushed Red Living In Black And White Underoath Energelic 60
237 Holding On Scary Kids Scaring Kids Energelic 45
462 Same Direction Hoobastank Energetic]
389 QOut Of Control Hoobastank Energetic 0
592 Under A Killing Moon Thrice Energetic M

Figure 26: Emotion Prediction with Song Recommendations

8 Conclusion

This manual is useful in replicating all the research explained in this study. The above steps
should be repeated to recreate the environment, process the data, train all the necessary
models, and integrate the music recommendation system.

References

https://www.tensorflow.org/api_docs
https://scikit-learn.org/0.21/documentation.html
https://docs.opencv.org/4.x/index.html
https://docs.python.org/3/library/os.html

11

https://www.tensorflow.org/api_docs
https://scikit-learn.org/0.21/documentation.html
https://docs.opencv.org/4.x/index.html
https://docs.python.org/3/library/os.html

