===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Aji Poovannapoikayil
Student 1D: x22184431

School of Computing
National College of Ireland

Supervisor: Dr David Hamill

‘-—
National College of Ireland \ National

MSc Project Submission Sheet CollegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Aji Vishwambharan Poovannapoikayil
Student ID: x22184431
Programme: MSc. Data Analytics Year: 2023-2024
Module: MSc. Research Project
Lecturer: Dr David Hamill

Submission Due
Date: 12/08/2024

Project Title: Indian Sign Language Detection and Translation using Deep

Learning and Text-to-Speech

Word Count: 2030 Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Aji Poovannapoikayil
Date: 12% August, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Aji Poovannapoikayil
x22184431

1 Introduction

The manual provides detailed instructions on how to set up, configure, and run the Indian Sign
Language (ISL) and Translation system using Deep Learning models and a Text-to-speech
(TTS) engine. This document covers the entire setup process to replicate results, including
hardware and software requirements, installation steps, and system configuration.

2 System Requirements

2.1 Hardware Requirements
The configuration of the machine are as follows:
Table 1: Machine Hardware Configurations

Processor Minimum Intel i5 or equivalent

RAM Minimum 8GB (16GB Recommended)

GPU NVIDIA GPU with CUDA support (Optional but recommended for faster
model training locally)

Storage At least 50GB of disk space

2.2 Software Requirements

To ensure smooth execution of the code, run it on windows 10 or 11 or any other system with
similar requirements, using Python version 3.8 or higher.

Edition Windows 11 Home Single Language

Version 23H2

Installed on 31-05-2023

OS build 22631.3880

Experience Windows Feature Experience Pack 1000.22700.1020.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: Windows Operating System

The python code was written, maintained, and run using Jupyter notebook from the
Anaconda Navigator platform for data pre-processing, training, and other tasks. The Anaconda
can be downloaded for windows 64-bit. After installation, launch JupyterLab to run the

notebook. Follow the installation steps, and once installed, open Anaconda Navigator and type
‘jupyter notebook’ in the command line to launch it directly in your browser.

Link to download: https://docs.anaconda.com/anaconda/install/windows/

#A > Anaconda Distribution > Installation > Installing...

Installing on Windows

A Using Anaconda in a commercial setting? >

@ Tip

More of a visual learner? Sign in to Anaconda Cloud to follow along with our Installing
Anaconda (Windows) course linked below!

Install Anaconda Distribution for Windows =&

Figure 2: Anaconda Installation

3 Python Libraries Setup

The execution of notebook for data processing, the following python libraries must be installed
in the local environment after setting up Jupyter Notebook as mentioned in Section 2.2. The
packages are installed using ‘pip’ command.

Table 2: Python Libraries

Shutil I pip install shutil

Numpy I pip install numpy

Pandas I pip install pandas
Seaborn I pip install seaborn
Matplotlib I pip install matplotlib
Torch I pip install torch
Torchvision I pip install torchvision
Torchaudio I pip install torchaudio
Opencv-python I pip install opencv-python
Opencv-python-headless I pip install opencv-python-headless
Ultralytics I pip install ultralytics

‘Labellmg’ is a graphical Image annotation tool that must be downloaded separately for
labelling YOLO datasets. The python library is necessary for preparing the data in YOLO
format. After installation, library can be run by opening a command line and executing the
Python command ‘Labellmg.py’. This will launch the tool, as shown in Figure 3.

https://docs.anaconda.com/anaconda/install/windows/

Box Labels
| A Edit Label
Open
person
% person
Open Dir
‘ Q0 File List
Next Image /Msers/rflynn/src/labelimg/dem
IUsers/rilynn/src/labelimg/dem
‘ Users/rilynn/src/labelimg/dem

Msers/rflynn/src/labelimg/dem
/Users/rflynn/src/labelimg/dem
Msers/rilynn/src/iabelimg/dem
/Users/rflynn/src/labelimg/dem
MUsers/rilynn/src/labelimg/dem
/Users/rilynn/src/labelimg/dem
MUsers/rflynn/src/labelimg/dem

<1 §

Figure 3: Labellmg Tool for Annotation

4 Google Cloud Requirements

There is a requirement to use Google Colaboratory to run the extensive model for training the
YOLOV5 and YOLOv10 models. Google Colab is a free, cloud-based platform that allows to
write and execute the python code in a Jupyter notebook environment. It provides access to
more powerful computer resources, including GPU’s, make it ideal for machine and deep
learning without requiring local setup or installations. The below configuration machine can
be used for performing the training of YOLOv10 and YOLOV5.

Table 3: Google Cloud Configurations

GPU Model Specifications Use case Purpose
T4 GPU 16GB GDDRS6, 2560 | Initial training and Balances speed and
CUDA Cores Hyperparameter cost
tuning
L4 GPU 24GB GDDRS6, 7680 | Full data Training Enables faster
CUDA Cores and Examine results | processing than T4

5 Dataset Overview

The raw data needs to be downloaded from Mendeley data, where it is published and
contributed by (Tyagi & Bansal, 2022). The twenty ISL words in the dataset are represented
by RGB images of hand gestures. These words are frequently used to convey messages or
request assistance in medical situations. The words in this dataset are all static sign images.
Eight people between the ages of nine and thirty were photographed, six of whom were male
and two of whom were female. There are 18,000 JPEG images in the dataset (Tyagi & Bansal,
2022). The URL of the data is https://data.mendeley.com/datasets/s6kgh6r3ss/2.

6 Dataset Preparation
6.1 Data Pre-processing

After extracting the data, load and execute the ‘data-prep.ipynb’ notebook in Jupyter Notebook.
This code helps create the necessary directory structure for YOLO training, as illustrated in
Figure 4. After this step, manually perform the label annotation task as described in Section
6.2. The final code block processes the images into an 80:20 ratio, with 14,034 images for
training and 3,576 for validation. Labelling is required for both training and validation datasets.

— images/ # Images folder

| I— train

— labels/ # Labels folder

| I— train

| L— val

Figure 4: Folder Structure of Data for YOLOvV10 training

1 # Process the training and validation images

2 process files(train_image paths, image train dir, label train dir)
3 process files(wval image paths, image val dir, label val dir)
4
5

print(“”Images and labels have been processed and moved successfully.™)

Images and labels have been processed and moved successfully.
Figure 5: Data pre-processing

6.2 Data Annotation

This is an important step in the data processing workflow, where each image is labelled by
creating bounding boxes and applying the appropriate labels. The label information for each
image is saved as a .txt file in the same folder. These files must be moved into the ‘labels’
folder, as referenced in Figure 4. Any errors in this process may require repeating the task,
which could result in suboptimal model training outcomes. It is essential to save the annotations
in YOLO format.

Example of YOLO labels.txt file:
class x_center y_center width height
00.5025 0.5 0.995 0.99

Create a ‘data.yaml’ file, the ‘data.yaml’ is a configuration file that specifies important
information for training the model. It includes path to the training and validation datasets, the
number of classes, and the name of the classes. The file ensures that the YOLO model correctly
interprets the dataset structure and knows how to map predicting bounding boxes to specific
object categories during training and inference. This file can be placed inside the dataset folder
for easier access during model training. The dataset format required is same for training both
YOLOvV10 and YOLOVS.

2 Box Labels
2 [dit Label
Open
el |0 difficutt
Open Dir (O] use default label v
Change Save Dir _ | tabelimg ? X e
NextTniage [vo <A cancel
ﬁ Doctor]
Prev Image [Doctor
]
Verify Image
— | | File List L
n D:\Thesis\Data_20\images\val\doctor_
o
! D:\Thesis\Data_20\images\val\doctor_
YOLO D:\Thesis\Data_20\images\val\doctor_ I
= D:\Thesis\Data_20\images\val\doctor_i
) s D:\Thesis\Data_20\images\val\doctor_:
Create RectBox D:\Thesis\Data_20\images\val\doctor_i
[N

Width: 198, Height: 160 / X: 200; Y: 160

Figure 5: Labellmg Tool

path: fcontent/ISL-Detection/Data # dataset root dir
train: images/train # train images (relative to "path”)
val: images/val # val images (relative to 'path’)

test: images/test # test images (optional)

Classes
names:

@: Afraid
Lgree
Assistance
Bad
Become
College
Doctor
From

: Pain

L T < N« Y L N Y

: Pray
18: Secondary
Figure 6: Format of data.yaml file

7 Model Training

YOLOv5 and YOLOV10 were chosen for their state-of-the-art performance in object detection.
YOLOVS5 is well-regarded for its strong community support and widespread usage, making it
an excellent baseline model for comparison. YOLOV10, the latest successor, was selected for
this research due to its improved accuracy and precision over previous models. The model
training was conducted in two phases: first by running the YOLOV5 model, and then by running
YOLOV10. The pre-processed dataset, along with the ‘data.yaml’ file, is a prerequisite for
training and is saved in the ‘data’ folder on GitHub at https://github.com/ajivishwam/ISL-
Detection. This dataset can be cloned and used for training.

5

https://github.com/ajivishwam/ISL-Detection
https://github.com/ajivishwam/ISL-Detection

7.1 Training Preparation Steps for YOLOv5 and YOLOv10 model

Import the notebook titled ‘ISL Detection _yolov5.ipynb’ and ‘ISL_Detection_yolov10.ipynb’
from the ‘Notebooks’ folder on GitHub (https://github.com/ajivishwam/ISL-Detection) for
training the YOLOV5 and YOLOvV10 model in Google Colab. Follow these steps:

1) Install the dependencies and verify the GPU configuration within Google cloud as Shown
in Figure 7 and Figure 8.

[1 !nvidia-smi

S~ Thu Aug 8 12:16:14 2024

e et e T +
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.85 CUDA Version: 12.2 |
[e B - +
GPU Name Persistence-M	Bus-Id Disp.A	Vvolatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
@ Tesla T4 Ooff	oo0eER00:00:04.0 OFf	o
N/A 39C P8 oW/ 7eW	eMiB / 1536@MiB	0% Default
	I N/A-	
e o e +		
e et e T +		
Processes:		
GPU GI (I PID Type Process name GPU Memory		
D 1ID Usage		

Figure 7: Google Colab T4 GPU

[1 !pip install --upgrade ultralytics==8.2.67
Ipip install -q supervision

=v Collecting ultralytics==8.2.67
Downloading ultralytics-8.2.67-py3-none-any.whl.metadata (41 kB)
41.3/41.3 kB 1.6 MB/s eta 9:008:00
Requirement already satisfied: numpy<2.0.0,>=1.23.@ in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: matplotlib»=3.3.@ in fusr/local/lib/python3.18/dist-packages (fr

L e o de. o _ar_r . R T P - R T B T TR R N

A~ R

Figure 8: Dependency Installation

https://github.com/ajivishwam/ISL-Detection

2) Clone the Github repository containing the processed data, which can be found in the ‘Data’
folder.

[] !git clone https://github.com/ajivishwam/ISL-Detection.git

=~ Cloning into 'ISL-Detection’...
remote: Enumerating objects: 17338, done.
remote: Counting objects: 1ee% (5/5), done.
remote: Compressing objects: 1e0% (5/5), done.
remote: Total 17338 (delta @), reused 4 (delta @), pack-reused 17333
Receiving objects: 1ee% (17338/17338), 492.96 MiB | 39.55 MiB/s, done.
Resolving deltas: 10e% (8/8), done.
Updating files: 1@@% (71665/71665), done.

Figure 9: Download processed dataset

3) Cloning the YOLOVS5 (https://github.com/ultralytics/yolov5.git Jand YOLOv10
(https://github.com/THU-MIG/yolov10.qit) files from official repository

o lgit clone https://github.com/ultralytics/yolov5.git
%cd yolovs

5+ Cloning into 'yolovs'...
remote: Enumerating objects: 16836, done.
remote: Counting objects: 1@e% (11/11), done.
remote: Compressing objects: 1ee% (11/11), done.
remote: Total 16836 (delta 1), reused 6 (delta @), pack-reused 16825
Receiving objects: 100% (16836/16836), 15.57 MiB | 17.12 MiB/s, done.
Resolving deltas: 10@% (11541/11541), done.
/content/yolovs

Figure 10: Download Yolov5 repository

4) Install all the required dependencies in yolov5 folder.

[1 !pip install -r requirements.txt

5+ collecting gitpython»=3.1.3@ (from -r requirements.txt (line 5))

Downloading GitPython-3.1.43-py3-none-any.whl.metadata (13 kB)
Requirement already satisfied: matplotlib»>=3.3 in /usr/local/lib/python3.16/dist-packages
Requirement already satisfied: numpy>=1.23.5 in /usr/local/lib/python3.10/dist-packages (f
Requirement already satisfied: opencv-python»=4.1.1 in /fusr/local/lib/python3.1@/dist-pack
Collecting pillow»=1@.3.8 (from -r requirements.txt (line 9))

Downloading pillow-10.4.8-cp318-cp31l@-manylinux 2 28 x86 64.whl.metadata (9.2 kB)
Requirement already satisfied: psutil in /usr/local/lib/python3.18/dist-packages (from -r

Figure 11: Install dependencies

5) Download the pre-trained weights from their official repository, the choice of weights can
be made depending on computational power and specific parameters required for training.

https://github.com/ultralytics/yolov5.git
https://github.com/THU-MIG/yolov10.git

)

import os

import urllib.request

#Create a directory for the weights in the current working directory

weights dir = os.path.join(os.getcwd(), 'weights')

os.makedirs(weights dir, exist ok = True)

#urls of the weights file

urls = ["https://github.com/ultralytics/yolovs/releases/download/v6.@/yolovsl.pt”,
"https://github.com/ultralytics/yolovs/releases/download/v6.8/yolovsm.pt",
"https://github.com/ultralytics/yolovs/releases/download/v6.8/yolovss.pt”,
"https://github.com/ultralytics/yolovs/releases/download/v6.8/yolovsx.pt"]

#Download each file

for url in urls:
filename = os.path.basename(url)
filepath = os.path.join(weights dir, filename)
urllib.request.urlretrieve(url, filepath)
print(f"Downloaded: {filepath}")

Downloaded: /content/yolovs/weights/yolovsl.pt
Downloaded: /content/yolovs/weights/yolovsm.pt
Downloaded: /content/yolov5/weights/yolovss.pt
Downloaded: /content/yolovs/weights/yolovsx.pt

Figure 12: Download weights

7.2 Model Training YOLOV5

e The model was trained using custom data and hyperparameters for 25 epochs with a
batch size of 8, which yielded best results.

e These results are saved for further testing and validation. The output from the YOLOV5
model and the weights of the best trained model are saved under folder
‘runs/train/exp/weights/best.pt’.

e Save this weight for running inference and testing on web application.

Ipython train.py --imgsz 256 --batch-size 8
--optimizer AdamW --patience ®

--epochs 25 --data '/content/ISL-Detection/Data 20/data.yaml’ --weights ‘'weights/yolovSm.pt® \
--cos-1r --nosave --cache

22/24 1.07G ©.902803 ©0.003132 0.0398 20 256: 100% 1788/1788 [03:23<00:00, 8.78it/s]
Class Images Instances P R mAP5@ mAP50-95: 100% 224/224 [00:30<00:00, 7.38it/s]
all 3576 3576 9.913 9.928 8.97 9.867
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
23/24 1.87G 8.802613 8.082975 8.83895 25 256: 180% 1788/1788 [03:25<00:80, 8.70it/s]
Class Images Instances P R mAP58 mAP50-95: 100% 224/224 [00:30<00:00, 7.30it/s]
all 3576 3576 8.925 08.939 0.978 0.874
Epoch GPU_mem box_loss obj_less cls_loss Instances Size
24/24 1.87G 8.802473 8.0082939 8.83823 29 256: 100% 1788/1788 [03:27<@@:00, 8.61it/s]
Class Images Instances P R mAP58 mAP58-95: 100% 224/224 [00:29<08:00, 7.53it/s]
all 3576 3576 8.934 8.951 9.981 0.881
25 epochs completed in 1.682 hours
Optimizer stripped from runs/train/exp/weights/last.pt, 42.2MB
Optimizer stripped from runs/train/exp/weights/best.pt, 42.2MB
Validating runs/train/exp/weights/best pt...
Fusing layers...
Model summary: 212 layers, 20929713 parameters, @ gradients, 48.1 GFLOPs
Class Images Instances P R mAPS@ mAPS@-S5: 100% 224/224 [00:34<@0:00, 6.45it/s]
all 3576 3576 8.934 8.951 9.981 9.881
Afraid 3576 188 8.934 ©.983 9.988 9.897
Agree 3576 186 8.991 1 8.995 @.983
Assistance 3576 186 8.919 9.989 8.994 8.989
Bad 3576 180 ©.983 0.954 9.991 9.918
Become 3576 188 8.966 0.939 9.988 9.887
College 3576 188 8.9 8.961 9.979 9.877
Doctor 3576 158 8.961 8.991 8.994 9.888
From 3576 188 8.979 8.983 8.995 @.898
Pain 3576 180 1 0.986 0.9%4 9.895
Pray 3576 180 9.373 0.9%4 09.995 9.895
Secondary 3576 188 9.921 0.839 9.951 9.835
Skin 3576 188 8.967 8.991 9.994 9.895
Small 3576 188 1 8.997 8.995 @.85%4
Specific 3576 188 8.965 8.762 8.954 a.827
Stand 3576 180 0.866 0.939 0.978 9.871
Today 3576 180 9.373 0.983 09.995 9.8%4

Figure 13: Model Training results

8

7.3 Model Training YOLOvV10

e The model was trained using custom data and hyperparameters for 25 epochs with a
batch size of 8, which yielded best results. These results are saved for further testing
and validation.

e The output from the YOLOv10 model and the weights of the best trained model are
saved under folder ‘runs/detect/train/weights/best.pt’.

e Save this weight for running inference and testing on web application.

Iyolo task=detect mode=train epochs=25 batch=8 plots=True imgsz=256 model='weights/yoloviem.pt"' data="/content/ISL-Detection/Data 2@/data.yaml’ \
1re=0.001 optimizer=AdamiW \

hsv_h=0.815 hsv_s=0.7 hsv_v=0.4 \

degrees=5.0 translate=0.1 scale=0.5 shear=2.0 mosaic=1.0 mixup=0.2 \

patience=10 warmup_epochs=5.0 cos_lr=True amp=True \

save_period=1

New https://pypi.org/project/ultralytics/8.2.70 available & Update with 'pip install -U ultralytics®
Ultralytics YOLOV8.2.67 % Python-3.10.12 torch-2.@.1+cull7 CUDA:@ (Tesla T4, 15102MiB)

engine/trainer: task=detect, mode=train, model=weights/yoloviem.pt, data=/content/drive/MyDrive/Colab Note
overriding model.yaml nc=80 with nc=20

from n params module arguments
4] -1 01 1392 ultralytics.nn.modules.conv.Conv [3, 48, 3, 2]
1 -101 41664 ultralytics.nn.modules.conv.Conv [48, 96, 3, 2]
- - - pam e PR s T T Fmm me A - -
Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size
23/25 1.16G 0.05964 9.89574 1.818 5 256: 100% 1789/1789 [65:14'(93:99, 5;69it/5]
Class Images Instances Box (P R MAPS@ mMAP5@-95): 100% 224/224 [00:37<00:00, 5.94it/s]
all 3576 3576 @.985 9.999 9.994 9.994
Epoch GPU_mem box_loss cls_less dfl loss Instances size
24/25 1.13G6 0.05779 9.08852 1.817 5 256: 100% 1789/1789 [05:15<00:00, 5.681t/s]
Class Images Instances Box (P R MAPS@ mAP5@-95): 10@% 224/224 [00:38<00:0@, 5.87it/s]
all 3576 3576 9.99 ©.996 0.994 ©.994
Epoch GPU_mem box_loss cls_less dfl loss Instances Size
25/25 1.16G 0.05489 9.88517 1.819 5 256: 100% 1789/1789 [©5:14<00:00, 5.69it/s]
Class Images Instances Box (P R MAPS@ mMAP5@-95): 108% 224/224 [00:39<00:00, 5.72it/s]
all 3576 3576 9.995 9.992 ©9.994 9.994
25 epochs completed in 2.643 hours.
optimizer stripped from runs/detect/train2/weights/last.pt, 33.5MB
optimizer stripped from runs/detect/train2/weights/best.pt, 33.5MB
validating runs/detect/train2/weights/best.pt...
Ultralytics YOLOvV8.2.67 %’ Python-3.18.12 torch-2.0.1+cull7 CUDA:@ (Tesla T4, 15102MiB)
YOLOv1®m summary (fused): 369 layers, 16,473,544 parameters, @ gradients, 63.5 GFLOPs
Class Images Instances Box (P R MAPS@ mMAP5@-95): 108% 224/224 [00:37<00:00, 5.90it/s]
all 3576 3576 @.99 9.996 9.994 2.994
Afraid 180 180 8.997 1 6.995 ©.995
Agree 180 180 1 1 0.995 ©.995
Assistance 180 18@ 1 1 0.995 ©.995
Bad 180 180 1 1 9.995 9.995
Become 180 180 8.997 1 8.995 ©.995
College 180 180 8.997 1 0.995 ©.995
Doctor 150 15@ 1 ©.992 9.995 2.995
From 180 180 @.997 1 8.995 9.995
Pain 180 180 8.997 1 0.995 ©.995
Pray 180 180 1 1 0.995 ©.995
Secondary 180 180 @.997 1 9.995 9.995
Skin 180 180 1 1 6.995 ©.995
small 180 180 8.997 1 0.995 ©.995
Specific 180 180 1 1 9.995 9.995
Stand 180 180 9.993 1 8.995 9.995
Today 180 180 @.999 1 8.995 ©.995
Warn 180 180 9.957 0.95 ©.987 0.987
Which 180 180 1 1 9.995 9.995
Work 186 186 @.997 1 8.995 9.995
You 18@ 18@ 9.884 0.978 8.99 2.99

Speed: ©.1ms preprocess, 3.2ms inference, ©.6ms loss, ©.2ms postprocess per image
Results saved to runs/detect/train2

Figure 14: Model Training results of YOLOvV10

8 Running Inference

The next step is to run the inference by testing the model on new, previously untested images.
These test images should be self-created and should include images that were not used during
training.

8.1 Validation Testing on YOLOV5

To validate the model, follow these steps:
Run the inference code for detection as shown in the referenced Figure 10.
Provide path to the ‘best.pt’ weight saved during model training, as well as the path to

©

Fusi

Model
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image

the new images.

The inference results will be saved in the ‘runs/detect/exp’ directory.

i Ihference or detection on new images

Ipython detect.py --source '/content/ISL-Detection/Data_20/images/test’ \

--weights '/content/yolovs/runs/train/exp/weights/best.pt’ --img 64@ --save-txt --save-conf

ng layers...

1/45
2/45
3/45
4/45
5/45
6/45
7/45
8/45
9/45
10/45
11/45
12/45
13/45
14/45
15/45
16/45
17/45
18/45
19/45
20/45

1@.
11.
12,
13.
14,
15.
16.

/content/test _images/Image
/content/test _images/Image
/content/test _images/Image
/content/test images/Image
/content/test _images/Image
/content/test _images/Image
/content/test _images/Image
/content/test images/Image
/content/test _images/Image
/content/test _images/Image
/content/test _images/Image
/content/test _images/Image
/content/test_images/Image
/content/test _images/Image
J/content/test_images/Image
/content/test _images/Image
/content/test_images/Image
/content/test _images/Image
/content/test images/Image

18
19
2.
20
21
22
23
24
25
26
27

jpeg: 640x6490 1
jpeg: 640x640
jpeg: 640x640
jpeg: 640x640 1
jpeg: 640x6490 1

summary: 212 layers, 20929713 parameters, © gradients, 48.1 GFLOPs
J/content/test images/Image 1.jpeg: 640x640 1 From, 901.8ms

Bad, 1 Become, 1 College, 845.6ms

(no detections), 816.6ms
(no detections), 842.6ms

Become, 1 Work, 840.9ms
Pain, 881.5ms

jpg: 640x640 1 Become, 837.4ms
jpg: 640x64@ 1 Afraid, 1 Become, 1 You, 855.6ms

.jpe: 640x640 1
.jpe: 640x640 1
jpeg: 640x6490 1
.jpe: 640x640 2
.jpg: 64ex64e 2
.jpe: 640x640 1
.Jpg: 64exe4e 1
.jpe: 640x640 2
.jpg: 640x640 1
.jpe: 640x640 1
.ipg: 640x640 1

17.jpg: 640x64@ 2 Afraids, 1 Bad, 1 You, 833.1ms

Agree, 2 Froms, 860.7ms

Which, 1 You, 840.2ms

Pain, 1235.4ms

Becomes, 1395.4ms

Becomes, 1385.9ms

From, 1 Pain, 1 Work, 125@.1ms
Bad, 1 Become, 836.5ms
Becomes, 1 College, 1 Pain, 833.9ms
Become, 1 Pain, 83@.6ms
Become, 1 You, 831.6ms

Doctor. 836.7ms

Figure 15: Inference results of Yolovb

8.2 Validation Testing on YOLOv10

To validate the model, follow these steps:
Run the inference code for detection as shown in the referenced Figure 10.
Provide path to the ‘best.pt’ weight saved during model training, as well as the path to

©

=

the new images.

The inference results will be saved in the ‘runs/detect/predict’ directory.

lyolo task=detect mode=predict conf=0.76 save=True model='/content/yolov1e/runs/detect/train/weights/best.pt' source='/content/ISL-Detection/Data_20/images/test

Ultralytics YOLOV8.2.75 &’ Python-3.10.12 torch-2.0.1+cull?7 CUDA:@ (Tesla T4, 15102MiB)

YoLoviem summary (fused): 369 layers, 16,473,544 parameters, @ gradi

image 1/45 /content/ISL-Detection/Data_20/images/test/Image 1.jpeg:
image 2/45 /content/ISL-Detection/Data_20/images/test/Image 1@.jpeg:
image 3/45 /content/ISL-Detection/Data_20/images/test/Image 11.jpeg:
image 4/45 /content/ISL-Detection/Data_20/images/test/Image 12.]peg:
image 5/45 /content/ISL-Detection/Data_20/images/test/Image 13.jpeg:
image 6/45 /content/ISL-Detection/Data_20/images/test/Image 14.jpeg:
image 7/45 /content/ISL-Detection/Data_20/images/test/Image 15.7pg:
image 8/45 /content/ISL-Detection/Data_20/images/test/Image 16.jpg:
image 9/45 /content/ISL-Detection/Data_20/images/test/Image 17.jpg:
image 10/45 /content/ISL-Detection/Data_20/images/test/Image 18.]jpg:
image 11/45 /content/ISL-Detection/Data_20/images/test/Image 19.]jpg:
image 12/45 /content/ISL-Detection/Data_20/images/test/Image 2.jpeg:
image 13/45 /content/ISL-Detection/Data_20/images/test/Image 20.]jpg:
image 14/45 /content/ISL-Detection/Data_20/images/test/Image 21.]jpg:
image 15/45 /content/ISL-Detection/Data_20/images/test/Image 22.]pg:

ents, 63.5 GFLOPS

256x256 (no detections),
256x256 1 Pain, 21.6ms
256x256 1 Pain, 18.6ms
256x256 1 From, 18.9ms
256%256 1 From, 18.8ms
256%256 1 From, 18.8ms
256x256 1 Warn, 18.7ms
256x256 1 Afraid, 18.2ms
256x256 1 Afraid, 18.5ms
256x256 1 Agree, 18.0ms
256x256 1 Agree, 19.4ms
256x256 1 Today, 18.9ms
256x256 1 Assistance, 19.3ms
256x256 1 Assistance, 20.9ms
256x256 1 Bad, 20.5ms

10

23.2ms

Figure 16: Inference results of Yolov10

[1 import os
from IPython.display import Image, display

Specify the directory containing images
directory path = '/content/yolovi@/runs/detect/predict/"

List all image files in the directory
image files = [f for f in os.listdir(directory path) if f.endswith(('png', 'jpg', "jpeg'))]

Display each image

for image_file in image files:
image_path = os.path.join(directory path, image file)
display(Image(filename=image path))

0

Figure 16: Display Inference Image

9 Indian Sign Language Recognition and Translation text to
speech Flask web application

This project is an Indian Sign Language Detection web application that allows users to upload
static sign images, or use their webcam to perform Indian Sign Language (ISL) detection using
YOLO models (YOLOvV5 or YOLOvV10). The detected signs can be translated into various
Indian languages, and the translated text can be converted to speech. Some of the features are
listed below:

o Upload static sign images or use the webcam for sign detection

e Choose between YOLOV5 and YOLOv10 models

o Translate detected text into various Indian languages

o Text-to-speech conversion for translated text

e Go back button to clear results

Steps to replicate the installation to test the application:

1. Clone the GitHub repository (https://github.com/ajivishwam/Flash-ISL-WebApp.qit)

git clone https://github.com/ajivishwam/Flash-ISL-WebApp.git
cd Flash-ISL-WebApp

2. Install the required dependencies

pip install -r requirements.txt

11

https://github.com/ajivishwam/Flash-ISL-WebApp.git

. Create a virtual environment for FinalYOLOV5. Run the below script using Git Bash or
shell that support ".sh" files

cd FinalYOLOv5S/
.setup.sh

. Create a virtual environment for FinalYOLOV10. Run the below script using Git Bash or
shell that support ".sh™ files

cd FinalYOLOv1@®/
.setup.sh

The implementation code is in ‘app.py’. Run the Python application to serve it locally at
‘http://127.0.0.1:5000°.

Upload images by selecting the model and translation language, then upload the static sign
images, as shown in Figure 17.

The ‘result.html’ is generated, displaying the output of the images, as illustrated in Figures
18 and 19.

Figure 20 shows the predictions of ISL Image detection and their translation to text and
speech for multiple images.

@ 127.00.1:5000 b 4

link [leaming [3 Reminder

ISL SignSpeak Translator

Image Upload Method

Choose your model A

Choose translated language A

FILE

Webcam Upload Method
Choose your model -
Choose translated language v
USE WEBCAM

Figure 16: Home page of ISL Application

12

7.0.0.1:5000

1 leaning [Reminder

ISL SignSpeak Translator

Image Upload Method

Model

YOLOv10 -

Translated Language

Hindi A

Image 21,jpg

UPLOAD AND PROCESS

Figure 17: ISL Image upload and Model Selection

> G O® 127.001:5000 * O & 0

3 Jobs-link [learning [Reminder

ISL SignSpeak Translator

Detected Image Detected Word and
: Translation

Detected Word: Assistance
Translated Word: S8l

Audio:

P 0:00/0:01 o——————)

Processing Time: 9.9 seconds

GO BACK

Figure 18: ISL Image Prediction, translation with audio

13

C ©® 127.00.1:5000 e 3 s O

3 Jobs-link [learning [Reminder

ISL SignSpeak Translator

Detected Image Detected Word and
Translation

Detected Word: Pray
Translated Word: 2T &=AT

Audio:

> 0:00/0:01 e—————)

Processing Time: 6.89 seconds

GO BACK

Figure 19: ISL Image Prediction and translation with audio

€ 5 ¢ (0 vobism ¥ o 1@ : € 9 0 Q@ pTansm * 0O @ : ¢ > O O voasom 0O @
ISL SignSpeak Translator ISL SignSpeak Translator ISL SignSpeak Translator
Detected Detected Detected Detected Detected Detected
Image Word and Image Word and Image Word and
Translation Translation — Translation

Detectad Word: Skin Detected Word: Teclor

Detected Word: Colcge
Translated Word: T Translated Word: =1 “Translated Word: femars

AALicos Audio:

Audio:
> 0000007 = M) i > 000/000 = @ i » 0 1=
Processing Time: *4.57 seconds ocessi onds Processing Time: 13.4 scoonds

Figure 20: ISL Image Predictions
References

Tyagi, A., & Bansal, S. (2022). Indian sign Language-Real-life Words. Retrieved from
https://data.mendeley.com/datasets/s6kgh6r3ss/2

14

