

Configuration Manual

MSc Research Project

Data Analytics

Aji Poovannapoikayil

Student ID: x22184431

School of Computing

National College of Ireland

Supervisor: Dr David Hamill

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Aji Vishwambharan Poovannapoikayil

Student ID:

x22184431

Programme:

MSc. Data Analytics

Year:

2023-2024

Module:

MSc. Research Project

Lecturer:

Dr David Hamill

Submission Due

Date:

12/08/2024

Project Title:

Indian Sign Language Detection and Translation using Deep

Learning and Text-to-Speech

Word Count:

2030 Page Count: 14

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Aji Poovannapoikayil

Date:

12th August, 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

 Configuration Manual

Aji Poovannapoikayil

x22184431

1 Introduction

The manual provides detailed instructions on how to set up, configure, and run the Indian Sign

Language (ISL) and Translation system using Deep Learning models and a Text-to-speech

(TTS) engine. This document covers the entire setup process to replicate results, including

hardware and software requirements, installation steps, and system configuration.

2 System Requirements

2.1 Hardware Requirements

The configuration of the machine are as follows:

Table 1: Machine Hardware Configurations

Processor Minimum Intel i5 or equivalent

RAM Minimum 8GB (16GB Recommended)

GPU NVIDIA GPU with CUDA support (Optional but recommended for faster

model training locally)

Storage At least 50GB of disk space

2.2 Software Requirements

To ensure smooth execution of the code, run it on windows 10 or 11 or any other system with

similar requirements, using Python version 3.8 or higher.

 Figure 1: Windows Operating System

The python code was written, maintained, and run using Jupyter notebook from the

Anaconda Navigator platform for data pre-processing, training, and other tasks. The Anaconda

can be downloaded for windows 64-bit. After installation, launch JupyterLab to run the

2

notebook. Follow the installation steps, and once installed, open Anaconda Navigator and type

‘jupyter notebook’ in the command line to launch it directly in your browser.

Link to download: https://docs.anaconda.com/anaconda/install/windows/

 Figure 2: Anaconda Installation

3 Python Libraries Setup

The execution of notebook for data processing, the following python libraries must be installed

in the local environment after setting up Jupyter Notebook as mentioned in Section 2.2. The

packages are installed using ‘pip’ command.

 Table 2: Python Libraries

Shutil ! pip install shutil

Numpy ! pip install numpy

Pandas ! pip install pandas

Seaborn ! pip install seaborn

Matplotlib ! pip install matplotlib

Torch ! pip install torch

Torchvision ! pip install torchvision

Torchaudio ! pip install torchaudio

Opencv-python ! pip install opencv-python

Opencv-python-headless ! pip install opencv-python-headless

Ultralytics ! pip install ultralytics

‘LabelImg’ is a graphical Image annotation tool that must be downloaded separately for

labelling YOLO datasets. The python library is necessary for preparing the data in YOLO

format. After installation, library can be run by opening a command line and executing the

Python command ‘LabelImg.py’. This will launch the tool, as shown in Figure 3.

https://docs.anaconda.com/anaconda/install/windows/

3

Figure 3: LabelImg Tool for Annotation

4 Google Cloud Requirements

There is a requirement to use Google Colaboratory to run the extensive model for training the

YOLOv5 and YOLOv10 models. Google Colab is a free, cloud-based platform that allows to

write and execute the python code in a Jupyter notebook environment. It provides access to

more powerful computer resources, including GPU’s, make it ideal for machine and deep

learning without requiring local setup or installations. The below configuration machine can

be used for performing the training of YOLOv10 and YOLOv5.

Table 3: Google Cloud Configurations

GPU Model Specifications Use case Purpose

T4 GPU 16GB GDDR6, 2560

CUDA Cores

Initial training and

Hyperparameter

tuning

Balances speed and

cost

L4 GPU 24GB GDDR6, 7680

CUDA Cores

Full data Training

and Examine results

Enables faster

processing than T4

5 Dataset Overview

The raw data needs to be downloaded from Mendeley data, where it is published and

contributed by (Tyagi & Bansal, 2022). The twenty ISL words in the dataset are represented

by RGB images of hand gestures. These words are frequently used to convey messages or

request assistance in medical situations. The words in this dataset are all static sign images.

Eight people between the ages of nine and thirty were photographed, six of whom were male

and two of whom were female. There are 18,000 JPEG images in the dataset (Tyagi & Bansal,

2022). The URL of the data is https://data.mendeley.com/datasets/s6kgb6r3ss/2.

4

6 Dataset Preparation

6.1 Data Pre-processing

After extracting the data, load and execute the ‘data-prep.ipynb’ notebook in Jupyter Notebook.

This code helps create the necessary directory structure for YOLO training, as illustrated in

Figure 4. After this step, manually perform the label annotation task as described in Section

6.2. The final code block processes the images into an 80:20 ratio, with 14,034 images for

training and 3,576 for validation. Labelling is required for both training and validation datasets.

 Figure 4: Folder Structure of Data for YOLOv10 training

 Figure 5: Data pre-processing

6.2 Data Annotation

This is an important step in the data processing workflow, where each image is labelled by

creating bounding boxes and applying the appropriate labels. The label information for each

image is saved as a .txt file in the same folder. These files must be moved into the ‘labels’

folder, as referenced in Figure 4. Any errors in this process may require repeating the task,

which could result in suboptimal model training outcomes. It is essential to save the annotations

in YOLO format.

Example of YOLO labels.txt file:

class x_center y_center width height

0 0.5025 0.5 0.995 0.99

Create a ‘data.yaml’ file, the ‘data.yaml’ is a configuration file that specifies important

information for training the model. It includes path to the training and validation datasets, the

number of classes, and the name of the classes. The file ensures that the YOLO model correctly

interprets the dataset structure and knows how to map predicting bounding boxes to specific

object categories during training and inference. This file can be placed inside the dataset folder

for easier access during model training. The dataset format required is same for training both

YOLOv10 and YOLOv5.

5

 Figure 5: LabelImg Tool

 Figure 6: Format of data.yaml file

7 Model Training

YOLOv5 and YOLOv10 were chosen for their state-of-the-art performance in object detection.

YOLOv5 is well-regarded for its strong community support and widespread usage, making it

an excellent baseline model for comparison. YOLOv10, the latest successor, was selected for

this research due to its improved accuracy and precision over previous models. The model

training was conducted in two phases: first by running the YOLOv5 model, and then by running

YOLOv10. The pre-processed dataset, along with the ‘data.yaml’ file, is a prerequisite for

training and is saved in the ‘data’ folder on GitHub at https://github.com/ajivishwam/ISL-

Detection. This dataset can be cloned and used for training.

https://github.com/ajivishwam/ISL-Detection
https://github.com/ajivishwam/ISL-Detection

6

7.1 Training Preparation Steps for YOLOv5 and YOLOv10 model

Import the notebook titled ‘ISL_Detection_yolov5.ipynb’ and ‘ISL_Detection_yolov10.ipynb’

from the ‘Notebooks’ folder on GitHub (https://github.com/ajivishwam/ISL-Detection) for

training the YOLOv5 and YOLOv10 model in Google Colab. Follow these steps:

1) Install the dependencies and verify the GPU configuration within Google cloud as Shown

in Figure 7 and Figure 8.

Figure 7: Google Colab T4 GPU

 Figure 8: Dependency Installation

https://github.com/ajivishwam/ISL-Detection

7

2) Clone the Github repository containing the processed data, which can be found in the ‘Data’

folder.

 Figure 9: Download processed dataset

3) Cloning the YOLOv5 (https://github.com/ultralytics/yolov5.git)and YOLOv10

(https://github.com/THU-MIG/yolov10.git) files from official repository

 Figure 10: Download Yolov5 repository

4) Install all the required dependencies in yolov5 folder.

 Figure 11: Install dependencies

5) Download the pre-trained weights from their official repository, the choice of weights can

be made depending on computational power and specific parameters required for training.

https://github.com/ultralytics/yolov5.git
https://github.com/THU-MIG/yolov10.git

8

 Figure 12: Download weights

7.2 Model Training YOLOv5

• The model was trained using custom data and hyperparameters for 25 epochs with a

batch size of 8, which yielded best results.

• These results are saved for further testing and validation. The output from the YOLOv5

model and the weights of the best trained model are saved under folder

‘runs/train/exp/weights/best.pt’.

• Save this weight for running inference and testing on web application.

 Figure 13: Model Training results

9

7.3 Model Training YOLOv10

• The model was trained using custom data and hyperparameters for 25 epochs with a

batch size of 8, which yielded best results. These results are saved for further testing

and validation.

• The output from the YOLOv10 model and the weights of the best trained model are

saved under folder ‘runs/detect/train/weights/best.pt’.

• Save this weight for running inference and testing on web application.

 Figure 14: Model Training results of YOLOv10

8 Running Inference
The next step is to run the inference by testing the model on new, previously untested images.

These test images should be self-created and should include images that were not used during

training.

10

8.1 Validation Testing on YOLOv5

To validate the model, follow these steps:

• Run the inference code for detection as shown in the referenced Figure 10.

• Provide path to the ‘best.pt’ weight saved during model training, as well as the path to

the new images.

• The inference results will be saved in the ‘runs/detect/exp’ directory.

Figure 15: Inference results of Yolov5

8.2 Validation Testing on YOLOv10

To validate the model, follow these steps:

• Run the inference code for detection as shown in the referenced Figure 10.

• Provide path to the ‘best.pt’ weight saved during model training, as well as the path to

the new images.

• The inference results will be saved in the ‘runs/detect/predict’ directory.

Figure 16: Inference results of Yolov10

11

 Figure 16: Display Inference Image

9 Indian Sign Language Recognition and Translation text to

speech Flask web application

This project is an Indian Sign Language Detection web application that allows users to upload

static sign images, or use their webcam to perform Indian Sign Language (ISL) detection using

YOLO models (YOLOv5 or YOLOv10). The detected signs can be translated into various

Indian languages, and the translated text can be converted to speech. Some of the features are

listed below:

• Upload static sign images or use the webcam for sign detection

• Choose between YOLOv5 and YOLOv10 models

• Translate detected text into various Indian languages

• Text-to-speech conversion for translated text

• Go back button to clear results

Steps to replicate the installation to test the application:

1. Clone the GitHub repository (https://github.com/ajivishwam/Flash-ISL-WebApp.git)

2. Install the required dependencies

https://github.com/ajivishwam/Flash-ISL-WebApp.git

12

3. Create a virtual environment for FinalYOLOv5. Run the below script using Git Bash or

shell that support `.sh` files

4. Create a virtual environment for FinalYOLOv10. Run the below script using Git Bash or

shell that support `.sh` files

5. The implementation code is in ‘app.py’. Run the Python application to serve it locally at

‘http://127.0.0.1:5000’.

6. Upload images by selecting the model and translation language, then upload the static sign

images, as shown in Figure 17.

7. The ‘result.html’ is generated, displaying the output of the images, as illustrated in Figures

18 and 19.

8. Figure 20 shows the predictions of ISL Image detection and their translation to text and

speech for multiple images.

 Figure 16: Home page of ISL Application

13

 Figure 17: ISL Image upload and Model Selection

 Figure 18: ISL Image Prediction, translation with audio

14

 Figure 19: ISL Image Prediction and translation with audio

 Figure 20: ISL Image Predictions

References

Tyagi, A., & Bansal, S. (2022). Indian sign Language-Real-life Words. Retrieved from

https://data.mendeley.com/datasets/s6kgb6r3ss/2

