\ National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name

Umesh Patil
Student ID: X22216481

School of Computing
National College of Ireland

Supervisor: Abubakr Siddig

‘-—
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing
Mr Umesh E. Patil
(oY 1T« 1= o RSOOSR
Name:
X22216481
Y A 1T e [=T o o 1 TSROSO SRR
MSc. Data Analytics 2023-2024
Programme: ... Year:oiiiiiiieeensn
Msc Research Project
MOAUIE: et b e e b e e e e ebe e aae e eare et ereeaaes
Abubakr Siddig
= Lot o 1] =T - UUE T P

Submission 12/08/2024

Collegeof
Ireland

D LT = D T 1 - RS
Enhancing Crowdfunding Success Prediction Using Combinational

Project Title: Approach of Classification and NLP Techniques

763 10

Word Count: ... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Umesh E. Patil

Y e T3 1= 1T o=
12/08/2024

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Umesh Patil
Student ID: x22216481

Introduction

The configuration manual consists of the step by step guide that have been performed in this
research

2

Environment Set Up

2.1 System Specification

Processor: AMD Ryzen 7 5800H with Radeon Graphics, 3201 Mhz, 8 Core(s), 16
Logical Processor(s)

Installed RAM: 16 GB

Internal SSD: 516 GB

External SSD: 1 GB

2.2 Technical Specification

2.2.1

Python

Version 3.10.12

In this research Google Colab which is an online python based interface is used. It
offers pre-installed libraries, which helps to prevent errors related to version conflicts.
Additionally, Google Colab provides powerful GPU support for efficient processing.

3 Data Sources

3.1 Libraries Required

Numpy for numerical operations

Pandas for data manipulation and analysis

re for regular expressions

nltk for natural language processing (e.g., stopwords, lemmatization)
matplotlib for data visualization

seaborn for statistical data visualization

scipy for scientific computing

wordcloud for generating word clouds

sklearn.feature_extraction.text. TfidfVectorizer for text feature extraction
sklearn.preprocessing.LabelBinarizer, LabelEncoder for encoding

e sklearn for machine learning algorithms and model evaluation (e.g., ensemble, tree,
linear_model, model_selection, metrics)
e imblearn for handling imbalanced datasets (e.g., SMOTE)

3.2 Importing Libraries

import re

import nltk

import pickle

import numpy as np

import pandas as pd

import seaborn as sns

import plotly.express as px

from sklearn import ensemble

import matplotlib.pyplot as plt

from nltk.corpus import stopwords

from sklearn.cluster import KMeans

from nltk.stem import PorterStemmer

from imblearn.over_sampling import SMOTE

from scipy.spatial.distance import cdist

from wordcloud import WordCloud, STOPWORDS

from nltk.stem.wordnet import WordNetLemmatizer

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import AdaBoostClassifier

from sklearn.ensemble import StackingClassifier

from sklearn.linear_meodel import LogisticRegression

from sklearn.model selection import train_test split

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model selection import cross_wval score

Figure 1: Importing Libraries

3.3 Data Source and Storage
The data is downloaded from the Kaggle and stored in google drive as shown in Figure 2
Data Link - https://www.kaggle.com/datasets/quentinmcteer/indiegogo-crowdfunding-data

A Drive Q, Ssearchin Drive

My Drive crowdfunding_success... >

Figure 2: Data Stored in Drive

The data is stored in the google drive and then it is mounted to Google Colab for this research
as shown in Figure 3

Dataset Link: /content/drive/MyDrive/crowdfunding_success_prediction/Data/indiegogo.csv

" from google.colab import drive
drive.mount('/content/drive’)

S~ Mounted at /content/drive

Figure 3: Mounting Drive

As this process is completed using the pandas library the CSV data file has been read as
shown in Figure 4

[1 data = pd.read_csv(’/content/drive/MyDrive/crowdfunding success_prediction/Data/indiegogo.csv’)

[1 data.shape

(20631, 74)

4]

Figure 4: Reading data using pandas library

4 EDA

= Count of Projects by Category = Count of Successful and Failed Projects by Category

) State
Fashion & Wearables - led

Wiing & Publising w0 ————
Musie
Dance & Theater
fim ,W
At
Prones f Accessories
Health & itess 60
Education
Local Businesses
Tiavel & Qutdeors B
Environment %
Viden Games 3
Motography
Comes
W Series & TV Sheis
Human Fights
Hudin

Carsgany

Home Py
Transportation
Prodlctivity

Faod & Beverages 0
Culture
Tibletep Games
0 a |

Telness

Camera Gear

Energy f Green fech
Fodeasts, Blogs & Viogs

al
reity

Meliness

Video Games
Tabletop Games

Product
et

Camera Gear

5. Blogs & Viegs

avel & Outdoor:

writing &
o

Fashion & wearables
Encrgy & Green Tech

Podcast

Count

Figure 5: Count of data category-wise and Count of Failed and successful project
category wise

|

= Count of Successful and Failed Projects

17500

15000

12500

100060 4

Count

7500 A

2500

State 10: Failed, 1: Successful)

Figure 6: Class Imbalance

= Count of Projects by Country

united_states

Westerm_europe

qgreat_britain

canada

australia

hong_kong

Country

|

singapore

switzerland -
denmark -
sweden 5
norway 1
1] 2000 4000 6000 aooo 10000 12000 14000 16000
count

Figure 7: Count of Projects by Country

i)

Mumber of Carpaigns Over Time

2004

Humber of Campaigns

2011 2012 2013 2014 2015 2016 2017 2016 2019 2020
Date

Figure 8: Number of campaigns Over Time

5 TF-IDF Vectorizer

As Shown in Figure The code is used to combine the two columns Title and Tagline and applied
TF- IDF Vectorization to carry out textual features.

[1 from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSvD
Combine title and tagline for TF-IDF
new_datal "combined_text'] = new_data['title’'] + " " + new_data['tagline']

Apply TF-IDF

tfidf = TfidfWVectorizer{max_ features=1888, min_df=2)

tfidf matrix = tfidf.fit_transform{new_data['combined text'])

Reduce dimensionality using Truncated SVD

syd = TruncatedSVD{n_components=18@} # Reducing to 108 components

tfidf_reduced = svd.fit_transform{tfidf matrix)

Convert to DataFrame
tfidf _df = pd.DataFrame(tfidf_reduced)

Figure 9: TF-IDF Vectorization

6 Correlation and Normalization

) . Distribution of funded_percent Distribution of amount raised_usd
Correlation Matrix 6000
Lo 6000
5000
funded_percent 0.026 0.32 0.078 000
08 o 00
H H
g 00 g™
amount_raised usd - 0§ 0.087 035 -0.082 Los
2000 200
1000 1000
-04
goal_usd - 0026 0
020000 40000 60000 80000 100000 120000 140000 160000 0 0% 00 0% L0 1% 18 1%
funded_percent amaunt_raised s 167
-0.2 I
Distribution of goal usd Distribution of state
state — 032
B 17500
-00
000 15000
time_period_months - 0.078 “0.082 12500
- 1500 £
o £ £ 10000
l i " ' § §
= 3 2 B v 1000 500
T Z i 5
g 2 - # £ 000
H 3 = g
g i : 500
T & & = 2500
H H i 0 — S— - o0l - —'E.
= g 4 0 100000 00000 00000 400000 500000 00 02 04 05 08 1
E
= E gl ud date

Figure 10: Correlation And data Distribution before Normalization

Correlation Matrix

o Distribution of log_funded_percent Distribution of log_amourt_raised_usd
lag_funded_percent 32
0.8 Al
i
i
log_amount_raised_usd 024 o g
-oa
log_goal_usd — i
»
- 0.2 I
2 4 6 8 W 1z 1 1
ate lon_amount_raised_usd
oo 1600
1400
nme_period_months 02 1200
2 1000
P p———— li
H S 3 g g
g 1 2 g 600
L B H 2
i = 3 o 00
3 E o 2
£ £ £] 200 I g
= H o ol 4 B
g E E 6 8 1 12
g lag_gaat s

Figure 11: Correlation And data Distribution before Normalization
5

7 Feature Selection Based on Correlation Matrix and
Anova Test

Correlation Matrix

10 ANOVA F-Test Results
log_funded_percent 032
o8 in_demand_binary
loa_amount_raised_usd o324 o6
cateqory_encoded
o4
log_gwal_usd -
¢
- 02
g cumency_encaded
&
-o0
country_encoded
Tme_penod_menths - .24 a1 | o2
g E 3 2 £
5 E‘ = H UsA_or_Non_Ush_encoded
3 E g 3
E £ = £
= H ¥
g E £ 10" ! 10 o 10
2 F-Valuz [Log Scale)

Figure 12: Correlation matrix and ANOVA test Results

8 SMOTE For Imbalance

v SMOTE for Imabalancing

U Ensuring that all columns are numeric before applying SMOTE
X = merged_data.drop(state’, axis=1).apply(pd.te_numeric, errors=’coerce’)
y = merged_data["state’]

U Convert all coluan nanes to strings
X.ealumns = X.coluans. astype(str)

U Apply SMOTE to the entire dataset
smote = SMOTE(randon_state=42)
X_snote, y_snote = smote.fit_resample(X, y)

U Plot the count of each class before and after SMOTE
fig, ax = plt.subplots(1, 2, figsize=(14, 6))

B Count plot before SMOTE

sas_countplot (x=y, ax=ax[8])

ax[@].set_title(’c f Success and Failure Before SMOTE')
ax[@].set_xlabel('State’)

ax[@].set_ylabel("Count’)

4 Count plst after SMOTE

sns. countplot(x=y_snote, ax-ax[1]}

ax[1].set_title Success and Failure After SMOTE')
ax[1]. set_xlabel('State’)

ax[1].set_ylabel{ Count")

pLL.Tight_layout(}
plt.show()

= Count of Success and Failure Before SMOTE

Count of Success and Failure After SMOTE

12500

10000

Count

2500

State

Count

17500

15000

12500

10000

7500

5000

2500

Figure 13: SMOTE for handling imbalance class
As shown in Figure 13 before model building the imbalance class is handled using SMOTE

technique

9 Model Building and Evaluation
9.1 Experiment 1. Model Training and Testing on SMOTE data

from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score,
Split the SMOTE dataset into training and testing sets
¥_train, ¥ _test, y_train, y_test train_test_split(X_ smote, y_smote, test_size=8.2,

confusion_matrix, roc_curve, auc

random_state=42}

Initialize and train the model
mode 1 LogisticRegression(max_iter=1888)
model.fit(X_train, y_train)

Log:

®

Predict and ewvaluate the model on the training set

y_train_pred
train_accuracy

train_precision
train_recall
train_f1

model.predict{X_train)
accuracy_score(y_train, y_train_pred)
precision_score{y_train, y_train_pred}
recall_score(y_train, y_train_pred)
F1_scorel]y_train, y_tr‘ain_pr‘ed)l

print({f"Logistic Regression (Training) - Accuracy: {train_accuracy}")
print{f"Logistic Regression (Training) - Precision: {train_preci=sion}")
print(f"Logistic Regression (Training) - Recall: {train_recall}"}

print(f"Logistic

Regression {(Training) - F1l Score: {train_f13}")

Predict and evaluate the model on the test set

y_test_pred
test_accuracy

model.predict(X_test)
accuracy_score(y_test, y_test_pred)

test_precision = precision_score(y_test, y_test_pred)

test_recall = recall_ score(y_test, y_test_pred)

test f1 = f1_score{y_test, v_test pred)

print(f"Logistic Regression {Test) - Accuracy: {test_accuracy}™)
print{f"Logistic Regression (Test) - Precision: {test_precision}")}
print(f"Logistic Regression (Test) - Recall: {test_recall}")
print(f"Logistic Regression (Test) - Fl Score: {test f1}")

Compute ROC curve and ROC area for
y_test_prob
fpr_test, tpr_test, _
roc_auc_test

print(f"Logistic Regression (Test) -

the test set
model.predict_proba{X_test}[:, 1]
roc_curve{y_test, y test_prob)
auc{fpr_test, tpr_test)

AUC: {roc_auc_test}")

Plot ROC curwve for the test set

plt

plt

plt
plt

Logistis

Loe.

Logisti
Logisti
Logistis
Logisti

Loe:

Logi:

istic Regressien
stic Regression

Figure(fig=size=(7,
pit.
plt.
plt.
ylim([@.@, 1.85])
plt.
-ylabel("True Positive
.title('Receiver Operating Characteristic (ROC) Curve - Test Data'}
plt.
plt.

stic Regress

5))
plot({fpr_test,
plot([e, 11,
x1lim([©.8, 1

tpr_test, color="darkorange’,
[e,

lw=2, label=f"Logistic (area
linestyle="--"}

{roc_auc_test:.2f})")

color="navy"',

17, Iw=2,

xlabel("False Positive Rate')
Rate")

legend({loc="lower right")
show()

- Accuracy: 8.9953692749784242

- Precision: B.9993355073917358

- Recall: 1.2

- F1 Score: 2,9953966600584657
racy: B.9925645531972421
©.985276437412962

[1 from sklearn.rodel_selection inport cross_val score

- Recall: 1.2
- F1 Score: 9,9925806916457575
- AUC: 8.9971216188415678

(Test)
(Test)

Receiver Operating Characteristic (ROC) Curve - Test Data

10 # Perforn 5-fold cross-validation
o cy_scores = cross_val score(model, X smote, y smote, cv=5, scoring='accuracy')
s print(f"Cross-Validation Accuracy Scores: {cv_scores}")
§ print(f"Mean Cross-Validetion Accuracy: {cv_scores.mean()}")
Lot (area = 100 E’ (ross-Validation Accuracy Scores: [0.99878319 0,9%891843 0.99634936 0,99067063 0, 95853001]
0.0

Mean Cross-Validation Accuracy: 8.9930503506059765

False Positive Rate

Figure 13: Model Building and testing on SMOTE Data

As shown in Figure 13 the model is trained and tested on SMOTE data. Also using 5 cross
validation, and confusion metrics model is evaluated on both test and trained data. Similarly
other 5 models are trained and Tested on SMOTE data

9.2 Experiment 2 : Testing Model on Original Data

‘) # Extract features and target from merged_data
X_original = merged_data.drop(’'state’, axis=1}.apply({pd.tec_numeric, errors='coerce’)}
v_original = merged_data['state']
Convert feature names of X_original to strings (if not already done}
¥_original.columns = X_original.columns.astype(str)
Make predictions on the original data
y_original pred = model.predict(X original)
Evaluate the model on the original data
original_accuracy = accuracy_score(y_originzl, v_original_pred)
original_precision = precision_score(y_original, y_original_pred)}
original_recall = recall_score{y_criginal, y_original_pred)
original_+1 = f1_score(y_original, y_original_pred}

print(f"Logistic Regression (Original Data) - Accuracy: {original_accuracy}")
print({f"Logistic Regression {Original Data) Precision: {original_precision}™]}
print(f"Logistic Regression (Original Data) Recall: {original_recalll}")

print({f"Logistic

Regression

{Original Data)

F1l Score:

{original_+1}")

Confusion matrix for the original data
conf_matrix_original = confusion_matrix(y_original, y_original_pred)
Plot confusion matrix for the original data
plt.figure(figsize=(7, 5))
=ns.heatmap{conf_matrix_original, annot=True, fmt="d’,
plt.title('Confusicn Matrix - Original Data")
plt.xlabel("Predicted")

plt.ylabel("Actual"}

plt.show(}

Compute ROC curve and ROC area for the original data
y_original prob = model.predict_proba(X original)[:, 1]
fpr, tpr, _ = roc_curve{y original, y_original_prob)
roc_auc = auc{fpr, tpr)

print(f"Logistic Regression {Original Data) -
Plot ROC curve
plt.figure(figsize=(7, 5)}
plt.plot{fpr, tpr, marker="o',
plt.plot([®, 11, [®, 11,
plt.xlim{[8.8, 1.8])
plt.ylim([@.@, 1.85])
plt.xlabel('False Positive Rate")

plt.ylabel(' True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curwve - Original Data')
plt.legend(loc="lower right")

plt.show()

Perform 5-fold cross-validaticon

cw_scores = cross_val_score(model, X_original, y_original, cv=5,
print{f"Cross-Validation Accuracy Scores: {cv_scores}"]}
print(f"Mean Cross-Validation Accuracy: {cv_scores.mean{)}™}

cmap="Blues')

AUC: {roc_auc}™)

color="darkorange", lw=2, label=f'Logistic (area =
color="navy', lw=2, linestyle="--", label="No Skill"}

{roc_auc:.2f})")

scoring="accuracy")}

Logistic Regression (Original Data) - Accuracy: 8.99@6791591824846 Logistic Regression (Original Data) - AUC: @.9978318913395614
Logistic Regression {Original Data) - Precision: ©.9165217391384343 . i Lo L.
Logistic Regression (Original Data) - Recall: 1.8 Receiver Operating Characteristic (ROC) Curve - Original Data
Logistic Regression (Original Data) - F1l Score: ©.956442831215971 Lo 4
. - PPy B -
Confusion Matrix - Original Data e
td
17500 o
-
0.8 R
L
15000 -
2 e
o 192 s R
12500 v 067 s
= -
@
10000 < /’
= - w] -
g goe o
g ”
- 7500 -~
-
0.2 -
e
i 0 2108 5000 i Logistic {area = 1.00)
td .
s == No skill
-2500 0.0
0.0 02 0.4 0.6 0.8 10
False Positive Rate
B ' -0 Cross-Validation Accuracy Scores: [8.97985437 ©.989556311 8.99223321 9.99904854 @.96138614]

Mean Cross-Validation Accuracy: ©.9866810342787503

oradirrad

Figure 14: Model Testing on Original Dataset

As shown in Figure 14 model is tested on Original imbalanced data.Similarly other models
testings are carried out

	1 Introduction
	2 Environment Set Up
	2.1 System Specification
	2.2 Technical Specification
	2.2.1 Python

	3 Data Sources
	3.1 Libraries Required
	3.2 Importing Libraries
	3.3 Data Source and Storage

	4 EDA
	5 TF-IDF Vectorizer
	6 Correlation and Normalization
	7 Feature Selection Based on Correlation Matrix and Anova Test
	8 SMOTE For Imbalance
	9 Model Building and Evaluation
	9.1 Experiment 1: Model Training and Testing on SMOTE data
	9.2 Experiment 2 : Testing Model on Original Data

