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1. Introduction 
This configuration manual provides detailed instructions on setting up and running the deep 

learning framework for galaxy morphology classification using the provided code. The project 

uses the data from the Sloan Digital Sky Survey (SDSS) and uses the Convolutional Neural 

Networks (CNNs) to classify galaxies based on their morphological features. 

2. System Requirements and Libraries 
This section provides the details of Software and Hardware requirements to implement the research 

done.  

Component Specification 

Operating System Windows 10, macOS, or Linux 

Processor Intel i5 or higher 

Memory 8 GB RAM or more 

Storage 20 GB free disk space 

Graphics NVIDIA GPU with CUDA support (recommended) 

 

Software/Library Version/Command 

Python 3.7 or higher 

Jupyter Notebook Latest 

numpy pip install numpy 



pandas pip install pandas 

seaborn pip install seaborn 

matplotlib pip install matplotlib 

tqdm pip install tqdm 

xgboost pip install xgboost 

scikit-learn pip install scikit-learn 

imbalanced-learn pip install imbalanced-learn 

tensorflow/pytorch pip install tensorflow or pip install torch 

 

3. Data and Execution 
3.1. Dataset 

The dataset used in this research report is taken from large-scale astronomical surveys like the 

Sloan Digital Sky Survey (SDSS). The SDSS is one of the most extensive and detailed 

astronomical surveys available. This survey includes a multi-spectral photometric and 

spectroscopic data which covers a broad range of wavelengths. It also captures detailed images of 

millions of celestial objects. The key characteristics of the SDSS data include: 

● Photometric Data: This includes the measurements of five spectral bands (u, g, r, i, z). 

● Spectroscopic Data: This includes the detailed spectra of galaxies, stars, and quasars, and 

their redshift measurements. 

● Positional Data: This includes the astronomical coordinates like right ascension and 

declination. 

● Observational Metadata: This includes the information about the observation conditions, 

such as run number, camcol, field, and Modified Julian Date (MJD). 

 

Data Component Description 

Data Files galaxies.csv: Main dataset with attributes 

 images/: Directory containing galaxy images 

 



 
Figure 1: Importing all the necessary libraries 

 

 
Figure 2: Loading the data into ‘data’ variable and then displaying it 

 

 
Figure 3: First few rows of the dataset 

3.2. Data Preparation 

 

Step Description Code Reference 

Data Cleaning 

Remove duplicates and handle missing 

values 

data.drop_duplicates(), 

data.fillna() 



Normalization Scale features to [0, 1] or standardize StandardScaler() 

Data Augmentation Apply transformations like rotation, flipping ImageDataGenerator 

Splitting the Data 

Split into training (70%), validation (15%), 

test (15%) train_test_split() 

Class Imbalance 

Handling 

Use SMOTE for synthetic sampling of 

minority classes SMOTE() 

 

 
Figure 4: Exploring the shape of the dataset 

 

 
Figure 5: Printing the column names 

 



 
Figure 6: After cleaning the null values inside each column 

 

 
Figure 7: Number of duplicate rows 

3.3. Model Training 

 

Step Description Code Reference 

Loading Data Load dataset and images pd.read_csv(), load_img() 

Building Model Define CNN architecture tf.keras.models.Sequential 

Training Model Compile and train the model model.fit() 



Evaluation 

Evaluate model on test set using 

various metrics 

model.evaluate(), 

classification_report() 

 

 
Figure 8:  Univariate analysis of creating histograms and bar charts 

 

 
Figure 9: Histogram depicting the distribution (u, g, r, i, z) 



 

 
Figure 10: Bar chart of distribution of classes 

 

 
Figure 11: Bivariate analysis of the classes distribution 

 



 
Figure 12: Scatter plot for the ra vs. dec 

 

 
Figure 13: Scatter plot for the u vs. redshift 

 



 
Figure 14: Plotting the box plots for spectral bands 

 

 
Figure 15: Box plot for various classes (u, g, r, i, z) 

3.4. Running the Code 

 

Step Description 

Set Up Environment Install dependencies and ensure data placement 

Execute Cells Run each cell in the Jupyter Notebook sequentially 

Model Training Execute training cells to start the training process 

Evaluation 

Run evaluation cells to generate performance 

metrics 



 
Figure 16: Generating the heat map for the correlation of the matrix 

 

 
Figure 17: Heatmap for the correlation between matrix of features 

 

 
Figure 18: Class specific graph generation for violin plots 

 



 
Figure 19: Violin plots for the distribution of classes 

3.5. Results and Analysis 

 

Step Description 

Review Evaluation Analyze accuracy, precision, recall, F1 score, etc. 

Visualization Use tools like matplotlib and seaborn for plots 



 
Figure 20: Data balancing and column isolation 

 

 
Figure 21: New class distribution after removing the data imbalance 

 

 

 
Figure 22: Generating the classification report for the Gradient Boosting Machine 

 



 
Figure 23: Classification report for GBM 

 

 

 
Figure 24: Generating the classification report for the XGBoost 

 

 
Figure 25: Classification report for the XGBoost 

 



 

 
Figure 26: Generating the classification report for the Random Forest 

 

 
Figure 27: Classification report for the Random Forest 

 



 
Figure 28: Model comparison and its depiction 

 

 
Figure 29: Comparison between the three models for eval matrices 

 



 
Figure 30: Calculating the inaccurate predictions by the models 

 



 
Figure 31: Depiction of all the model inaccurate predictions 

 



 
Figure 32: Bar chart for the inaccurate predictions of the models 
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