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Abstract 
In this thesis, the deep learning techniques and their applications are explored on the 

classification of the galaxy morphologies in the large-scale surveys of astronomical data. The 

dataset used in this study is derived from the Sloan Digital Sky Survey (SDSS) which is the 

combination of photometric and spectroscopic data across five spectral bands. This research 

thesis uses a robust framework for automating the galaxy classification and the dataset uses 

500,000 records with comprehensive attribute listing. These attributes include the astronomical 

coordinates, photometric measurements, observational details, and class labels (galaxy, star, 

quasar). The methodology involved in this research report includes a detailed data preparation, 

data cleaning, normalization, and transformation. This is done so that a better and optimized 

model can be trained and developed. The evaluation for such models used in this report is 

conducted by the traditional evaluation metrics like accuracy, precision, recall, F1-score, and 

confusion matrices. Resultant models are comprehensive and show the accuracy of classifying 

relevant galaxies into their respective morphological categories. This report also shows the key 

findings to be data augmentation and class imbalance, which are addressed to achieve even 

better classification accuracies across different galaxy types.  

Keywords: Galaxy morphology, SDSS, Deep learning, Data analysis, Classification, EDA, 

Data balancing 

1. Introduction 
1.1. Background and Motivation 

In the scientific community, classification of the galaxies into their respective morphologies has 

always been very important in astronomical research. Historically such classifications of galaxy 

morphologies have been conducted via visual apparatus by the curious astronomers. Such 

methods have always been both time consuming and subjective leading to greater inaccuracies. 

But with the development of such large-scale astronomical surveys, like SDSS, the data 

availability has increased exponentially. And so does the need for an automated system for 

classifications of the galaxies into their respective morphologies (Domínguez Sánchez et al., 

2019; Willett et al., 2013). In this regard, classic machine learning techniques of deep learning 

have been very helpful. They offer powerful tools like image classification, recognition, and 

identification tasks. The images gathered from such large datasets (SDSS) are subjected to these 

models which provide a remarkable performance of both understanding and later classifying 

complex patterns within images. Deep learning models are especially useful for the tasks of 

galaxy morphology classification where they shine when analyzing the subject photometric and 

spectral data (Dieleman et al., 2015; Huertas-Company et al., 2020). 

The need for the application of such deep learning techniques on the SDSS galaxy morphology 

dataset is more than just automation, it is also the need for better insights into the formation and 

evolution of these subject galaxies. This is to further aid scientific research. By using deep 

learning techniques, the researchers aim to achieve even better accuracies, consistencies, and 

efficiencies compared to the traditional ocular methods (Barchi et al., 2020; Martin et al., 2006). 



 

Deep learning models have always been able to handle and process this high-dimensional data, 

which enables them to do comprehensive analysis and robust classification (Huertas-Company 

et al., 2020; Khan et al., 2019). 

1.2. Objectives of the Study 
The primary objective of this research thesis is to develop the deep learning framework for 

galaxy morphology and then later to evaluate its performance on the SDSS dataset. The 

frameworks used to accurately identify the galaxy classification into various morphological 

categories such as elliptical, spiral, and irregular galaxies are useful for the research purposes 

(Domínguez Sánchez et al., 2019; Dieleman et al., 2015).  

1.3. Research Question 
How can classic galaxy morphological techniques of classifying the galaxies into their 

respective classes be better handled with deep learning techniques? How can deep learning 

techniques be applied to the large-scale astronomical surveys such as Sloan Digital Sky Survey 

(SDSS)? 

In many ways the research question for this research topic highlights the importance of the 

potential the deep learning models hold in addressing the classic astronomical problem which 

has been plaguing the scientific community. The classic techniques are explained in this 

research paper to better understand the comprehensive analysis and the advantages of the 

modern day machine learning techniques over them. The comparison of the traditional manual 

methods vs. the deep learning techniques such as image analysis are shown with the supporting 

evaluation metrics. This thesis report is divided into 5 chapters, each showing how the workings 

of the galaxy morphology can be achieved via deep learning techniques. The following chapter 

Related Work shows the various options old traditional methods had and how it plagued the 

accuracy of classification through subjectivity and manual errors. 

2. Related Work 
2.1. Overview of Galaxy Morphology 

In the science of astronomy, the galaxy morphology is a classic problem which has been the 

bane of the scientific community. Traditionally solved using subjective visual analysis, it has 

been prone to inaccurate classification (Lintott et al.,2008; Domínguez Sánchez et al., 2019). 

With the advent of the SDSS, a large repository of the astronomical dataset, the classification 

of galaxies is even more robust now when solved with the deep learning techniques. Prior to 

these deep learning techniques, this problem of galaxy morphology dates back to the early 20th 

century, where Edwin Hubble’s work was the cornerstone of this field (Lintott et al.,2008; 

Domínguez Sánchez et al., 2019). Edwin Hubble was the pioneer in introducing the first 

systematic classification of galaxies in his book “The Realm of the Nebulae” published in 1936. 

Hubble showed and coined the classification schema called as the Hubble sequence or “tuning 

fork” diagram, which categorized galaxies into three main types: 

● Elliptical Galaxies (E): These galaxies have an ellipsoidal shape from E0 (nearly spherical) 

to E7 (highly elongated). 



 

● Spiral Galaxies (S): Spiral galaxies consist of a central bulge and are further divided into 

two categories: 

○ Normal Spirals (S) 

○ Barred Spirals (SB) 

● Irregular Galaxies (Irr): These galaxies lack a distinct shape and structure, often appearing 

chaotic (Hubble, 1936). 

Such classic categorization was even more astounding knowing the fact that they were 

conducted without using artificial intelligence, only pure visual analysis. Hubble’s work is 

remarkable. But with the new deep learning methods on the rise, modern image analysis 

techniques have led the scientific community to find even more patterns and a detailed 

classification system. This system takes into account even more parameters like surface 

brightness, color, and spectral properties. Following are some of the classification methods of 

the modern day galaxy morphology: 

● De Vaucouleurs' Classification: This system extends Hubble's classification by accounting 

for the subtypes and ring structures features such as lenses in galaxies (de Vaucouleurs, 

1959). 

● Yerkes Classification: Also known as the "Morgan system," it classifies galaxies based on 

the bulge compared to the disk (Morgan, 1958). 

● Principal Component Analysis (PCA): A modern-day technique which is used to classify 

using statistical methods based on multiple morphological and photometric features 

(Conselice, 2003). 

2.2. Machine Learning in Astronomy 
The application of machine learning in the field of astronomical science has empowered the 

scientific community to analyze vast amounts of telescopic data which is generated by the 

modern day surveys. These surveys have contributed to the galaxy morphology by opening up 

the data to various deep learning techniques. Since deep learning techniques, especially visual 

analysis of the imagery, hold much power, it is very important to process this public survey data 

like SDSS, so that the underlying patterns can be used and identified to solve the galaxy 

morphology problem. Instead of human visual analysis, the machine learning algorithms can 

effectively analyze the data and find inner patterns. In the past, machine learning techniques 

have been applied in astronomy for several decades. Using methods like decision trees and 

support vector machines (SVMs), the classification of the galaxies based on their morphological 

attributes has yielded several classification tasks like star-galaxy classification, identifying 

variable stars, and detecting exoplanets (Ball & Brunner, 2010; Borne, 2009). 

In the early machine learning techniques. features such as brightness and shape were used to 

separate the stars from the galaxies. For such purposes, the decision trees and SVMs were 

obvious choices because of their effectiveness with small to medium-sized datasets (Fadely et 

al., 2012). Moreover, the machine learning algorithms have also been used to identify and 

classify variable stars based on their light curves. Techniques such as Random Forests and k-

Nearest Neighbors (k-NN) are very effective in automating this process (Richards et al., 2011). 

The search for exoplanets is also one of the interesting issues faced by the scientific community. 



 

Algorithms which analyzed the light curves from stars, also detected the periodic dimming 

caused by these subject transiting planets. For these purposes, the neural networks and ensemble 

methods were very effective in this domain (Shallue & Vanderburg, 2018). 

2.3. Deep Learning for Image Classification 
In today’s modern deep learning classification tasks, galaxy morphology could very well be a 

classic problem. This is because deep learning has been widely accepted in astronomy for 

various image classification tasks which is due to the ability of deep learning image analysis 

and its ability to analyze large volumes of data and extract important features/patterns. CNNs 

are used to classify galaxies based on their morphological attributes and this can help the models 

identify between different types of galaxies, such as spirals, ellipticals, and irregulars (Huertas-

Company et al., 2015; Dieleman et al., 2015). 

Deep learning models analyze images and light curves from telescopes to detect stars and 

exoplanets. These models can be used to analyze the “transiting exoplanets” by understanding 

and analyzing the typical dip in brightness as the planet passes in front of its host star (Shallue 

& Vanderburg, 2018). For these purposes, the CNNs are used to identify supernovae in 

astronomical images. These models can also detect very small changes in brightness and 

structure thus showing that there is a presence of a supernova, even when images are very noisy 

and cluttered (Brunel et al., 2019). Another major quality of deep learning models is that they 

can be used to find gravitational lenses. Gravitational lenses is a phenomenon where the light 

from a distant object is bent by the gravitational field of a front object. CNNs can efficiently 

find these rare phenomenons in large datasets (Lanusse et al., 2018). 

Summary Table 

Author(s) Year Focus/Contribution Methodology Key Findings 

Hubble, E. 1936 Introduction of the 

first systematic 

classification of 

galaxies, known as 

the "Hubble 

sequence" or "tuning 

fork" diagram. 

Visual 

analysis 

without AI 

Categorized 

galaxies into 

Elliptical, 

Spiral, and 

Irregular 

types. 

de 

Vaucouleurs, 

G. 

1959 Extension of 

Hubble's 

classification to 

account for subtypes 

and ring structures. 

Extended 

visual 

classification 

Added 

features such 

as lenses in 

galaxies to 

the 

classification 

system. 



 

Morgan, 

W.W. 

1958 Development of the 

Yerkes 

Classification, also 

known as the 

"Morgan system," 

focusing on the 

bulge-to-disk ratio. 

Visual 

comparison 

between 

bulge and 

disk 

Provided a 

classification 

based on the 

structural 

composition 

of galaxies. 

Conselice, 

C.J. 

2003 Application of 

Principal 

Component 

Analysis (PCA) in 

classifying galaxies 

based on 

morphological and 

photometric 

features. 

Statistical 

analysis using 

PCA 

Enhanced 

classification 

by 

incorporating 

multiple 

galaxy 

attributes 

such as 

surface 

brightness 

and colour. 

Ball, N.M., & 

Brunner, 

R.J. 

2010 Overview of 

machine learning 

applications in 

astronomy, 

including star-

galaxy 

classification, 

variable star 

identification, and 

exoplanet detection. 

Machine 

learning 

algorithms 

including 

decision trees 

and SVMs 

Demonstrated 

the 

effectiveness 

of ML 

techniques in 

automating 

galaxy 

classification 

and other 

astronomical 

tasks. 

Borne, K. 2009 Discussion of the 

potential of machine 

learning in 

processing large 

astronomical 

datasets for various 

classification tasks. 

ML 

techniques for 

astronomical 

data analysis 

Highlighted 

the scalability 

of ML 

techniques 

for large 

datasets and 

complex 

classification 



 

tasks in 

astronomy. 

Fadely, R. et 

al. 

2012 Application of 

decision trees and 

SVMs in early ML 

techniques for star-

galaxy classification 

based on brightness 

and shape. 

Decision trees 

and SVMs 

Successfully 

classified 

stars and 

galaxies 

using simple, 

interpretable 

models. 

Richards, 

J.W. et al. 

2011 Use of Random 

Forests and k-

Nearest Neighbors 

(k-NN) in 

classifying variable 

stars based on light 

curves. 

Random 

Forests and k-

NN 

Achieved 

accurate 

classification 

of variable 

stars, 

improving 

automation in 

this area. 

Shallue, C.J., 

& 

Vanderburg, 

A. 

2018 Application of 

neural networks and 

ensemble methods in 

detecting exoplanets 

through the analysis 

of light curves. 

Neural 

networks and 

ensemble 

methods 

Enhanced 

detection of 

exoplanets by 

identifying 

periodic 

dimming 

caused by 

transiting 

planets. 

Huertas-

Company, 

M. et al. 

2015 Use of CNNs in 

galaxy morphology 

classification, 

focusing on 

identifying different 

types of galaxies 

(spirals, ellipticals, 

irregulars). 

Convolutional 

Neural 

Networks 

(CNNs) 

Improved 

accuracy in 

galaxy 

classification 

by leveraging 

deep 

learning’s 

ability to 

analyse large 

datasets and 

extract 



 

complex 

features. 

Dieleman, S. 

et al. 

2015 Implementation of 

CNNs for galaxy 

classification in 

large astronomical 

datasets, with a 

focus on 

morphological 

attributes. 

CNNs Demonstrated 

the capability 

of CNNs to 

classify 

galaxies 

efficiently 

and 

accurately in 

large-scale 

datasets. 

Brunel, C. et 

al. 

2019 Application of 

CNNs to detect 

supernovae in 

astronomical 

images, even in 

noisy and cluttered 

environments. 

CNNs Successfully 

identified 

supernovae 

by detecting 

subtle 

changes in 

brightness 

and structure 

in images. 

Lanusse, F. 

et al. 

2018 Use of CNNs in 

identifying 

gravitational lenses, 

a rare phenomenon 

where light from a 

distant object is bent 

by the gravitational 

field of a closer 

object. 

CNNs Efficient 

detection of 

gravitational 

lenses in large 

astronomical 

datasets, 

enhancing the 

study of such 

rare events. 

Table 1: Summary of Literature Review 

3. Methodology 
3.1. Data Collection 

Large scale surveys like the Sloan Digital Sky Survey (SDSS) provides the dataset that has been 

used in this research report. It must be mentioned that the SDSS is one of the largest and most 

comprehensive surveys of the realm of astronomy. It gives a good data base of galaxy 

morphological typing yard stick. (York et al., 2000). This survey seems to contain a multi-

spectral photometric as well as spectroscopic data that embraces a vast array of wavelengths. It 



 

also records finer characteristics of millions of heavenly bodies. Furthermore the data from 

other surveys like the Galaxy Zoo project can be included in the training set used to prepare the 

neural network (Lintott et al., 2008). The key characteristics of the SDSS data include: 

● Photometric Data: This includes the measurements of five spectral bands (u, g, r, i, z). 

● Spectroscopic Data: This includes the detailed spectra of galaxies, stars, and quasars, and 

their redshift measurements. 

● Positional Data: This includes the astronomical coordinates like right ascension and 

declination. 

● Observational Metadata: This includes the information about the observation conditions, 

such as run number, camcol, field, and Modified Julian Date (MJD) (Ahn et al., 2012). 

 

 
Figure 1: First few rows of Dataset as an example 

 

3.2. Pre-processing 
The data collection process involves downloading and compiling the relevant data from the 

SDSS and other sources. This dataset includes: 

● Spectral data: Galaxy spectral data in multiple spectral bands. 

● Spectroscopic Measurements: Redshift and other spectral features. 

● Catalog Data: Positional and classification information. 

Once the data is collected and downloaded, the preprocessing steps are as follows: 

Data Cleaning Removing any duplicate entries 

 Handling missing values by imputing them or excluding incomplete 

records. 

Normalization Scaling pixel values of images to a consistent range, typically [0, 1] or 

[-1, 1]. 

 Standardizing spectroscopic features to have zero mean and unit 

variance. 

Data 

Transformation 

Applying transformations such as rotation, flipping, and scaling to 

increase the diversity of the training set. 

Data Splitting Splitting the dataset into a 70-30 train and test split respectively. 

Classification 

Report 

Multimodal classification reports for the models are generated including 

Gradient Boosting Machine, XGBoost, and Random Forest. 



 

 

3.3. Exploratory Data Analysis 
Exploratory data analysis in this thesis entails different approaches used for analyzing celestial 

object data. From histograms and the bar chart, one gets an understanding of the distribution of 

light measurements within the u, g, r, i, z wavelengths and the number of objects recognized as 

stars, galaxies or QSOs. Initial preliminary analysis using cross-tabulations and bivariate plots, 

such as scatter and box plots, involves the perspective of spatial arrangement and spectral 

response of these objects to evaluate a general and atypical performance. Multivariate analysis 

use the heatmap in feature selection and feature correlations are presented in the feature matrix. 

To pinpoint important features for each of the classes, the spectral-magnitude values are 

compared with violin plots, whereas pair plots help to demonstrate the links between the 

different measurements and their ability to define the classes. Time series and hexbin plots used 

enable one to analyze the shift in redshift over time and the density of observation in celestial 

basins for interpreting structure and temporal characteristics of the universe. 

3.4. Data Transformation 
The paper under analysis identifies data transformation as one of the critical steps in 

Methodology of this thesis report and proves that it continues to be a crucial stage when 

preparing the dataset for training a deep learning model. This includes several steps to ensure 

that the data is in the right proportion, and is transformed into a format that can be used in 

making the models. The following steps are involved in data transformation; they are namely 

data balancing as well as data scaling. 

3.4.1. Data Balancing 

Data balancing is a very important subpart of the data transformation step to ensure that the 

model does not become biased towards the majority class. In astronomical datasets, classes such 

as stars, galaxies, and quasi-stellar objects (QSOs) may have a majority of imbalanced 

distributions. So, balancing this kind of data helps the model to equally learn from all classes 

which may improve its generalization ability. Here are some of the few steps used in this thesis 

research to balance the data: 

● Analyze the initial class distribution using a bar chart or other visualization techniques. 

● Find out the classes which are underrepresented or overrepresented. 

● SMOTE is a popular method which is used to address the class imbalance by creating 

synthetic samples of the minority class. 

● SMOTE works by selecting a sample from the minority class and then to generate these 

new samples which are then used as interpolations. These interpolations are between the 

selected sample and its nearest neighbors. 

● This method boosts the number of minority class samples which in turn is responsible for 

a rise to a more balanced dataset. 



 

● Another approach to balancing data is to do the under-sample in the majority class 

randomly. 

● This method involves reducing the number of majority class samples to match the minority 

class. 

3.4.2. Data Scaling 

Data scaling makes sure that the features used are on a similar scale. This is closer to data 

normalization and in this it becomes essential for the gradient-based learning algorithms to 

converge. Features with different scales can cause the models to be affected and thus reduce the 

accuracy. Following are some of the steps conducted to increase the data scaling: 

● Standardization transforms the data to make the mean of zero and a SD of one. 

● This is particularly useful for algorithms which guess the normally distributed data. 

● Min-max scaling transforms the data to fit within a specific range between [0, 1]. 

● This is useful when the model's activation functions of input data are affected easily by the 

range of the data. 

● Robust scaling uses the median and interquartile range for scaling which makes outliers 

not very effective. 

3.5. Data Splitting 
The dataset used to classify the galaxies by their morphological attributes is splitted in the 

traditional deep learning method of 70-30 percentile. This means that the split is 70 percent for 

the training data, and the 30 percent is for the testing data. 

4. Design Specification 
In this section of the research paper, the data preparation is the most important step in the 

development of any machine learning model. Especially in the context of deep learning for 

galaxy morphology classification. This process involves several steps like data cleaning, 

normalization, augmentation, and splitting the data into training, validation, and test sets. Data 

cleaning is the first step in preparing the dataset for analysis. This involves: 

● Removing Duplicates 

● Handling Missing Values 

● Correcting Errors 

● Feature Scaling 

● Spectral Data Normalization 

● Data Transformations 

● Noise Injection 

● Resampling Techniques 

● Adjusting the Class Weights 

● Extracting Features 

● Spectral Features 

 



 

The following image shows the methodology and the implementation overview which shows 

how the overall journey of development of the deep learning model used to classify the galaxy 

morphologies is going to follow. 

 
Figure 17: Methodology/Implementation overview 

4.1. Feature Description 
Following table shows the description of the various features used in the dataset and during the 

development of the deep learning model used to classify the galaxy by their morphological 

attributes. 

Feature 

Category Feature Name Description 

Identifiers Unique IDs 

Unique identifiers for each celestial object (galaxy, star, or 

quasar) to trace back to the source catalog. 

Astronomical 

Coordinates 

Right 

Ascension 

(RA) 

Angular distance measured eastward along the celestial equator 

from the vernal equinox. 

 

Declination 

(Dec) 

Angular distance of a point north or south of the celestial 

equator. 

Photometric 

Data 

u-band 

Magnitude Intensity of light in the ultraviolet band. 

 

g-band 

Magnitude Intensity of light in the green band. 

 

r-band 

Magnitude Intensity of light in the red band. 

 

i-band 

Magnitude Intensity of light in the near-infrared band. 

 

z-band 

Magnitude Intensity of light in the infrared band. 

 Color Indices 

Differences between magnitudes in different bands to 

distinguish galaxy types. 

Spectroscopic 

Data Redshift (z) 

Measure of the shift in the wavelength of light indicating the 

velocity relative to Earth. 

 

Spectral 

Features 

Information about chemical composition, temperature, density, 

and relative motion of the material. 

Observational 

Details Run Specific observation settings identifier. 

 Rerun Identifier for repeated observations under different conditions. 

 Camcol Camera column identifier used during the observation. 

 
Da
ta 
Co
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Data 
Prep
arati

Model 
Devel
opme

Mod
el 

Eval

Resul
t 
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 Field Specific field of view identifier during the observation. 

 

Modified 

Julian Date 

(MJD) 

Date of observation in Julian date format, modified for ease of 

use. 

Class Labels 

Morphological 

Class 

Ground truth classification of the object (e.g., galaxy, star, 

quasar). 

Other 

Parameters Plate Number Identifies the spectroscopic plate used in the observation. 

 Fiber ID Specifies the fiber optic cable used to collect the spectrum. 

The above elaborate table shows the various features responsible and represented in the dataset 

collected from the large-scale public astronomical dataset SDSS and its use in the development 

of the deep learning model. These attributes are responsible for the model’s ability to classify 

the galaxy based on these present morphological attributes. 

 
Figure 18: Detailed information about the attributes in SDSS dataset 

 

4.2. Modeling 
The modeling phase includes the selection and training of machine learning algorithms to 

classify galaxy morphologies. This study has three advanced machine learning models: 

Gradient Boosting Machine (GBM), XGBoost, and Random Forest. Each model has a unique 

set of strengths which are used to classify the galaxy morphologies. 



 

4.2.1. Gradient Boosting Machine 

Gradient Boosting Machine (GBM) is an ensemble learning technique which builds models 

sequentially. This means that each new model corrects the errors of the previous ones. GBM 

uses gradient descent to minimize the loss function. 

● Handles a wide variety of data types. 

● Reduces overfitting through regularization techniques. 

● Can model complex relationships in the data. 

4.2.2. XGBoost 

XGBoost (Extreme Gradient Boosting) is an optimized version of GBM which is used for 

achieving even higher performance and efficiency. It consists of additional features such as tree 

pruning, handling missing values, and regularization. 

● Highly efficient and scalable. 

● Built-in regularization to prevent overfitting. 

● Handles missing data internally. 

4.2.3. Random Forest 

Random Forest is also another ensemble method which creates multiple decision trees during 

training. The output of Random Forest is the mode of the classes (classification) or mean 

prediction (regression) of the individual trees. It is very effective against overfitting because of 

its use of averaging. 

● Robust to overfitting, especially with a large number of trees. 

● Handles high-dimensional data well. 

● Provides feature importance scores, useful for feature selection. 

 

4.3. Evaluation 
The models mentioned are evaluated and compared based on the evaluation metrics of 

Accuracy, Precision, Recall, F1-score and Confusion Matrix. 

 

5. Implementation 
5.1. Environmental Setup 

The environmental setup for this study consists of configuring the software and hardware used 

to run the following machine learning experiments. The primary programming environment is 

Python, and the implementation uses libraries such as numpy, pandas, scikit-learn, xgboost, and 

imbalanced-learn. The computations are conducted on this setup which has at least an Intel i5 



 

processor, 8 GB of RAM, and an NVIDIA GPU with CUDA support for faster processing. 

Install the required libraries via pip and make sure that the dataset is correctly organized and 

accessible. The implementation is done in the Jupyter Notebook in the Anaconda environment. 

5.2. Data Handling 
Data handling is the first most important step of any implementation and here it involves 

loading, preprocessing, and preparing the data for model training. The source of the dataset is 

the Sloan Digital Sky Survey (SDSS) which includes a mix of photometric and spectroscopic 

data. First of all, the data is imported to the mentioned library data structure and then, it is 

preprocessed to shut down the duplicate records and manage the absence of missing date. The 

next process helps to guarantee that with regard to the features in the dataset it is at the same 

scale using standardization or min-max scaling. Also data transformation is performed with the 

initial aim of increasing the variation of the training data set and the data set is then split into 

the training and test set. SMOTE is applied to deplete the class Data Pre-processing section 

imbalance which ensure that the models are trained from balanced datasets. 

5.3. Experiment 1: Gradient Boosting Machine 
The outcome of the first experiment is to use Gradient Boosting Machine (GBM) for the 

classification of galaxy morphologies. GBM is selected because it can construct models step by 

step. This means that when a new model is produced, it comes with a rectification of past 

models’ errors. This makes this GBM technique to be perfect for large Datasets. The GBM 

model is implemented with help of the GradientBoostingClassifier from the scikit-learn library. 

Besides, it can be arranged using several estimators that include learning rate, and maximum 

depth. The training process is employing the training data to fit the model. Following the 

training process, the model is tested ON the test set using such parameters as accuracy, 

precision, recall, and the F1 measure. 

 
Figure 19: Gradient Boosting confusion matrix 



 

5.4. Experiment 2: XGBoost 
The second experiment deals with the application of XGBoost which is an improvement of 

gradient boosting. It would seem to be a blueprint for a better performance and higher 

efficiency. Several of the features that XGBoost has include features like tree pruning, missing 

value support, and inbuilt regularization to make it optimal for this kind of classification. For 

this experiment, the XGBClassifier right from the xgboost library is employed. But it is 

arranged by a number of estimators, learning rate, and maximum depth. The step of training is 

the process of fitting the model on the training data. Finally, after the training process of the 

model is completed, the model is validated on the test set and certain indicators such as 

accuracy, precision, recall, and F1 score as well as the confusion matrix are used. 

 
Figure 20: Confusion matrix for XGBoost 

5.5. Experiment 3: Random Forest 
The third experiment focuses on the classification of the galaxy morphologies using the 

Random Forest classifier. Random Forest also belongs to this category which is also creating 

multiple decision trees. The outputs are the modes of the classes. They are forms or ways in 

which things can turn out and consequently the probabilities associated with such events are all 

measures of the performances or outcomes. It is less prone to over fitting and it performs much 

better when dealing with higher dimensions. This model is implemented by 

RandomForestClassifier class from scikit-learn. Also it is configured in terms of several things 

such as the learning rate as well as the maximum depth. The process of training is explained 

here whereby the model is adjusted on the training data concern. The trained model is then used 

for testing on the test set and then the percentage accuracy, precision, recall, F1 score and 

confusion matrix are calculated. 



 

 
Figure 21: Confusion matrix for Random Forest Classifier 

6. Evaluation 
Evaluating the performance of a deep learning model for galaxy morphology classification 

requires a comprehensive set of metrics which provides better insights. These insights can be 

of the model's accuracy, robustness, and generalization ability. This section of the thesis report 

shows the key evaluation metrics used in the effectiveness of the model. 

6.1. Model Comparison 
The following illustration shows the comparison between the above mentioned models. The 

evaluation criteria shown below consists of accuracy, precision, recall, and F1 score. 

 
Figure 21: Graph showing accuracy, precision, recall, and F1-score 

 



 

Model Accuracy Precision Recall F1-Score 

GBM 0.986487 0.986475 0.986487 0.986467 

XGBoost 0.990713 0.990697 0.990713 0.990705 

Random 

Forest 0.991947 0.991925 0.991947 0.991933 

 

Accuracy: Random Forest achieved the highest accuracy (0.991947), followed by XGBoost 

(0.990713), and then GBM (0.986487). This makes sure that Random Forest correctly 

classified the highest proportion of instances. 

Precision, Recall, and F1-Score: Similar trends are shown in precision, recall, and F1-score, 

with Random Forest winning and the second is XGBoost, and then GBM. High precision and 

recall for Random Forest show both low false positives and low false negatives which means 

it is very important for balanced classification performance. 

 

The following image shows the wrong predictions between these three models and a bar-chart 

to show: 

 
Figure 22: Bar chart depicting inaccurate predictions 

 

Variable 

GBM_Incorrec

t RF_Incorrect XGB_Incorrect 

GALAXY 1248 573 677 

QSO 714 567 660 



 

STAR 65 68 56 

GALAXY: Random Forest had the least amount of incorrect predictions for galaxies (573), 

significantly lower than GBM (1248) and XGBoost (677). This shows that Random Forest is 

better at accurately classifying galaxies. 

QSO: Similar trends are seen for QSOs, with Random Forest (567) outperforming XGBoost 

(660) and GBM (714) in minimizing misclassifications. 

STAR: The number of incorrect predictions is relatively small across all models, with XGBoost 

performing the best (56), followed by Random Forest (68) and GBM (65). 

 

7. Conclusion 
The application of deep learning to galaxy morphology classification in this research thesis 

shows a remarkable advancement in the field of astronomy. This research study has shown the 

potential of deep learning techniques to classify the galaxies based on their morphological 

features using large-scale astronomical survey data SDSS. In this study, a robust model has 

been developed which is capable of handling the complexities and finding the patterns of the 

galaxy morphology. One of the most crucial findings of this study is the model's ability to 

generalize across different types of galaxies, including spirals, ellipticals, and irregulars. Using 

data augmentation techniques has shown that it is a crucial step in enhancing this model's 

robustness. It also makes them perform well even on noisy and incomplete data. Furthermore 

in this research thesis, handling the class imbalance by methods such as SMOTE has shown 

that the model can maintain high performance across all galaxy classes, not just the majority 

ones. This study has shown that deep learning is a powerful tool for galaxy morphology 

classification. The methodologies and findings documented here not only contribute to the field 

of astronomical data analysis but can also be used in the future research for other complex 

classification tasks in astronomy. The usage of deep learning into astronomical research is very 

important in uncovering new insights and new patterns of the structure and evolution of the 

universe. 
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