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A systematic evaluation of vision transformers for galaxy
classification

Pinaki Pani
23112573

Abstract

This study explores the effectiveness of Vision Transformers (ViTs) in the morpholo-
gical classification of galaxies. This research utilizes the Galaxyl0 Decals dataset for the
deep learning tasks. The research focuses on three advanced transformer-based models—ViT
Base, Swin Transformer, and DeiT Transformer alongside the conventional ResNet50 model.
The Galaxy1l0 dataset comprises of 10 galaxy classes, serves as the benchmark for evaluat-
ing model performance. The ViT Base model is fine-tuned on the Galaxyl0 dataset with
weights pre-trained on ImageNet. The model demonstrated a robust performance due to its
ability to capture complex relationships through multiple layers of multi-head self-attention.
Similarly, the Swin Transformer is known for its hierarchical design and shifting windows,
and the DeiT Transformer is enhanced with data efficiency techniques and knowledge distil-
lation. Both the models showcased significant accuracy and precision in galaxy classification
tasks.Evaluation metrics were included in this research such as precision, recall, accuracy,
and F1 score. The metrics ensured a comprehensive assessment of model performances. The
results indicates that the ViT Base model achieved the highest accuracy; however, a baseline
CNN model performed faster. This research highlights the trade-off of Vision Transformers
in the domain of astronomical image classification. It offers insights into their capability for
detailed morphological analysis of images. The findings suggest that ViTs could be used as
a general-purpose image classification technique, showing slightly better accuracy than Res-
Net50. Overall, vision transformers show superior ability to model contextual information
and are promising tools for image classification.

Keywords - vision transformers, convolutional neural network, galazy, morphology, CNN

1 Introduction

Galaxies are the main building blocks of our universe, where each one is a stunning masterpiece
in the cosmic world. Understanding their morphology is very crucial to understand the cosmic
mechanisms. Galaxies have very diverse shapes and forms where each one of them emits different
types of light and provide unique spatial information. Such spatial information provides all kinds
of insights, such as regarding their formation, evolution, and the physical processes that undergo
on a regular basis. For astronomers and astrophysicists, accurately classifying these cosmic forms
is a significant feat as that helps to further enhance the understanding of the universe’s historyﬂ

Different galaxies exhibit distinct morphologies and characteristics. These morphologies can
be broadly categorized into three main types: elliptical, spiral, and irregular galaxies(Lintott
et al.f 2008). Accurate classification of these types further helps in the study of different fields
of space exploration such as galaxy formation, the role of dark matter, and the evolution of
cosmic structures. Traditional methods of galaxy classification have relied heavily on visual
inspection and manual categorization. The old methods were not only labor-intensive but also
very prone to human error and bias. These methods were very foundational and were effective
initially. However, currently they are increasingly insufficient in handling the vast amounts of
data generated by modern astronomical surveys.

"https://www.zooniverse.org/about/publications#space
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Recent advancements in image-capturing technologies and pattern recognition have paved
the way for automated systems. Automated methods can classify galaxy types from astronomical
images with greater efficiency and accuracy. These systems are particularly valuable for large-
scale surveys and deep space exploration, where vast amounts of image data are generated. The
rapid development of machine learning, particularly deep learning techniques, has opened up
new opportunities for astronomical data analysis. Deep Convolutional Neural Networks (CNNs)
have been widely adopted for their ability to learn hierarchical feature representations from raw
image data. CNNs have proven to be quite useful in terms of image classification in almost every
sector. Galaxy classification is also no exception. However, the complexity of galaxy morphology
requires more advanced models that can capture intricate patterns and subtle differences in the
data. Better CNNs or any other technology that can provide crucial information on vast datasets
are always subject to research in this field.

Vision Transformers (ViTs) represent a significant leap forward in this context(Dosovitskiy
et al.; |2021). They have been very useful in multiple scenarios of pattern recognition from
image datasets. CNNs rely heavily on convolutional layers to extract local features, whereas
Vision Transformers use self-attention mechanisms to capture global dependencies in the image
data. This approach helps them to create complex models and relationships within the data
more effectively. Among the various ViT architectures, models like Swin Transformer, Data
Efficient Image Transformers (DeiT), and ViT Base have shown remarkable performance in
image classification tasks within different domains(Liu et al.; [2024)).

In this research, the application of these advanced Vision Transformer models for galaxy
morphological classification is explored. The aim is to improve the accuracy and efficiency of
automated galaxy classification systems by leveraging their superior feature extraction capabilit-
ies, . Additionally, this research also compares these models with traditional CNN architectures
such as ResNetb0 to evaluate their relative performance and determine the most suitable ap-
proach for this task.

The importance of this research extends beyond the immediate goal of improving classific-
ation accuracy. Enhanced galaxy classification can lead to better insights into the processes
governing galaxy formation and evolution. It can also help in the discovery of new and rare
galaxy types while also contributing to the broader understanding of the universe.

1.1 Research Questions

The usage of vision transformers for image classification is a relatively new concept. As such,
little is known about its applicability with limited amount of data in the field of galaxy mor-
phology classification. Or, if vision transformers outperform well-established, general image
processing techniques, such as CNNs in this field. There is ample scope for research in vision
transformers, but for the purposes of this research report, we will focus on:

1. How do Vision Transformers compare to state of the art techniques, such as Convolutional
Neural Networks? In other words, are vision transformers able to achieve comparable
accuracy using limited amount of data?

2. From a range of vision transformers, which one is the most efficient in terms of accuracy
and learning time for image classification?

A number of vision transformers exist, but the current work will narrow down the list to the
following: Swin, Vision Transformer Base (ViT), and Data Efficient Image Transformer (DeiT)

1.2 Research Objective & Outline

In order to address the research questions, the following The following are the primary objectives
of this research:



1. Data preparation — Importing the data to pre-process it followed by required data aug-
mentations.

2. Implementing the models as per the Galaxy10 Decals dataset. The models used are Swin
Transformer, ViT Base, DeiT and ResNet50.

3. Evaluate the models and check the metrics Precision, Recall, F1 Score and Accuracy.

The report is organised as follows. In Section [I] a brief introduction to the field is presented
Section 2 outlines the works that has been done within the field. Section [3] discusses how
the models were implemented and trained. The Section [5| then describes the computational
resources that were used to complete the research. Section [6] moves on to check the evaluation
that produces the results as per the experiments done in the research. Finally, all results are
discussed and concluded with the future work aspect in Section

1.3 Research Gap

Vision transformers are a new way of performing image classification. There is however little
information about what type of transformers are suitable for general-purpose classification tasks.
In this report, a challenging dataset, with 10 classes is used to establish whether vision trans-
formers are any better than traditional convolutional neural networks.

In other words, vision transformers have shown tremendous performance in various image
classification tasks across different domains, however their comparisons do not seem fair. The
training of vision transformers is done with larger datasets than traditional convolutional neural
networks. Or, how does training time compare to conventional, yet amply successful CNNs?

There has been very few research that has focused on this as mostly Convolutional Neural
Networks are explored in previous research for this task. This research focuses to address this
issue by making use of multiple different types of vision transformers for galaxy morphology
classification. On top of this generally researches focus on classification of six to seven classes
of galaxies. There are more galaxy types that have not been extensively studied and explored
for classification. This research also attempts to aid in this area as the dataset used here has 10
morphological classes of the galaxy images.

2 Related Work

Space Exploration has undergone massive increase in its pace to produce more and more inform-
ation about the cosmic entities present all around. Many exploration such as Large Synoptic Sky
Survey promises to generate abundance of images. Surveys like Galaxy Zoo and Sloan Digital
Sky Survey has already generated a large number of galaxy images. These surveys are leveraged
and their generated data is largely used to facilitate multiple researches in the field of space
exploration. This related work section

The current space explorations being performed by scientists and explorers, promises to
bring abundance of data going forward. The data generated could be massively beneficial to
researchers. The Large Synoptic Sky Survey uses a Large-aperture Synoptic Survey Telescope as
described in (Abell et al.;|2009). The advanced technology used for this survey, will help to bring
forth thousands of images upon its completion. Other massive surveys that is already done is
The Sloan Digital Sky Survey by (York et al.; 2000). Images produced from this survey provides
morphological information about the galaxies. The morphological information retrieved from the
survey opens up many more opportunities for research such as age, struture, formation, history
and merger information on galaxies. Traditional approaches, such as those by (de Vaucouleurs
et al.; 1991), and Sandage (1975), rely entirely on visual inspection. This type of inspection
was extremely prone to inconsistencies and consisted of human biases. Recent advancements



focus on automated classification techniques to handle modern astronomical survey data, which
comprise millions of galaxies.

2.1 Machine learning techniques used for Galaxy Morphology Classification

There has been many innovative techniques used over time to perform galaxy morphology clas-
sification. Initially, after relying on visual techniques, researchers moved on to machine learning
methods for galaxy classification. Several studies used machine learning algorithms such as Na-
ive Bayes and Random Forest to perform hierarchical classification of galaxies. For instance,
(Marin et al.; |2013) conducted a study where classification was carried out following feature
extraction. They also introduced the concept of calculating geometric moments. Additionally,
the authors addressed class imbalance by artificially generating galaxy images using geometric
transformations. Subsequently, Support Vector Machines (SVMs) were utilized for morpholo-
gical classification in research conducted by (Applebaum and Zhang; [2015]), which made use of
the Galaxy Zoo dataset. The more detailed morphological characteristics that were captured in
images can be better processed and classified using deep learning models such as Convolutional
Neural Networks (CNNs) and Vision Transformers.One noteworthy contribution in this field is
by (Huertas-Company et al.; 2010), who present a Bayesian automated classification method for
approximately 700,000 galaxies from the SDSS DR7 dataset. In this research the authors used
the machine learning technique support vector machines (SVM) to classify galaxies into four
morphological types: Ellipticals (E), Lenticulars (S0), Early-type Spirals (Sab), and Late-type
Spirals (Scd). They addressed the basic issues involved in manual visual classification systems.
Their research methodology makes use of a combination of parameters such as color indices
(g-1, 1-i), shape parameters (isoB/isoA in the i-band, deVAB i), and light concentration indices
(R90/R50 in the i-band) to improve classification accuracy. It is evident that their research was
very robust across many perspective. They tested their models through multiple classifications
with many different training samples. Upon training it was found that there were very minor
variations in the probablities of the classification outputs. This shows that the classification
system is very effective for all types of galaxies represented in the training set of their research.
Another noteworthy research from (Barchi et al.; [2016) where the authors do in-depth study
for improving galaxy morphology classification using machine learning techniques. Their re-
search mainly targets on classifying galaxies into elliptical (E) and spiral (S) types using a set of
morphological parameters. The morphological parameters considered are concentration (CN),
asymmetry metrics (A3), smoothness metrics (S3), entropy (H), and a gradient pattern analysis
parameter (GA). These parameters mostly are obtained from pre-processed segmented images.
Their research makes use of a dataset that consists of 48,145 instances. After the dataset was
preprocessed, there were 44,760 galaxies that were labeled as spiral and 3,385 were labelled as
elliptical based on Galaxy Zoo classifications. The authors implemented unsupervised learning
experiments with the help of techniques such as K-means and Agglomerative Hierarchical Clus-
tering (AHC). They conducted the experiments on a dataset of 1962 instances that was also very
well balanced. The authors utilized K-means clustering with ’k-means++" and 'random’ initial-
ization methods which provided almost very identical results. AHC also successfully grouped the
objects into two main clusters of the galaxy types. The study demonstrated that machine learn-
ing methods such as SVM and DT, are highly effective for galaxy morphological classification.
These machine learning methods achieved high accuracy. The research also helped to identify
features that were most significant. Concentration parameter (CN) was identified as the most
significant feature for distinguishing between spiral and elliptical galaxies. The use of grid search
and cross-validation made sure that the models were well-tuned and avoided overfitting. These
researches were successful to a certain degree. As in this case the models were only classifying
accurately for binary classification. Other researches involves not achieving great accuracy for
multiple classes. This allowed researchers to follow up with other technologies.



2.2 Classifying Galaxy Morphology utilizing Deep Learning

Over time machine learning technology evolved to use of deep neural networks. Deep neural
network architectures proved to be working really well in the field of image classification. Ar-
chitectures like Convolutional Neural Networks(CNNs) were crucial for further development in
terms of morphological classification of galaxies. The neural network architecture of CNNs al-
lows them to filter information from images. CNNs have convolutional layers that contains filters
throughout their neural network architectures which eventually helps to extract certain patterns
at certain layers. The learnable parameters within the neural network architecture helps CNNs
to get better over time with more data and training. Over the years, CNNs had revolutionized
galaxy morphology classification by automating the whole process and achieving better perform-
ance than manual visual classification. Studies have demonstrated that CNNs perform really
well to classify galaxies into basic morphology types such as elliptical and spiral galaxy types. In
their study by (Dominguez Sanchez et al.f 2018]), the authors created a morphological catalogue
for for approximately 670,000 galaxies from SDSS survey. This study included galaxies that has
high classifier agreement from galaxy zoo for training. This helped to generalize the model better
and also allowed better feature extraction. In their study they specifically made use of binary
classification. They used ReLU as their activation function and the classifier layer had sigmoid
activation function. In the study, the model is trained for 50 epochs with a batch size of 30.
The learning rate is initially set to 0.001 but is adjusted over time. For the binary classification
the model achieved high precision and recall values. Their research implementation resulted in
more than 97% accuracy, hence showing how stable CNNs were.

Surveys like SDSS have been a go to source of dataset for CNNs to be used upon. Many
astronomical research has been done with the help of galaxy images. The research by (Pearson
et al.; |2019)) explores the application of deep learning to galaxy merger identification. The
authors developed a CNN architecture that they trained on both observational data from the
SDSS survey and the simulated dataset obtained from the EAGLE cosmological simulation.
This study targeted to test how well CNNs were able to reproduce the visual classification from
observations and also physical classifications from simulations. In their research the CNN that
they trained on the SDSS dataset was able to achieve an accuracy of 91.5%. Whereas the CNN
that was trained on the EAGLE simulated dataset, had a lower accuracy of around 65.2%. In
this study, the neural network architecture had convolutional layers along with max pooling and
dropout layers. Batch normalization was also used at every convolutional layer which allowed
their model to learn better than a basic CNN architecture. The model trained on the simulated
data was also tested on the SDSS images, which resulted in an accuracy of about 64.4% and a
53% accuracy was obtained over the images of simulated dataset by the model trained on SDSS
data.

There are other studies that went beyond binary classification where they have tried more
than two-way classifications. The study by (Cavanagh et al.; 2021)) trains and tests multiple
CNN architectures for galaxy morphology classification. The models used in this study are used
for classifying galaxies into three classes - elliptical, lenticular and spiral. The study also classifies
the galaxies into four way classification as well which included the irregular or miscellaneous type.
Their approach included rigorous data augmentation techniques such as cropping, rotating, and
flipping to make the training dataset even better. The study also explored binary classifications
between all four morphological classes. This allowed the study to identify that ellipticals and
spirals are the easiest to distinguish between, while spirals and irregulars were the most difficult.
In this study the authors introduced a hierarchical classification method that combines binary
CNN classifiers to perform a step-by-step classification. Their method was able to get less
effective accuracy for the four way classification than the three class one. This was due to the
complexities that was introduced by the irregular and miscellaneous galaxy type. Their new
CNN architecture, C2 performed way better than the existing models with overall classification
accuracies of 83% and 81% for the 3-way and 4-way classifications, respectively.



2.3 Critical Analysis of Transfer Learning for Galaxy Morphology Classific-
ation

There has been multiple different CNN architectures that has proven to be very useful when
pretrained on large labelled datasets. Transfer learning has shown benifits in all kind of domains
and applications. The CNN architectures has also developed and become better with time that
allows transfer learning to be more useful. The research from (Schneider et al.; 2023) shows sub-
stantial advancements with the application of convolutional neural networks (CNNs) and transfer
learning. In their study the authors demonstrated a significant improvement in overall classi-
fication accuracy by utilizing the pretrained AlexNet model. Their statistical significance was
greater than the non pre-trained model. Their average peak test accuracy for their pre-trained
model was about 84.2%, whereas the model that wasn’t pretrained had an average accuracy of
82.4%. In terms of training speed as well pre-trained model surpassed the non pretrained model
greatly. Pre-trained model converged in around 155 epochs whereas the other one converged
in about 367 epochs. Another such study that leveraged transfer learning and performed quite
well was by (Dominguez Sanchez et al.; [2018). Their study focuses on the performance of deep
learning models trained on the SDSS data when applied to images from the Dark Energy Survey
(DES). The initial model was trained on SDSS and it was suitable to DES as the images have
similar redshift distribution to SDSS. To improve the model performance the pretrained model
was also trained on the DES image sample of about 300-500 images. Their study improved
the overall accuracy from 90% to about 95% for the DES image dataset. Their result suggest
that transfer learning is a suitable strategy for applying pre-trained models to new astronomical
datasets. This helped to show the less need for large labeled training sets for galaxy morphology
classification. They also helped to understand the issue that fine-tuning pre-trained models on
a small subset of the new data can achieve very high performance levels. The performance level
can even be comparable to those trained entirely on the new data. This approach turns out
to be a highly efficient approach for future large-scale surveys. Other researches in the field of
space exploration has also benefited from transfer learning techniques. One such research by
(Ackermann et al. [2018) found out that these deep learning methods significantly outperform
previous state-of-the-art merger detection methods based on non-parametric systems. In their
research they used transfer learning as a regularizer that improved their overall classification
accuracy. When they used transfer learning on their overall training set they noticed a decrease
in the error rate from 0.038 + 1 to 0.032 + 1, which is a relative improvement of 15% in their
case. They also perform comparison of their method with previous automatic visual classification
methods, showing significant improvements in precision, recall, and F1 score. Some other recent
papers multi source datasets to perform galaxy morphology classification. Another research by
(Shaiakhmetov et al.; |2021)) introduces SpinalNet, a deep neural network inspired by the human
somatosensory system. SpinalNet’s unique approach involves a gradual input mechanism. In
this mechanism intermediate layers process both new inputs and outputs from previous layers.
In their study the authors used SpinalNet on the Galaxy Zoo dataset. They performed binary,
three-class and ten-class classification. The binary classification considered elliptical and spiral
galaxy types, where as three-class introduced the irregular galaxy type as well. The model
performed really well for binary and three-class classification with about 98.2% and about 95%
respectively. However, for the 10-class classification the model was able to achieve an accuracy
of about 82%.

2.4 Analysis of Vision Transformers in classifying morphologies of galaxies

In 2020 the new idea of Vision transformer came into the picture. The study by (Dosovitskiy
et al.; 2021)) introduced vision transformer that presents a novel approach to image classification
using a Transformer architecture. They showed how a vision transformer applies the transformer
architecture directly to sequences of image patches. It takes sequential input as well just as



transformers do. The image patches in a ViT also contain positional embeddings retain positional
information. The research shows substantial results to conclude that ViT achieves competetive
performance on image recognition tasks when pre-trained on larger datasets and then fine-tuned
later for smaller data tasks. Another study by (Cao et al.; [2024]) focused on using deep learning
techniques to classify galaxy morphologies using large-scale astronomical datasets. In their
study they used the Convolutional vision Transformer (CvT), which is an improved version of
the Vision Transformer model. They showed how it helped them to improve results of ViT
model using a convolutional neural network. The overall accuracy achieved by them in their
study was around 98%. One more notable study by (Lin et al.; 2022)) explored the use of Efficient
Vision Transformers (ViTs) for this purpose. In their study they mainly focues on using the
Linformer model to classify galaxies. They showed that Vision transformers are able to achieve
competitive results when compared with convolutional neural networks. They used the Galaxy
Zoo dataset and compared the vision transformer models with ResNet-50 baseline model. The
best overall accuracy they were able to achieve was 80.55% 4, whereas the best individual class
accuracy achieved in their weighted-cross entropy Linformer was over 60% in each class. Even
though Linformer achiever pretty good result still ResNet-50 was able to generalize better with
an overall accuracy of about 85.12%.

The critical analysis of the papers over the years and the evolving technologies does indicate
that it is worth checking the vision transformers in terms of classifying the galaxy morphologies
with the help of the galaxy images.

3 Research Methodology
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Figure 1: Research Methodology KDD Diagram

The methodology adopted in this study was structured around the Knowledge Discovery in



Databases (KDD) process. The KDD process is comprised of several critical steps, beginning
with data selection, followed by preprocessing, model identification, model training, and finally
model comparison along with evaluation. Each of these steps was implemented to ensure that
the models trained could classify the morphological classes of galaxies in the Galaxy10 DECals
dataset.

Figure [1] This research aims to identify the best Vision Transformer-based algorithm for
classifying galaxy morphologies using image data as well as aims to contrast the transformer
models with respect to existing convolutional neural networks. A systematic methodology as
mentioned above with several key steps, including data collection, preprocessing, algorithm
configuration, model training, and evaluation, is employed and the steps are described below.

3.1 Dataset Description

In the field of space exploration being able to classify galaxy images is key towards learning
important information about them. Merger details, formation, evolution and movement inform-
ation are few out of many crucial details that allows researchers to learn more about the galaxies
and perform further research on them. The Galaxy10 DECalsﬂ dataset is a curated collection
of images of galaxies used primarily for research and educational purposes in the field of astro-
nomy and astrophysics. The dataset is derived from the Dark Energy Camera Legacy Survey
(DECals), which is a deep-sky astronomical survey. It is derived by the Galaxy Zoo survey, done
previiously. It contains labeled images of galaxies that helps researchers to train machine learn-
ing models for automated classification of Galaxy morphology and other astronomical aspects.
The dataset contains images of galaxies that are distributed among ten different morphological
classes. Visual appearance and structural features of the galaxies helps to classify them into
classes such as elliptical, spiral, irregular, and other unique shapes. The class distribution of the
dataset and the instance count for different classes are shown in the Figure 2] Each image in
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Figure 2: Class Distribution Histogram

the dataset is a square cutout centered on a galaxy. The images are typically in color with RGB
channels that can help train the models and the classification process.

’https://astronn.readthedocs.io/en/latest/galaxy10.html#introduction
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3.2 Pre-Processing of the Data

After obtaining the Galaxy10 DECals dataset from a credible source, the next crucial step was
preprocessing the data. This is a very crucial step to prepre the data when one is performing
deep-learning based classification. The initial raw images often contain noises, varying dimen-
sions or some other inconsistencies. With the help of this pre-processing it can be ensured that
the model learns the required features without the irrelevant inconsistencies and variances. In
this research the main consideration of one such inconsistency was to consider the aspect of
unnecessary information for the target classification. Some of the galaxy images contain a lot
of dark background which does not provide any necessary information for the classification of
galaxies. However, in certain domains the arrangement of these dark areas can be significant.
For example, the pattern of black regions in a galaxy image might outline the shape or structure
of celestial bodies, serving as an informative feature. Thus, while dark pixels themselves might
not carry specific data, their spatial configuration relative to other pixels can be crucial for
identifying and classifying objects within the image. To handle issues like that the first the im-
ages were cropped and resized to a standard dimension of 224x224 pixels. The models that were
chosen were also taking a standard input of 224x224 image size so this chosen image dimension
was perfect. Following this other augmentations were incorporated in the pre-processing. Ran-
dom Rotation was included where the images were randomly rotated to 90 degrees to simulate
multiple orientations of galaxies. The images were also flipped horizontally and vertically for
mirrored version of the images. Next the main augmentation where the images were resized and
cropped randomly so that the dark background that doesn’t provide any information can be
taken out of account while training.

3.3 Model Training Phase

Once the pre-processing is complete the Galaxyl0 DECals dataset was divided into training,
validation and test dataset. The distribution was done in the ration of 70:10:20 for the training,
validation and test subsets respectively. The split helps to make sure that the model gets robust
data for training, validation and testing. The training subset consists of images that contains
data all across ten different galaxy morphology classes with respective labels. The total number
of images in training subset after the split was , while the validation subset had , and the test
subset had around images respectively. The Deep Learning models including vision transformers
and CNN based models that were used in this research were Base Vision Transformer (ViT),
Swin transformer, Data-efficient Image Transformer (DeiT) and ResNet50. All the mentioned
models have been trained over the training dataset, while being monitored with validation subset
while training and then evealuated using the test subset of the dataset.

3.4 Model Evaluation Phase

As soon as the models are done training, the test dataset is used to evaluate the models on
different evaluation metrics. This research handles multi-class classification, so appropriate
evaluation metrics are chosen for this type of tasks. Metrics such as accuracy, weighted average,
precision, recall and f1 score are considered to be analysed. Precision is particularly important in
classifying galaxy types because misclassifying a galaxy can lead to incorrect scientific conclusions
and affect subsequent research. In astronomy, where datasets can be large, but the classes may
be imbalanced (e.g., certain galaxy types being rarer than others), high precision ensures that
when a model predicts a particular galaxy type, it is highly likely to be correct. This reduces the
incidence of false positives, which is critical when each classification might contribute to broader
scientific knowledge, such as understanding galaxy formation and evolution. This research also
faced an issue with class imbalance for some classes of galaxies which is why precision turned
out to be a useful metric to look into.



4 Design Specification

The design specification in this research presents the methodologies and technologies used to
achieve certain accuracy for classification of galaxy morphologies. The preprocessing phase
earlier involved data standardization to ensure consistency, which includes resizing images, nor-
malizing pixel values, and augmenting data to address any existing class imbalances within
the dataset. The primary aspect of this research is the implementation of Vision Transformers
(ViTs). They are selected due to their ability to handle image data. The vision transformers that
are used in this research are Swin Transformer, Data Efficient Image Transformer (DEiT), ViT
Base Transformer and ResNet50. The network architectures and implementation are defined
below.

4.1 Swin Transformer

The Swin Transformer is one of many Vision Transformers available for deep learning tasks. The
Swin Transformer network architecture shows a significant advancement in the field of Computer
Vision. Unlike other Convolutional Neural Netowrks (CNNs), which rely on convolutional layers
to get spatial information from the images, the Swin transformer uses a heirarchical transformer
structure to capture both local and global features. The attention spreads from local to global
information over the image. This type of architecture consists of many stages. Each of these
stages comprises of tranformer blocks in a sequence where the window size increases progressively.
The increasing window size allows scalability and more efficiency within the model.

The backbone of the Swin Transformer consists of four stages, each containing several Swin
Transformer layers. These layers are designed to perform self-attention within local windows.
This local attention design helps to reduce the computational time and cost for the model
training compared to the global self attention mechanism of a base vision transformer model.
The network architecture starts with a patch partitioning layer that divides the input image into
non-overlapping patches. Right after this the linear embedding layer is present that projects
these non-overlapping patches into a higher-dimensional feature space. The next stages in the
network makes use of the shifting window mechanism to enhance model’s capability of capturing
cross-window interactions.

In this research, the Swin Transformer architecture is utilized that is pre-trained on the ImageNet
dataset. The ImageNet dataset includes over 1 million images across more than 1000 categories.
The pre-training helps towards a robust feature extraction. The model processes images with
a standard size of 224x224 pixels and then makes use of the transfer learning techniques. The
Swin Transformer architecture is shown in the image [3| In addition to the Swin Transformer,
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this study also employs the ResNet as baseline comparisons. They are renowned Convolutional
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Neural Networks that are known for their performance in image classification tasks.

4.2 VIiT Base Fine-tuned
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Figure 4: ViT Base Transformer Network Architecture, (Dosovitskiy et al.| (2021))

The Vision Transformer (ViT) are quite new in computer vision. It moves away from tra-
ditional convolutional neural networks towards transformer-based architectures that have been
highly successful in natural language processing. The ViT model employed in this research is
based on the "ViT-Base’ configuration, which utilizes a patch-based approach to process images,
significantly differing from traditional pixel-based convolution methods. The architecture of this
model is shown in the figure

In this architecture, the input image is first divided into fixed-size patches of 16x16 in this
research. They are then flattened and linearly embedded into a higher-dimensional space. This
embedding process transforms each patch into a vector of size 768 which is the input size of the
transformer encoder. The embeddings are augmented with positional encoding to retain spatial
information. This spatial information is very crucial for image-related tasks. The sequence of
patch embedding forms the input to the transformer encoder. The encoder consists of multiple
layers of multi-head self-attention and feed-forward neural networks. In this research the trans-
former encoder in the ViT model contains 12 layers. Each of these layer is equipped with 12
self-attention heads. This structure allows the model to capture complex inter-patch relation-
ships by focusing on different parts of the image at the same time. The ViT model’s strength
lies in its ability to model contextual information in a global scope. This makes it particularly
effective for detailed image classification tasks.

Within this research, the ViT model is fine-tuned using the Galaxyl10 Decals dataset. The
model is initialized with weights pre-trained on the ImageNet dataset, which comprises over
a million images across 1000 categories. This pre-training enables the ViT model to leverage
previously learned visual features.

Key hyperparameters used in this setup include a learning rate of 5x1055x 105, a step size
of 5, and a gamma of 0.1 for learning rate scheduling. The model is trained for 24 epochs, with
class weights applied to address any potential class imbalances. The final classification layer is
a linear layer with an input feature size of 768 and an output size of 10. These ensured that the
ViT model is tailored for the task of galaxy classification.
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4.3 DEiIT Transformer

The Data Efficient Image Transformer (DeiT) is a very efficient model in computer vision mainly
for the tasks that demand high accuracy with limited data. DeiT uses a transformer-based
framework to achieve extremely well performance in image classification. The DeiT architecture
is built upon the foundation of the Vision Transformer (ViT). It employs some enhancements
to the ViT architecture to improve data efficiency and overall model performance. The core
structure of DeiT consists of a series of transformer blocks. Each of these blocks implement
multi-head self-attention mechanisms and feed-forward neural networks. These blocks are very
good at capturing complex patterns and relationships within image data.

First, the input image is divided into a grid of non-overlapping patches of size 16x16 pixels.
Each of these patch is embedded into a fixed dimensional linear vector that forms the input
sequence for the transformer. This transformation converts a 224x224 image into a sequence of
196 patches. Each patch is represented by a 768-dimensional vector. The sequence of embed-
ded patches is then passed into a stack of transformer encoder layers. Each layer consists of a
multi-head self-attention mechanism followed by a feed-forward neural network. Here the layer
normalization and residual connections are used to stabilize training and improve convergence.
The attention mechanism allows the model to focus on different parts of the image simultan-
eously, capturing both local and global features. The DeiT model architecture is demonstrated
in the figure [5| A special class token is prepended to the sequence of patch embeddings that is a
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Figure 5: Data Efficient Image Transformer Network Architecture, (Touvron et al.| (2021))

linear summary of the whole image. This token interacts with the other patches through the self-
attention layers and is ultimately used for classification. The final hidden state corresponding to
the class token is passed through a fully connected layer to produce the classification logits. This
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output is then used to predict the class label of the input image. Data augmentation techniques
such as random cropping, flipping, and color jittering are also used during pre-training as it can
help to improve model generalization.

DeiT’s key innovation is the use of knowledge distillation, where a smaller student model
learns from a larger teacher model. With the help of this technique it enhances the data efficiency
of the model. During training, the student model is helped by the soft labels produced by the
teacher model, which provide more information than hard labels alone. After pre-training, the
DeiT model is fine-tuned on the Galaxyl0 dataset. Fine-tuning involves updating the model
weights to adapt to the specific characteristics of galaxy images. Techniques such as learning
rate scheduling and early stopping are also used in this research to optimize the fine-tuning
process.

4.4 ResNet50

The ResNet50 architecture is a Convolutional neural network model in the field of deep learning.
It is renowned for its exceptional performance in image classification tasks. It introduced an
approach to training deep networks through the use of residual networks. This addressed the
gradient degradation problem often encountered in very deep networks. ResNet50, short for
Residual Network with 50 layers, consists of a series of convolutional layers, batch normalization
layers, ReLLU activation functions, and a unique feature known as identity mapping. This archi-
tecture helps the training of much deeper networks by allowing gradients to flow through shortcut
connections directly to earlier layers, effectively mitigating the vanishing gradient problem.
The ResNet50 architecture is composed of 50 layers, including convolutional layers, pooling
layers, and fully connected layers. The Figure [f] shows the ResNet50 network architecture. The
architecture is divided into five stages, each with a different number of convolutional blocks.
Each block contains multiple convolutional layers and makes use of identity mappings to create
shortcut connections. The model starts with a 7x7 convolutional layer with 64 filters, followed
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Figure 6: ResNet-50 Network Architecture, (Al-Humaidan and Prince| (2021)))

by a max pooling layer. This initial layer is responsible for extracting low-level features from
the input image. The ResNet50 consists of residual blocks, each containing three convolutional
layers with filter sizes of 1x1, 3x3, and 1x1. The first and last layers of each block are 1x1
convolutions that reduce and then restore dimensions, while the middle layer is a 3x3 convolution
that processes the features.
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After passing through the residual blocks, the feature maps are averaged via a global average
pooling layer, which reduces the spatial dimensions to a single vector per filter. This vector is
then fed into a fully connected layer with 1000 units (for ImageNet classification) or adjusted to
match the number of classes in the specific task. ReLLU activation and batch normalization are
applied throughout the network to improve model convergence.

Following pre-training, the ResNetb0 model is fine-tuned on the Galaxyl0 dataset. Fine-
tuning involves adjusting the model weights to adapt to the unique characteristics of galaxy
images, which may include varying scales, orientations, and visual complexities. Techniques
such as learning rate scheduling, early stopping, and data augmentation are employed during
fine-tuning to optimize performance and prevent overfitting.

5 Implementation

In this project, four deep learning algorithms are used - ViT Base, Swin Transformer, DeiT
Transformer and ResNet50 baseline. These models are evaluated based on their capability of
classifying the different classes of the galaxy images present in the Galaxyl0 Decals dataset.
Each and every model uses the categorical cross entropy as the loss function. Mostly Adam
Optimizer is used for the optimization of the models. One of the key aspect of implementation
included selecting and tuning the hyperparameters of the models. The primary hyperparameters
considered in this research are learning rate, batch size, number of epochs of training, weight
decay and choice of optimizer. The learning rates for the models were set to a relatively low
value to prevent the models from making large updates to the weights. The batch size was
chosen as 8 as it was appropriate for the available GPU memory.A grid search approach was
used in this research for testing various combinations of learning rates, batch sizes, and optimizer
configurations. Adam optimizer was chosen for its ability to adapt learning rates for individual
parameters.

During training, the cross-entropy loss function was used as it is better suited for multi-class
classification tasks. One of the significant challenges faced during training was the long conver-
gence time, particularly with Vision Transformers. To mitigate this challenge early stopping was
implemented, such that training could be stopped if the validation loss did not improve after a
certain number of epochs.

The training of Vision Transformers is computationally intensive. The implementation was
carried out on a local machine equipped with an NVIDIA GeForce GTX 1650 GPU with 4 GB
of memory, 16 GB of RAM, and a 256 GB Solid State Drive. The choice of hardware imposed
certain limitations, particularly in terms of batch size and the number of epochs of model training
over the galaxy dataset. Due to the computational resource constraint the vision transformers
took significantly longer time to train when compared to the ResNet50 model.

The evaluation of the models was conducted using a carefully designed pipeline. The
Galaxyl0 DECals dataset was split into training, validation, and test sets in a 70:10:20 ra-
tio. This split helped to reserve a portion of the data for unbiased evaluation. The code was
written in Python 3.8.8 and multiple different packages and libraries were utilized, including
Torch, Pytorch, Matplotlib, NumPy, tqdm, time, Sklearn, PIL, h5py and some others. The
models make use of the GPU tensor cores with the help of PyTorch’s data loaders.

6 Evaluation

As described in the research question, a primary target is to find out whether vision trans-
formers are any better than traditional convolutional neural networks. In other words, we want
to identify a transformer with efficient learning time and high accuracy. So that it can be de-
termined whether or not Vision Transformers are worth considering for general-purpose image
classification tasks. To make comparisons fair, a relatively complex image classification dataset
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was employed. The galaxy 10 decals dataset has been divided into 10 classes, one for a mor-
phological different galaxy. As there is class imbalance, the comparison needs to consider it as
well.

6.1 Experiment 1 - Evaluation of Base Model ResNet50 and Other Vision
Transformer Models without Data Augmentation

Analysis of the Precision, Recall, F1 Score, Accuracy and Weighted Average for the models that
are trained over the data that does not incorporate data augmentation is detailed below in this
experiment. The data is just resized into 224x224 pixels so that the models can take a standard
image size as the input.

6.1.1 Evaluation Metrics - Precision

The precision scores for the four models are compared based on the classification of various
galaxy types. The model comparisons are shown for precision in the Figure []] The ViT base

Comparison of Models Based on Precision
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Figure 7: Precision Comparison for all models without Data Augmentation

Fine-Tuned model outperforms all the other models in this case. The peak precision noted for
this model was for the “Edge-on Galaxies with Bulge” at around 94%. Swin Transformer model
achieved an overall precision of 83%. The highest precision was for "Edge-on Galaxies with
Bulge" at 96%, and the lowest for "Disturbed Galaxies" at 51%. DeiT Transformer: Achieved
an overall precision of 81%. The highest precision was for “Barred Spiral Galaxies” at 92%, and
the lowest was again for “Disturbed Galaxies” at 0.54. The baseline ResNet50 model achieved an
overall precision of 81%. The highest precision achieved by this model was for “Edge-on Galaxies
with Bulge” at 90%.
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6.1.2 Evaluation Metrics - Recall

Upon checking the recall for the models, the Swin Transformer achieved an overall recall of 83%,
performing best in the "Edge-on Galaxies without Bulge" category with a recall of 95%, while
its recall for "Disturbed Galaxies" was 49%. The ViT Base Fine-Tuned model outperformed
others with an overall recall of 86%, with a high recall of 96% for "Edge-on Galaxies with
Bulge". The DeiT Transformer achieved an overall recall of 82%, excelling in "In-between
Round Smooth Galaxies" with a recall of 97%. Finally the baseline ResNet50 model matched
the DeiT Transformer with an overall recall of 82%. It performed the best in "Round Smooth
Galaxies" (95%) and worst in "Disturbed Galaxies" (37%).

6.1.3 Evaluation Metrics - Accuracy Weighted Average

Accuracy reflects the proportion of true results among the total number of cases. In this study
the Vit Base-Fine tuned model again achieved the highest overall accuracy and the weighted
average as well. The model’s weighted average precision, recall, and F1-Score, all are at 86%.
This indicates a very stable and robust model for the research purpose. The Swin transformer’s
over accuracy and weighted average was at about 83%. In this experiment both the DeiT
Transformer and ResNet50 models achieved an overall accuracy of 82% while the weighted
average for both models were at 81%.

6.1.4 Evaluation Metrics - F1 - Score

The model comparisons based on the F1 score is shown in the figure [} The Swin Transformer
achieved an overall F1-Score of 83%, with its highest score for "Edge-on Galaxies with Bulge"
at 93%. The ViT Base Fine-Tuned model led the evaluation with an overall F1-Score of 86%,
achieving its highest score for "Edge-on Galaxies with Bulge" at 95%. Both the DeiT Trans-
former and ResNet50 had an overall F1-Score of 81%. As usual all the model performed poorly
for the "Distributed Galaxies" class.
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Figure 8: F1 Score Comparison for all models without Data Augmentation
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6.2 Experiment 2 - Evaluation of Base Model ResNet50 and Other Vision
Transformer Models with Data Augmentation

Analysis of the Evaluation of Baseline ResNet50 and Other Vision Transformers over the test
dataset when the models are trained with data augmentation incorporated during training.
There are multiple data augmentation included such as resizing, where the images are resized
into a standard dimension of 224x224 pixels. Other augmentation such as random rotation of
images into 90 degrees of rotation, horizontal and vertical flipping and random cropping as well.
On top of this the images are also normalized to a specific range as this could speed up the
convergence of the training process.

6.2.1 Evaluation Metrics - Precision

By the help of the precision metric the evaluation of the model checks its ability to correctly
identify positive samples among the predicted positives. The Overall comparison of models for
precision is shown in Figure @

In this research the Swin Transformer achieved a macro average precision of 85%, which
shows a overall robust performance across different galaxy classes. The ViT Base Fine-Tuned
model also performed well, with a macro average precision of 86%. It showed particularly high
precision for categories like Edge-on Galaxies without Bulge (94%) and Edge-on Galaxies with
Bulge (94%). The DeiT model had a macro average precision of 81%, with notable precision in
categories such as Round Smooth Galaxies (89%) and Edge-on Galaxies with Bulge (92%). The
Baseline ResNet50 model achieved a macro average precision of 81%. Its precision was high for
classes like Round Smooth Galaxies (88%) and Edge-on Galaxies with Bulge (89%).
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Figure 9: Precision Comparison for all models with Data Augmentation

6.2.2 Evaluation Metrics - Recall

The Swin Transformer model demonstrated a strong macro average recall of 82%. It performed
really well in identifying Edge-on Galaxies with Bulge (96%) and Unbarred Loose Spiral Galaxies

17



(79%). The ViT Base Fine-Tuned model achieveEd an overall macro average recall of 85%. It
showed excellent statistics in categories such as Round Smooth Galaxies (96%) and In-between
Round Smooth Galaxies (96%). The DeiT model achieved a macro average recall of 83%,
excelling in classes like Round Smooth Galaxies (96%) and In-between Round Smooth Galaxies
(95%). The Baseline ResNet50 had a macro average recall of 81%. It showed strong recall for
Round Smooth Galaxies (96%) and Edge-on Galaxies with Bulge (93%) over the test dataset.
The DeiT model achieved a macro average recall of 83%, excelling in classes like Round Smooth
Galaxies (96%) and In-between Round Smooth Galaxies (95%). The Baseline ResNet50 had a
macro average recall of 81%. It showed strong recall for Round Smooth Galaxies (96%) and
Edge-on Galaxies with Bulge (93%) over the test dataset.

6.2.3 Evaluation Metrics - F1 Score

The F1 score is the harmonic mean of precision and recall. It provides a single metric to evaluate
the models’ performance. The Overall comparison of models for F1 score is shown in Figure

Comparison of Models Based on F1 Score
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Figure 10: F1 Score Comparison for all models with Data Augmentation

The Swin Transformer showed a macro average F1 score of 83%. It was particularly effective
in classes like Round Smooth Galaxies (93%) and Edge-on Galaxies with Bulge (93%). The
ViT Base Fine-Tuned model achieved a macro average F1 score of 85%, with high F1 scores in
categories like Round Smooth Galaxies (93%) and In-between Round Smooth Galaxies (93%).
The DeiT model had a macro average F1 score of 81%, performing well in classes such as Round
Smooth Galaxies (92%) and Edge-on Galaxies with Bulge (93%). The Baseline ResNet50 model
achieved a macro average F1 score of 81%. Its F1 score was notable for Round Smooth Galaxies
(92%) and Edge-on Galaxies with Bulge (91%).

6.2.4 Evaluation Metrics - Accuracy Weighted Average

Accuracy indicates the overall correctness of the models’ predictions taking into account class
imbalance. The metrics is used in this research to check how correctly the models categorize all
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the images in test dataset to their respective classes. The Swin Transformer model achieved an
accuracy of 86%, demonstrating a balanced performance across all galaxy classes. The weighted
average that the model achieved was 85.57%. Now the ViT Base Fine-Tuned model had the
highest accuracy at 87%, showcasing its capability to correctly classify a large majority of the
galaxy images. The overall weighted average that the model achieved across all the classes was
86.32%. The DeiT model’s accuracy was 84%, indicating solid performance but with some room
for improvement. The weighted average across 10 classes was 83.30%. The Baseline ResNet50
model achieved an accuracy of 83%, performing well but slightly lower than the transformer-
based models. Results of this section address research question one.

6.3 Experiment 3 - Evaluation of Base Model ResNet50 and other Vision
Transformers based on training time

Upon checking the model training times it can be seen thet ResNet50 model takes significantly
less time compared to the other Vision Transformer models. The ResNet50 baseline model take
an average time of around 2 hour 20 minutes whereas the other vision transformer models take
atleast 10 hours to train. The baseline model trained around 22 epochs with a convergence
on the 17th epoch whereas the vision transformers are taking almost an hour for each epoch
of the model training. ViT Base finetuned is the only transformer model that takes the least
amount of time to train among all the vision transformers. ViT Base fine-tuned model takes
approximately 19 minutes to train each epoch. The total training time for the model considering
data augmentation was about 7 hours 31 minutes to train about 24 epochs while converging
model in the 14th epoch. The table [I] shows the time consumed by the models to train for
the stated number of epochs. The table notes down the training time of the models that train
over the data that also has data augmentation incorporated as models performs better than the
one that does not involve data augmentation. Results from this section are relevant to research
question two.

Models Epochs

Swin Transformer 10:04:57

ViT Base Finetuned 07:31:08 24
DeiT 09:49:15 10

ResNet50 02:15:10 22

Table 1: Training Time by Model

6.4 Discussion

Once all the steps are done, the models are all trained twice. First the models are trained
without any data augmentation and then second they are all trained over the dataset with data
augmentation. Transfer learning was used in the study. A number of interesting findings follow:

e The models trained over the galaxy dataset when compared with each other it is evident
that ViT Base Fine-Tuned model outperformed every other vision transformers and even
the baseline model.
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e The ViT base fine-tuned model achieved 86.16% over the dataset without any data aug-
mentation, and about 86.70% over the dataset with data augmentation incorporated. Data
augmentation thus only marginally improves the classification accuracy.

e This was the highest performance achieved by the model when compared with all other
models. The model even had the least loss while testing as well where the test loss was
about 0.4602 without augmentation and 0.4083 with augmentation.

e Other models performed quite high as well and they all had test accuracy above 80%. Swin
Transformer model had the next best test accuracy of about 85.57%, and then DeiT and
baseline ResNet both had around 83%. This clearly shows that the transformer models
worked really well for the objective of this research.

In this research it was also noticed that the vision transformers did not demonstrate a
significant rise in their performance when data augmentation was incorporated. This occurred
as augmentation introduced more variety to the training data. However, it was seen that the
loss during training for the training and validation set was marginally low for all the models. In
terms of learning time, the following findings are of notice:

e Now, even though the baseline ResNet50 model had less but competitive performance, still
upon checking the training time it had the least time consumption to train the models.

e ResNet50 generalized way faster than the vision transformers with about 2 hours and 15
minutes.

e Meanwhile, the fastest vision transformer model, ViT, took around 7 hours 31 minutes and
the other vision transformer took more than 10 hours to converge into their best accuracy
that they achieved.

In other words, ResNet50 was more than 5 hours faster than the best transformer model.
The ViT model Here ViT base fine-tuned model took around 19 minutes approximately to train
each epoch where as the other vision transformers took almost about an hour for each epoch.
ResNet50 however only used around 5 minutes for each epoch training. Thus ResNet50 trains
the faster when compared to all other models.

When compared with the baseline ResNet50 model, the vision transformers performed better
than the Convolutional Neural Network model. This addresses the first research question and
clearly indicates that vision transformer are worth researching in this field.

Along with this ViT Base finetuned model performs the best in terms of accurately classifying
the galaxies among all other vision transformers. Swin Transformer comes next and then Data
Efficient Image transformer followed the other models in terms of accuracy. This addresses the
second research question of identifying the best vision transformer model.

6.5 Limitations

Despite the promising findings and advancements presented in this study there are several limit-
ations that needs to be addressed. One of the primary limitations of this study is the reliance on
the Galaxy10 DECals dataset, which is relatively small in size. Even though it provides crucial
information on galaxy classes as it contains 10 classes still it does not fully capture the diversity
and complexities in galaxy morphologies. There are bigger datasets explored in other research
in this field like the study by (Lin et al. |[2022). Additionally, the dataset contans imbalance,
where certain galaxy classes are underrepresented. The choice of using Vision Transformers
(ViTs) over traditional Convolutional Neural Networks (CNNs) was driven by their ability to
capture global dependencies. However, this study did not fully explore the potential of combin-
ing both approaches, such as using hybrid models that integrate CNNs with ViTs as done by
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(Cao et al.; 2024). Besides this this study relies on a single dataset which is split into training,
validation, and test sets which raises concern about potential bias in the splits. Although strat-
ified sampling was used to make sure that each set maintained a similar class distribution still
the inherent randomness in splitting the data could introduce bias affecting model performance.
To address such issues rigorous cross-validation techniques could be implemented such as k-fold
cross validation as done by (Rezaj 2021).

Finally, one last crucial limitation faced during this research was the computational resource
constraint. The study was conducted on a GPU with only 4GB of memory which doesn’t allow
a lot of tensor cores for the model training. This limitation could be avoided with the help
of using better GPU such as NVIDIA A100 GPUs, as they can leverage about 40GB or more
memory.

7 Conclusion and Future Work

In this research, the effectiveness of Vision Transformers in the morphological classification of
galaxies was explored using the Galaxy1l0 DECals dataset. Three advanced transformer-based
models—ViT Base, Swin Transformer, and DeiT Transformer—were compared among each other
while considering the conventional ResNet50 model as the baseline. The primary objective was
to evaluate how well these models were able to accurately classify galaxy morphologies. The
research also helps to determine if Vision Transformers could outperform traditional CNNs or
at least provide competitive results. The findings of this study are three fold:

1. ViT Base model achieved the highest accuracy at 86.7%, followed closely by the Swin
Transformer and DeiT Transformer models for both the cases of model training i.e, with
and without data augmentation. They all exhibited high precision and recall across the
10 galaxy classes.

2. The baseline model (ResNet50) performed really well, however, it lagged slightly behind
the transformer-based models. These results demonstrate that Vision Transformers had
superior ability to gain contextual information through self-attention mechanisms and they
are highly effective for the task of galaxy morphology classification.

3. However in terms of training time ResNet50 showed significantly faster speed. It trained
22 epochs in about 2 hours 15 minutes while fastest vision transformer took 7 hour 31
minutes to train 24 epochs.

A systematic evaluation was performed. The study’s evaluation metrics were recall, pre-
cision, accuracy, and F1 score. Thus, it provides a comprehensive assessment of the models’
performances. The consistent performance of the transformer-based models shows their robust-
ness and potential for detailed morphological analysis of galaxies. This research clearly presents
the usefulness of Vision Transformers in astronomical image classification and suggests that they
can significantly enhance the accuracy and efficiency of automated galaxy classification systems,
and indeed be used for general purpose image classification tasks.

While the systematic evaluation of vision transformers has shown very promising results,
there is scope for future work. For instance, the architecture of vision transformers could be
adapted to perform faster. Or, a more balanced dataset could be used by incorporating additional
galaxy datasets. The models can also be further fine-tuned using AutoML techniques. Besides
this multiple models could be combined to form a ensemble model which would be able to
leverage the strengths of multiple models and possibly perform better. One of the noble aspect
from this research is the use of better computational resource. A better GPU could have more
tensor cores and could be able to run more parallel computing which would allow the models to
run faster. This could possibly lead to some interesting results that would allow further tuning
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of the models in a faster way. By addressing these future possibilities the research can continue
to enhance the effectiveness of automated galaxy morphology classification.

References

Abell, P. A., Allison, J., Anderson, S. F., Andrew, J. R., Angel, J. R. P., Armus, L., Arnett, D.
and S.J. et al (2009). LSST Science Book, Version 2.0.
URL: https://arxiv.org/pdf/0912.0201. pdf

Ackermann, S., Schawinski, K., Zhang, C.; Weigel, A. K. and Turp, M. D. (2018). Using
transfer learning to detect galaxy mergers, Monthly Notices of the Royal Astronomical Society
479(1): 415-425.

URL: http://dx.doi.org/10.1093/mnras/sty1398

Al-Humaidan, N. A. and Prince, M. (2021). A classification of arab ethnicity based on face
image using deep learning approach, IEEE Access 9: 50755-50766.
URL: https://doi.org/10.1109/ACCESS.2021.3069022

Applebaum, K. and Zhang, D. (2015). Classifying galaxy images through support vector ma-
chines, 2015 IEEFE International Conference on Information Reuse and Integration, pp. 357—
363.

URL: http://dx.doi.org/10.1109/IR1.2015.61

Barchi, P., da Costa, F., Sautter, R., Rosa, R. and Carvalho, R. (2016). Improving galaxy
morphology with machine learning.

URL: http://dz.doi.org/10.6062/jcis.2016.07.03.0114

Cao, J., Xu, T., Deng, Y., Deng, L., Yang, M., Liu, Z. and Zhou, W. (2024). Galaxy morphology
classification based on Convolutional vision Transformer (CvT), 683: A42.
URL: http://dx.doi.org/10.1051/0004-6361/202348544

Cavanagh, M. K., Bekki, K. and Groves, B. A. (2021). Morphological classification of galaxies
with deep learning: comparing 3-way and 4-way CNNs, Monthly Notices of the Royal Astro-
nomical Society 506(1): 659-676.

URL: https://doi.org/10.1093/mnras/stab1552

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Herold G., J., Buta, R. J., Paturel, G. and
Fouque, P. (1991). Third Reference Catalogue of Bright Galaxies:Volume III. New York:

Springer Science+Business Meda, LLC.
URL: https://doi.org/10.1007/978-1-4757-4363-0

Dominguez Sanchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D. and Fischer, J. L.
(2018). Improving galaxy morphologies for SDSS with Deep Learning, Monthly Notices of the
Royal Astronomical Society 476(3): 3661-3676.

URL: https://doi.org/10.1093/mnras/sty338

Dominguez Sanchez, H., Huertas-Company, M., Bernardi, M., Kaviraj, S., Fischer, J. L., Abbott,
T. M. C. and Abdalla et al (2018). Transfer learning for galaxy morphology from one survey
to another, Monthly Notices of the Royal Astronomical Society 484(1): 93-100.

URL: https://doi.org/10.1093/mnras/sty3497

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale.

URL: https://arziv.org/abs/2010.11929

22



Huertas-Company, M., Aguerri, J. A. L., Bernardi, M., Mei, S. and Sanchez Almeida, J. (2010).
Revisiting the hubble sequence in the sdss dr7 spectroscopic sample: a publicly available
bayesian automated classification, Astronomy amp; Astrophysics 525: A157.

URL: http://dz.doi.org/10.1051/0004-6361,/201015735

Lin, J. Y.-Y., Liao, S.-M., Huang, H.-J., Kuo, W.-T. and Ou, O. H.-M. (2022). Galaxy morpho-
logical classification with efficient vision transformer.

URL: https://arziv.org/abs/2110.01024

Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M. J.,
Nichol, R. C., Szalay, A., Andreescu, D., Murray, P. and Vandenberg, J. (2008). Galaxy
zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey,
Monthly Notices of the Royal Astronomical Society 389(3): 1179-1189.

URL: http://dz.doi.org/10.1111/5.1365-2966.2008.13689.x

Liu, Y., Zhang, K., Li, Y., Yan, Z., Gao, C., Chen, R., Yuan, Z., Huang, Y., Sun, H., Gao,
J., He, L. and Sun, L. (2024). Sora: A review on background, technology, limitations, and
opportunities of large vision models.

URL: https://arziv.org/abs/2402.17177

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows.

URL: https://arxiv.org/abs/2103.14030

Marin, M. A., Sucar, L. E., Gonzalez, J. A. and Diaz, R. (2013). A hierarchical model for
morphological galaxy classification, The Florida Al Research Society.
URL: https://api.semanticscholar.org/CorpusID:12189740

Pearson, W. J., Wang, L. and Trayford, J. W. et al. (2019). Identifying galaxy mergers in
observations and simulations with deep learning, Astronomy & Astrophysics 626: A49.
URL: https://doi.org/10.1051/0004-6361/201935355

Reza, M. (2021). Galaxy morphology classification using automated machine learning, Astro-
nomy and Computing 37: 100492.
URL: https://www.sciencedirect.com/science/article/pii/S2213133721000469

Schneider, J., Stenning, D. C. and Elliott, L. T. (2023). Efficient galaxy classification through
pretraining, Frontiers in Astronomy and Space Sciences 10.

URL: https://doi.org/10.3389/fspas.2023.1197358

Shaiakhmetov, D., Mekuria, R. R., Isaev, R. and Unsal, F. (2021). Morphological classification
of galaxies using spinalnet, 2021 16th (ICECCO), pp. 1-5.
URL: https://doi.org/10.1109/ICECC0O53203.2021.966378

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. and Jégou, H. (2021). Training
data-efficient image transformers distillation through attention.
URL: https://arziv.org/abs/2012.12877

York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J. and et al, B.
(2000). The Sloan Digital Sky Survey: Technical Summary, The Astronomical Journal
120(3): 1579-1587.

URL: http://dx.doi.org/10.1086/301513

23



	Introduction
	Research Questions
	Research Objective & Outline
	Research Gap

	Related Work
	Machine learning techniques used for Galaxy Morphology Classification
	Classifying Galaxy Morphology utilizing Deep Learning
	Critical Analysis of Transfer Learning for Galaxy Morphology Classification
	Analysis of Vision Transformers in classifying morphologies of galaxies

	Research Methodology
	Dataset Description
	Pre-Processing of the Data
	Model Training Phase
	Model Evaluation Phase

	Design Specification
	Swin Transformer
	ViT Base Fine-tuned
	DEiT Transformer
	ResNet50

	Implementation
	Evaluation
	Experiment 1 - Evaluation of Base Model ResNet50 and Other Vision Transformer Models without Data Augmentation
	Evaluation Metrics - Precision
	Evaluation Metrics - Recall
	Evaluation Metrics - Accuracy  Weighted Average
	Evaluation Metrics - F1 - Score

	Experiment 2 - Evaluation of Base Model ResNet50 and Other Vision Transformer Models with Data Augmentation
	Evaluation Metrics - Precision
	Evaluation Metrics - Recall
	Evaluation Metrics - F1 Score
	Evaluation Metrics - Accuracy  Weighted Average

	Experiment 3 - Evaluation of Base Model ResNet50 and other Vision Transformers based on training time
	Discussion
	Limitations

	Conclusion and Future Work

