
 
 

 
 
 
 
 
 
 
 
 
 

 

Cross-Station Solar Power Prediction: A 
Transfer Learning Approach with Deep 

Learning Models 
 
 
 
 

MSc Research Project  
Data Analytics 

 
 

 Savan Kumar Pandith 

Student ID: x22182934 
 
 
 

School of Computing  
National College of Ireland 

 
 
 
 
 
 
 
 
 
 
 

Supervisor: Catherine Mulwa 



 

 
National College of Ireland 

 
MSc Project Submission Sheet 

 
School of Computing 

 
Student Name: 

 
Savan Kumar Pandith………………………………………………………………… 

 
Student ID: 

 
x22182934……………………………………………………………………………….…… 

 
Programme: 

 
Data Analytics…………………………………… 

 
Year: 

 
2023-2024. 

 
Module: 

 
MSc Research Project……………………………………………………………….……… 

 
Supervisor: 

 
Dr. Catherine Mulwa……………………………………………………….……… 
 

Submission Due 
Date: 

 
12-Aug-2024…………………………………………………………………………….……… 

 
Project Title: 

 
Cross-Station Solar Power Prediction: A Transfer Learning 
Approach with Deep Learning Models 

Word Count: 
 
7203     Page Count    22 

 
I hereby certify that the information contained in this (my submission) is information 
pertaining to research I conducted for this project.  All information other than my own 
contribution will be fully referenced and listed in the relevant bibliography section at the 
rear of the project. 
ALL internet material must be referenced in the bibliography section.  Students are 
required to use the Referencing Standard specified in the report template. To use other 
author's written or electronic work is illegal (plagiarism) and may result in disciplinary 
action. 
 
Signature: 

 
Savan Kumar Pandith ………………………………………… 

 
Date: 

 
12-Aug-2024…………………………………………………… 

 
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST 
 
Attach a completed copy of this sheet to each project (including multiple 
copies) 

□ 

Attach a Moodle submission receipt of the online project 
submission, to each project (including multiple copies). 

□ 

You must ensure that you retain a HARD COPY of the project, 
both for your own reference and in case a project is lost or mislaid.  It is 
not sufficient to keep a copy on computer.   

□ 

 
Assignments that are submitted to the Programme Coordinator Office must be placed 
into the assignment box located outside the office. 
 
Office Use Only 
Signature:  
Date:  
Penalty Applied (if applicable):  



1 
 

 

 
 

Cross-Station Solar Power Prediction: A Transfer 
Learning Approach with Deep Learning Models 

 

Savan Kumar Pandith  

x22182934  
 

 
Abstract 

This research investigates the effectiveness of hybrid deep learning models in 
predicting solar power generation using a transfer learning approach. Three models 
combining Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), 
and Transformer (TF) architectures were developed and evaluated CNN-LSTM-TF, CNN-
TF, and LSTM-TF. The models were trained on data from a lower capacity solar station 
and tested on a higher capacity station and the results showed a good performance by all 
three models in solar power forecasting, in which CNN-TF models emerged as the top 
performer with R2 score of 95% and lowest error in MSE of 35.63. The superior 
performance of CNN-TF models suggests that the combination of extracting features by 
CNN and the transformer-based attention mechanism has a good capability in capturing 
complex patterns in solar power generation data when compared to the LSTM-TF model, 
the CNN-LSTM-TF model performed better, with an R2 score of 92%. Also, the 
comparison study showed that CNN-TF models performed better than the existing studies. 

  
Keywords: Solar power forecasting, Transfer learning, CNN, LSTM, 

Transformer- attention mechanism, Hybrid models, Deep learning, Cross-station 
prediction. 

 
 

 

1 Introduction 
 
This research aims to advance the field of solar power generation forecasting by developing 
and comparing innovative deep learning hybrid models by combining CNN, LSTM, and 
transformer architectures to improve prediction accuracy. The application of transfer learning 
techniques will address the challenge of limited data availability at certain solar stations, 
potentially offering a solution for broader implementation across diverse locations.  
     Over the years, the usage of electrical energy, has been increasing rapidly for building 
modern cities, setting up new industries and the growth in population. The rising demand for 
energy is having a major impact on global warming and to reduce the impact, renewable energy 
sector has been playing a very important role in reducing the increasing energy demand. 
Among renewable energy resources, solar energy has been a promising source due to its 
potential and availability. The sun, the source of solar energy, radiates 1367 W/m2 of solar 
energy across the atmosphere (Das et al., 2018). Solar energy is one of the most popular and 
fastest-growing renewable resource which has a low panel cost and high efficiency 
(International Renewable Energy Agency, 2020), which can help in replacing the traditional 
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fuel-based power plants. Solar power plants make use of photovoltaic (PV) cells to convert 
sunlight into electricity. PV cells are made of semiconductor materials like silicon, it has a 
photovoltaic effect, which is the fundamental principle behind solar power generation. These 
PV cells are connected to inverters, which convert the direct current (DC) electricity produced 
by solar panels into alternating current (AC) electricity which is compatible with the grid. 
Integrating solar energy into a grid has many benefits to the economy and the environment by 
reducing greenhouse gas emission and energy production costs. 

1.1 Background and Motivation 
 
According to International Energy Agency (IEA), the installation of global solar PV power 
capacity could exceed 1700 GW by 2030 (Das et al., 2018). The increasing penetration of solar 
energy into power grids worldwide requires accurate forecasting of solar power generation to 
ensure grid stability and optimize energy management strategies (Islam et al., 2023). However, 
the intermittent and fluctuating nature of solar power has a significant challenge in predicting 
accurate solar power prediction due to the influenced by meteorological conditions like 
variability and seasonality, which directly affect its integration into a grid. Accurate forecasting 
of PV plant generation is essential for the utilities as the deficit between demand and solar 
generation must be compensated with other energy sources. There are four main types of PV 
power forecasting techniques like artificial intelligence, hybrid, statistical, and physical 
techniques. Deep learning models have shown better performance when compared to statistical 
and machine learning models. Based on experimental results, deep learning-based approaches 
have been increasingly used in academic research due to their popularity in recent years for 
forecast solar power (Alkhayat and Mehmood, 2021). Although these approaches have 
demonstrated potential, they frequently encounter constraints concerning their applicability to 
diverse geographic regions, climates, and PV system arrangements. Furthermore, a major 
barrier for solar power generation can be the availability of high-quality, labelled training data, 
especially for smaller PV systems or those installed in areas with little to no historical data. 
The need to create solar power forecasting models that are more precise, flexible, and data-
efficient to get around these constraints drives this research.  
     This research is inspired by Saramas et al. (2022), which uses the principle of transfer 
learning by training the model on low-capacity generation plants and predicting solar power 
generation on a high-capacity plants. Transfer learning (Li et al., 2020) is a machine learning 
method that uses information from one domain to improve performance on another similar 
domain. Through knowledge transfer from an extremely data-rich source PV system to a target 
PV system with limited information, we may be able to improve the accuracy and stability of 
solar power predictions even in situations with little data. There is much research conducted 
related to transfer learning, and one of the papers Ribeiro et al. (2018) considers seasonality 
and trend factors as an example of the Hephaestus method for cross-building energy 
forecasting. Similar studies by Fan et al. (2020) have been developed for short-term building 
energy predictions and energy consumption forecasting with poor-quality data (Gao et al., 
2020). However, few studies have addressed the problem of PV production forecasting with 
transfer learning, allowing room for further research in this area. 
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     As energy demand increases it is important to match real-time demand by building new 
models that can forecast solar power with high accuracy. Recently attention-based mechanism 
proposed in Vaswani et al. (2017) has gained popularity, especially in natural language 
processing, where the transformer model proposed, used language as input data. Transformer-
based model was first introduced by Wu et al. (2020) to forecast time-series data, in which self-
attention mechanism was used as the strategy to learn complex patterns and dynamics from 
time series dataset. The transformer-based models have shown improved performance for PV 
forecasting (Kothona et al., 2022). Additionally, Kim et al. (2021) developed a transformer 
network to provide accurate solar power forecasting which showed significantly improved 
results when compared to linear regression, CNN, and LSTM. Even though lot of research had 
been done in this area, there is still scoped to improve the accuracy of prediction based on other 
deep learning hybrid models. 

1.2 Research Question, Objective and contributions 
 
Based on the gaps and opportunities identified in solar power forecasting, this research goal is 
to explore the potential of advanced deep learning techniques combined with transfer learning 
approaches. Specifically, this research seeks to address the following questions: 
 
RQ: How well can hybrid deep learning models (CNN, LSTM and Transformer) predict solar 
power generation by using transfer learning approach? 
 
Sub RQ: “Can a hybrid model combining CNN-LSTM and transformer architecture 
outperform other hybrid models in terms of prediction accuracy?” 
 
The main aim of this research is to develop and compare advanced deep learning hybrid models 
for solar power generation forecasting, with a focus on transfer learning applications. The 
specific objectives are: 
 
Obj.1 To collect and preprocess historical solar data from 8 different solar stations, covering 
the period from January 2019 to December 2022. 
Obj.2 Develop three deep learning hybrid models combining the best architectures of CNN, 
LSTM, and Transformer-based approaches for solar power forecasting. 
Obj.3 Implement and evaluate a transfer learning approach, using data from station 8 for 
training and station 4 for testing, to assess the models' generalization capabilities. 
Obj.4 Evaluate the performance of the developed hybrid models using metrics such as Mean 
squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 
Obj.5 Comparison of developed models. 
Obj.6 Comparison of developed models with existing modes. 
 
By achieving these research objectives this study introduces a hybrid deep learning model 
combining CNN, LSTM, and Transformer architectures with transfer learning to enhance solar 
power forecasting accuracy and provides a thorough evaluation by comparing to existing 
models. The rest of the technical report is structure as follows. Chapter 2 presents a 
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comprehensive literature review, focusing on deep learning approaches using transfer learning 
and hybrid models in solar power. Chapter 3 describes about the methodology that is being 
proposed to solve the research question and sub research question. Subsections about proposed 
datasets, data collection design process flow, model to be developed and evaluation metrics 
being considered. Chapter 4 discusses on the design specifications of the developed models. 
Chapter 5 demonstrates how the models have been implemented. Chapter 6 will discuss the 
evaluation the results of the implemented models and chapter 7 will be concluded the research 
project with future work. 
 
 

2 Literature Review 
 
This chapter provides a critical review of different research papers in the domain of solar power 
generation and the importance of using transfer learning approach in deep learning. This review 
is structured into two main subsections: 

2.1 A Critical Review of Deep Learning Approaches using Transfer 
Learning 

 
In recent years deep learning has gathered lot of attention from researchers due to its increased 
performance when compared to statistical models. The major difference between deep learning 
and other machine learning models is that deep learning can automatically learn valuable 
characteristics from dataset. According to Phan et al. 2022 deep learning models based on 
Recurrent Neural Networks (RNNs), including LSTM, Gated Recurrent Unit (GRUs), and 
CNNs, are most used architectures. With deep learning models performing well in predicting 
solar power forecasting, there are still some challenges related to data scarcity and model 
generalization across different locations and conditions. To address this issue, researchers have 
started focusing on the concepts of transfer learning. In one of the study, Pratt (1993) developed 
a discriminability-based transfer (DBT) method between neural networks, which uses 
information measure to estimate the utility of hyperplanes defined by source weights in the 
target network and rescales transferred weight magnitudes accordingly. Several experiments 
shows that target networks initialized via DBT learn significantly faster than networks 
initialized randomly. Transfer learning idea gained the importance in machine learning in mid 
-2000s through a survey conducted by Pan and Yang (2010), which helped in defining and 
categorizing transfer learning approaches. The application of transfer learning in solar power 
forecasting has evolved significantly in the last decade. In their research, Huang et al. (2017) 
explored synthetic aperture radar (SAR) target classification with limited labelled data. 
Although this paper did not focus on solar power generation it provided insights into SAR 
target classification. Saramas et al. (2022), showed the importance of transfer learning in solar 
power forecasting for limited data in which they proposed three transfer strategies based on a 
stack LSTM model. Their transfer knowledge strategy trained the base model from source PV 
plants to a target PV plant, and the results showed that transfer learning models outperformed 
the conventional LSTM model. In another study, Zhou et al. (2020) used transfer learning 
strategies to check the effectiveness of solar power forecasting for a newly built PV plants with 
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limited historical data. They proposed a pre trained LSTM model, and the results showed that 
transfer learning method reduces prediction errors compared to model trained solely on the 
limited data. However, the reviewed papers do not directly compare the performance of the 
transfer learning models with other deep learning hybrid models or explore the impact of 
different transfer learning techniques. Therefore, this research aims to identify gaps where 
transfer learning can be utilized with other deep learning transformer-based hybrid models for 
solar power forecasting. The next chapter discusses the research related to transformer-based 
hybrid models in deep learning. 

2.2 Review of Hybrid Models: CNN-LSTM and Transformer architecture  
 
This chapter reviews how deep learning models like CNN, LSTM and Transformer 
architectures have contributed to solar power forecasting and research related to hybrid-based 
models. 
CNN models have shown significant promise in solar power forecasting as they help in 
extracting spatial features from the historical time series data. In one study, Kartini et al. (2022) 
developed a new unsupervised deep learning CNN model based on weather variable in which 
they used input data on solar irradiance to improve economic value. The network utilized 
multiple layers of CNN to extract features from input data, and the results showed an RMSE 
value of 12.1 W/m2, which is good for short-term solar irradiance prediction. Another study 
by Hoai Thu et al. (2022) proposed a CNN-LSTM network integrated with the ensemble 
empirical mode decomposition (EEMD) method to make short-term forecast of solar 
irradiation in Vietnam. The results showed that the proposed model is better when compared 
with other single models of CNN, LSTM and Bi-directional-LSTM. However, while CNN 
models have shown promise, their applications in solar power forecasting are still evolving in 
hybrid-based models. 
 
LSTM models have always been one the best in solar power forecasting. In one research 
project, Hari et al. (2022) used a deep learning approach by using LSTM and stacked LSTM 
for solar irradiance prediction. Their study focused on forecasting direct horizontal irradiance 
(DHI) using single-layered LSTM and stacked LSTM models with two and three layers. 
Performance was tested using two datasets from an Indian solar power plant and an Australian 
solar power plant in which, single-layered and stacked LSTM models showed a better 
performance. However, this research had limitations as it did not explore other deep learning 
models like transformers or hybrid approaches. 
 
Transformer is a deep learning model architecture developed by Google, based on the muti-
head attention mechanism proposed by Vaswani et al. (2017) in “Attention is All you need.” 
transformers require less training time when compared to earlier RNN’s as it does not have 
recurrent units, such as LSTM. The study by Phan et al. (2022), explored the use of transformer-
based deep learning model for short-term photovoltaic (PV) power forecasting. They aimed to 
improve the predictive accuracy by utilizing transformer architectures to identify intricate 
relationships and patterns in time-series data and the results showed that the transformer-based 
model performed better than conventional techniques like artificial neural networks (ANNs), 
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(LSTM), and GRUs. In another study, Kim et al. (2021) developed a transformer-based model 
to improve the prediction accuracy of solar power generation. They adjusted the existing 
transformer model that was initially created for language translation to solar power forecasting 
and the results showed that the transformer-based model performed better than conventional 
techniques like linear regression, 1D-CNN, and LSTM. Also, in another study by Sherozbek 
et al. (2023) they introduced a transformer-based encoder model for forecasting hourly output 
for transparent and non-transparent PV systems. Data was collected from Jan to dec 2021 from 
Buan-gun, Republic of Korea and the performance of the transformer-based model was 
compared to RNN models, like GRUs and LSTM, and the results showed that transformer-
based model performed better than the LSTM and GRU models. For transparent and non-
transparent PV modules the transformer-based model recorded a mean absolute error (MAE) 
of 0.05 kWh and 0.04 kWh, and root mean square errors (RMSE) of 0.24 kWh and 0.21 kWh. 
The review conducted in earlier papers showed that transformer-based models have a good 
potential for enhancing PV power forecasting accuracy. 
 
Despite the advancements in transformer models for solar power forecasting, very few 
researchers have developed hybrid models with a combination of CNN-LSTM and a 
transformer for solar power forecasting. Al-Ali et al. (2023) and Salman et al. (2024) both 
explored hybrid deep learning model for this purpose. Al-Ali et al. (2023) proposed a CNN-
LSTM-Transformer model using Fingrid open dataset from a solar power plant in Finland, and 
evaluated the model using RMSE, MAPE and MAE and the model outperformed several 
baseline models, with the lowest RMSE and MAE values. On the other hand, Salman et al. 
(2024) investigated various combinations of CNN, LSTM, and transformer models, like 
LSTM-TF, CNN-LSTM, and CNN-LSTM-TF. They used four-year solar power dataset from 
France and evaluated their models using MAE, MSE, and RMSE and in the results showed that 
the CNN-LSTM-TF model particularly with Nadam optimizer, outperformed other models, 
with the lowest MAE value. 
 
The learning from both literature sections have shown a very good foundation for transfer 
learning and transformer-based hybrid models in predicting solar power forecasting. However, 
further research is needed to check how well these models can predict solar power generation 
using a transfer learning approach. The following chapter will conclude the review of research 
question and objective 6. The next chapter will discuss the solar power forecasting research 
methodology. 
 

3 Research Methodology 
 
In today’s data-driven world, manufacturing and energy management are just two areas where 
accurate predictive modelling is crucial for optimizing operations. Predictive forecasting is 
significantly complicated when dealing with stations or systems that have varying capacities 
or operating patterns. The issue arises when attempting to predict outputs or performance 
metrics for higher-capacity stations using historical data from peers with lesser capacity, this 
issue is very apparent. To address this problem, this study uses past data from a lower capacity 
station to estimate results for higher capacity station. This approach is useful for direct 
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forecasting, which is a very challenging due to the differences in operational scales and data 
characteristics between the two stations. This approach will also help in understanding the 
relationship between the two stations without being constrained by the need for short-term 
forecasts. This approach can be used in energy management, renewable energy providers, 
manufacturing plants for predicting the outcomes for large production lines from smaller ones 
helping in scaling operations. 
     To implement this approach and to develop a comprehensive predictive model, the research 
utilizes the ‘Cross Industry Standard process for Data Mining’ (CRISP -DM) methodology, 
Figure 1 (Al-Ali et al., 2023) shows a high-level view of the research methodology and how 
the process has been implemented in this research which is discussed in section 3.1 to 3.3. 
Also, the design specification of the data collection process is discussed in section 3.2 as 
illustrated in Figure 2 (Chen et al., 2022). 
 

 
       Figure 1: Research Methodology.                Figure 2: Sensor architecture and data process of   

                                                                             the solar stations. 
 

3.1 Data Gathering and Data Understanding 
 
To develop a good robust predictive model, it is very important to capture accurate historical 
data. To predict an accurate solar power forecasting, the factors utilized are solar irradiation, 
temperature, wind direction and speed. The data utilized in this research is sourced from a study 
by Chen et al. (2022), in which the dataset was originally collected from eight solar stations 
across China and was used for a competition hosted by Chinese state grid in 2021. In this 
research the study was initially conducted on all 8 solar power stations, but to achieve the 
research goal and objectives only two solar power stations data was furthered utilized for 
training and testing based on the available features, lowest nominal capacity and highest 
nominal capacity across all stations. 
      Data was collected under the Supervisory Control and Data Acquisition (SCADA) 
technology, with intervals of every 15 minutes over a period of two years, from Jan 2019 to 
Dec 2020, as shown in Figure 2. For this research, the data was downloaded in .xlsx format 
from the repository of the existing study by Chen et al. (2022). Only eight solar power stations 
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dataset was used, that ranged with nominal capacities from 30 MW to 130 MW. Table 1 
provides details on the nominal capacity of each station, along with number of observations for 
each feature.   
 

Table 1: Stations & feature observation count 

 

3.2 Data Cleaning, Preparation, and Exploratory Data Analysis 
 
Data cleaning and preparation process is one of the first important step which lays the 
groundwork for a detailed understanding of the dataset by addressing the data quality issues. 
The data was first imported in a Jupyter Notebook using Python libraries for all the solar 
stations. Based on initial analysis of the total power generated by each solar power station and 
considering common features (see Table 1), further analysis was conducted only on station 4 
and 8. 
The next step involved is to clean the data for missing values. The dataset had 6 missing values, 
which were removed as they contributed to less than 1 % of the total records. Columns were 
renamed for consistency. Since the data is recorded every 15 minutes over two years, extracting 
temporal features from the ‘Time’ column is a crucial step in time series related forecasting as 
it helps in understanding the underlying temporal structure. 'Time' column for both stations was 
converted to a datetime format, and features like quarter-hour, hour of the day, day of the week, 
and month were extracted, as these features help in understanding temporal aspects like intra-
day variations, weekly cycles, and seasonal trends. 
 
To improve the model's ability to capture temporal relationships in solar power data, lag 
features like 'Lag 15min', 'Lag 30min', and 'Lag 1hour' are created by shifting the past values 
of the 'Power (MW)' variable by 15 minutes, 30 minutes, and 1 hour, respectively. These lag 
features, along with temporal patterns and short-term fluctuations are considered to help the 
model to make better predictions by learning from past data. Additionally, features like 'Rolling 
Mean 1hour' and 'Rolling Std 1hour' are extracted using the mean of power value as they help 
in smoothing the data, reduce the short-term fluctuations, and capture the longer-term trends 
and variability. After feature extraction, it was important to check for missing values again as 
this process led to creation of nine new columns in which less than 1% missing values are 
observed for some of the features. Dropping these records did not hamper much on the dataset, 
and further analysis was conducted with station, which had 70,166 records, and station 8, which 
had 69,044 records. 
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Exploratory data analysis helps in investigating the underlying patterns and distributions of the 
data. With the help of different statistical summary and visualization techniques EDA helps in 
finding important features and detect outliers. To understand the trend and seasonal variation, 
decomposition chart is created using the statsmodels Python library, in which the output shows 
a stable trend, and the seasonal component shows a consistent value which indicates a strong 
yearly seasonal pattern for both solar power stations as illustrated in Figure 3 and Figure 4.  
 

  
Figure 3: Decomposition chart for station 4.              Figure 4: Decomposition chart for station 8. 

 

 
Figure 5: Correlation matrix for station 4 and station 8 

 
Feature selection is performed with the combination of correlation matrix and random forest 
regressor technique, with Figure 5 showing a heat map of how each feature are correlated. 
These combined techniques are used in identifying the important feature for model building 
process. In conclusion the objective 1 outlined in chapter 1, section 1.2 has been successfully 
implemented at the end of this section. The next section will discuss about different model 
architecture and evaluation techniques used in this research.  

3.3 Data Modelling and Evaluation 
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This research explores various hybrid models architectures, like CNN LSTM and Transformer, 
to enhance solar power forecasting. The hybrid approach aims to leverage the strength of each 
component to improve prediction performance. 
Convolutional Neural Networks (CNNs) are among the top deep learning models that have 
performed very well under different applications. The foundation of a CNN model has four 
layers i.e. convolution layers, activation layers, pooling layers, and fully connected layers as 
shown in Figure 6 (Al-Ali et al., 2023). The operation of a convolutional layer is to extract the 
spatial features in which the activation layers enhance the learning capability by maximizing 
the non-linearity which allow the network to learn complex patterns. Pooling layers help 
compress the dimension of the feature maps and the fully connected layers combines all the 
features extracted by the convolution layers. 

 
Figure 6: CNN architecture 

 
Long Short-Term Memory (LSTM) is designed to overcome the limitations of traditional 
RNNs. LSTMs maintain and manipulate information over extended periods and suitable for 
sequence and time series data. LSTM was originally developed to address the vanishing 
gradient problem which encountered in traditional RNNs. The key components of the LSTM 

 
Figure 7: LSTM architecture 

 
architecture is made of a memory cell, input gate, forget gate, output gate and a cell state as 
shown in Figure 7 (Salman et al., 2024). The process starts as information first flows into the 
LSTM unit, where the forget gate checks what to discard from the previous cell state. Next, the 
input gate checks what new information should be stored. The cell state is then updated by 
forgetting irrelevant data and updating new information. Next, the output gate selects what 
information is needed from the updated cell state, which is passed to the next layer. This process 



11 
 

 

is continuously repeated for each time step in the sequence, which makes the LSTM to maintain 
relevant information over time while removing unnecessary data. 
 

 
Figure 8: Transformer architecture 

 
Transformer model was first introduced in 2017 by Veltman et al., specifically for natural 
language processing. Its usage has been increasing in various fields, including solar power 
forecasting. Transformer architecture begins with input embedding and positional encoding, 
which helps model to understand both the content and order of input sequences. The heart of 
the transformer as shown in Figure 8 (Salman et al., 2024), lies in its multi-head attention 
mechanism, which makes the model focus on different parts of the input simultaneously. The 
attention is applied in both self-attention layers, where the model relates different positions of 
a single sequence, and in encoder-decoder attention layers, where the model can attend to 
relevant parts of the input sequence for each output element. The model then processes this 
attended information through feed-forward neural networks. In the decoder, an additional 
attention layer is used that attends to the encoder's output and finally, the model gives output 
through a linear layer. 
    When compared to previous recurrent models, Transformers have a good ability to capture 
long-range dependencies and the sequence process running in parallel makes it valuable for 
solar power forecasting. Transformers have capability to handle complex temporal patterns and 
multiple influential factors in solar energy prediction, and it can also improve the accuracy of 
solar power predictions by considering different features, like historical power output, weather 
forecasts, and data from satellites. With these improved forecasting capabilities of transformer 
model, it is beneficial for grid operators and energy dealers, to integrate the solar power into 
electricity networks and allows a global shift to renewable energy sources.    
 



12 
 

 

Evaluation metrics are the measures used to assess the performance of predictive models. 
Metrics are important as they help in quantify model accuracy, allow comparison between 
different models, help in model selection and improvements. They also provide valuable 
insights into model reliability and generalizability. The key metrics used in this research to 
check the model evaluations are: 
Mean Absolute Error (MAE): measures the average absolute difference between predicted 
and actual values. 
Mean Square Error (MSE): calculates the average of squared differences between predicted 
and actual values. 
Root Mean Square Error (RMSE): the square root of MSE, providing a measure in the same 
units as the target variable. 
     These methodological stages are very essential steps in building a robust model, that helps 
in managing the difficulties associated with predicting solar power output that concludes 
Chapter 3. The design specifications of the predictive models, including detailed configurations 
is covered in the following Chapter 4. 
 

4 Design Specification 
 
This chapter gives a detailed overview of a high-level design of transfer learning approach and 
different the hybrid deep learning models designed for solar power prediction by combining 
convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and 
Transformer based multi-head attention mechanisms. 

4.1 Transfer learning method 
Transfer learning is a technique that uses source domain to enhance the performance of a target 
domain. The process starts with model training on a base problem as shown in Figure 9 
(Saramas et al.,2022).  
 

 
Figure 9: Transfer Learning method 

 

This pre-trained model, built in the source domain, captures essential features and patterns and 
these insights are then applied to a different but similar target problem. The architecture of 
transfer learning has two primary components, the target domain, which applies the knowledge 
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that has been transferred, and the source domain, where the initial learning took place. This 
method allows the model to start from a better educated state, potentially improving prediction 
accuracy and model robustness. It is especially useful when the target domain has limited data. 

4.2 CNN-LSTM-TF Hybrid Model Design 
 
The CNN-LSTM-TF hybrid model shown in Figure 10, is inspired by the work of Al-Ali et al. 
(2023) and consists of a two 1D-CNN layer, one LSTM layer and a multihead attention-based 
transformer. Each component plays a distinct role in extracting important features based on its 
architecture. The CNN layer helps in extracting the spatial features, the LSTM later extracts 
the temporal features, and the transformer employs the extracted features to generate the 
forecasting results. The transformer’s encoder–decoder strategy has the potential of improving 
forecasting accuracy by learning from the mixed spatial and temporal features. 
 

 
 Figure 10: CNN-LSTM-TF Model 

 

The Typical architecture of the CNN-LSTM-TF model as shown in Figure 10, starts with an 
input layer which accepts the time series data and the selected features that were discussed in 
section 3.2. The input shape is made flexible that captures various temporal resolutions and 
feature sets that are common in solar forecasting. The input layer sends the data to the two 1D 
convolutional layers in which both layers use 64 filters with a kernel size of 3 and same padding 
to ensure that output size matches the input size also ReLU activation functions is used to help 
with non-linearity. These layers are effective in capturing local patterns and short-term 
dependencies in the input data, which is particularly useful for identifying weather-related 
patterns that influence solar power generation. Following the CNN layer, a single LSTM layer 
with 64 units processes the data, returning sequences which helps capturing long-term temporal 
dependencies and seasonal patterns. The processed data is then sent to the custom multi head 
attention layer which allows the model to focus on different parts of the input sequence. The 
attention mechanism helps the model identify and weigh the most relevant features and time 
steps for prediction, which is crucial in handling the variability of solar power due to factors 
like cloud cover and atmospheric conditions. Decoder structure concatenates the LSTM output 
with the attention output and applies another attention layer to this concatenated output. This 
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structure helps the model to focus on the most important features. In the end the output dense 
layer with linear activation produces the final prediction, which is suitable for the regression 
task of forecasting solar power output. In addition to the CNN-LSTM-TF model, other variants 
like CNN-TF and LSTM-TF are designed with the same principal. 
These hybrid deep learning models combined with advanced neural network architectures can 
capture both short-term and long-term patterns, along with the attention mechanism's focused 
on relevant features, makes it a promising approach to address the complexities and helps in 
accurate solar power prediction. This concludes the model design chapter, with following 
chapter 5 discussing about how the model has been implemented. 
 

5 Implementation of Cross-Station Solar Prediction Models 
 

This implementation section discusses the detail view of how previously described 
methodologies and model designs for solar power forecasting are put into practice. After 
selecting the important features as discussed in section 3.2, it is important to prepare the data 
as per the model requirements. 

     All the three models were trained on station 8 and tested on station 4. The dataset was 
first isolated by separating the input features from target variable (Power) for both station 4 
and 8. Min-Max scalar function used from ‘sklearn’ Python library to normalize both the 
stations. The scaler fit is applied to the feature and target data of station 8 to ensure consistent 
scaling as shown in Figure 11. Also, this step is crucial in this research as the models are trained 
only on station 8 dataset and then evaluated on station 4, which also relates back to the research 
objective 3 and research question. Next the data for station 8 is split into train (80%) and 
validation (20%) by using ‘train test split’ function from ‘sklearn’ Python library. 

 

 
Figure 11: Scaled Features & Target for station 4 and 8 

5.1 Implementation of CNN-LSTM-TF Model 
 
The first model implemented in this research is the CNN-LSTM-TF hybrid model. Figures 12 
and 13 shows detailed summary of the model’s architecture and the loss plot during the training 
process. For model training, the MSE loss function is used with 50 epochs and an early callback 
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is set to 15 allowing model to train properly and to stop if the validation loss does not improve 
after 15 epochs. The input layer of the model first takes the scaled dataset which is fed into two 
convolutional layers(conv1D), which helps in extracting local features from the input sequence. 
These features are then fed into LSTM layer to capture long term dependencies in the data. The 

 
    Figure 12: CNN-LSTM-TF Model Summary            Figure 13: CNN-LSTM-TF Train & Val loss 
 
output of the LSTM layer is fed into the multi-head attention layer, which allows the model to 
focus on different input sequence simultaneously and capture complex relationships in the data. 
The output from the attention layer is concatenated with LSTM output which gives the 
combination of both sequential and attention- based features. Finally, 2 dense layers are added 
to reduce the dimensionality to produce the final output which contained a total of 70,693 
trainable parameters. Model completed only 43 epochs as shown in Figure 13, training loss 
decreases sharply in the first few epochs which indicates model quickly learned to fit the 
training data. But the validation loss shows some fluctuations in the early stages, which can be 
due to either sensitivity or complexity of the data. By the end of the training both training and 
validation loss stabilized around 0.0003- 0.0004 indicating a good balance fit. 

5.2 Implementation of CNN-TF Model 
 
CNN-TF is the second model implemented with the detailed architecture summary shown in 
Figure 14. & the corresponding loss plot in Figure 15. 
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          Figure 14: CNN-TF Model Summary                     Figure 15: CNN-TF Train & Val loss 
This model has a very similar to architecture and parameters used as discussed in the previous 
CNN-LSTM-TF model, except the removal of LSTM layer. CNN-TF model contains 37,569 
trainable parameters and it completed all 50 epochs as shown in Fig. 13. Training loss shows a 
similar dip as the CNN-LSTM-TF model, but validation loss patterns were high initially and 
follows a downward trend in the end. Both training and validation loss stabilized around 0.0003 
indicating a good balance fit and slightly better than CNN-TF. 

5.3 Implementation LSTM-TF Model 
 
LSTM-TF is the third and last model implemented with the detailed architecture summary 
shown in Figure 16, with the corresponding loss plot in Figure 17. This model also has a very 
similar architecture and parameters used as discussed in the previous CNN-LSTM-TF model, 
except the removal CNN layer and adding two LSTM layers. LSTM-TF model has 74,881 
trainable parameters and it completed 45 epochs as shown in Figure 17. During training the 
loss shows a rapid decrease in both training and validation loss during the initial epochs. In the 
entire training process validation loss closely follows the training and gradually stabilized 
around 0.0004 indicating a good balance fit and slightly better than CNN-LSTM-TF. 
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         Figure 16: LSTM-TF Model Summary                      Figure 17: LSTM-TF Model Summary 
 
 
All three models CNN-LSTM-TF, CNN-TF, and LSTM-TF were trained and then validated, 
to ensure that there was a suitable balance between fitting the training data and prevent from 
overfitting. Each model followed the training procedure, loss functions, and total number of 
trainable parameters. All three models were able to achieve minimal and stable validation 
losses, indicating that they are very useful in forecasting solar power generation. In conclusion 
with this chapter the objectives 1, 2 and 3 outlined in chapter 1, section 1.2 has been 
successfully implemented and the research question posed in Chapter 1, Sub-section 1.2 has 
been partially addressed in chapter 5. The following chapter 6 will delve deeper into the results, 
evaluating the effectiveness of these models on test data which will help understand model’s 
performance over unseen data and complete the remaining objectives. 

6 Evaluation and Results 
 
This section discusses the evaluation method and the results obtained for all the hybrid models. 
Evaluation metrics used in this research are MSE, RMSE and MAE and Table 2 shows the 
evaluated results for all three models. 
 

Table 2: Evaluation Metrics 

 

6.1 Evaluation and Results of CNN-LSTM-TF Model 
 
CNN-LSTM-TF model shows a good predictive performance for solar power prediction, with 
R² score of 92%, which indicates that model can effectively explain 92% of the variance in the 
output. Also, the model shows a low error rates with the MSE of 59.17, RMSE of 7.69, and 
MAE of 3.64 as shown in Table 2. The plot of actual vs predicted values shown in Figure 18, 
indicates model’s effectiveness in capturing complex patterns and avoids overfitting in solar 
power forecasting. 
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Figure 18: CNN-LSTM-TF Actual vs Predicted 

6.2 Evaluation and Results of CNN-TF and LSTM-TF Model 
 
CNN-TF model shows a lowest error rates with MSE of 35.63, RMSE of 5.97, MAE of 3.03 
and has the highest R² score of 95%. The plot of actual vs predicted values as seen in Fig. 17, 
indicates that model is fitting better than the other two models by capturing complex patterns 
of solar power data. 
LSTM-TF model has the highest error rates with MSE of 109.76, RMSE 10.48, MAE 4.80 and 
with the lowest R² score of 85%. While the model showed a stable training behaviour and 
explained significant portion in the variance, but it performed the poorest in evaluation metrics 
when compared with other two models. 

 
        Figure 19: CNN-TF Actual vs Predicted                    Figure 20: LSTM-TF Actual vs Predicted 

 

In conclusion with chapter 6.2 the research question and the objectives 3 and 4 outlined in 
chapter 1, section 1.2 has been completed successfully by evaluating and testing all three hybrid 
models using cross-station approach. The results showed that all three models can predict good 
solar power prediction using cross-station approach. Next sub section discusses the comparison 
of these models. 

6.3 Discussion and Comparison of Developed Models Verses Existing   
 
This research is an experimental study of using hybrid deep learning models in predicting solar 
power forecasting using a transfer learning approach and focuses on building three hybrid 
models CNN-LSTM-TF, CNN-TF, and LSTM-TF, where the models are trained on the data 
from a lower capacity solar station and then tested on a higher capacity solar station and the all 
the three models show a good performance in predicting solar power forecasting. 

6.3.1 Comparison of Developed Models   
 

CNN-TF model performs the best with a very high R2 score of 95% and has the lowest MSE 
of 35.63, which shows that the combination of extracting features by CNN and the transformer-
based attention mechanism has a good capability in capturing complex patterns in solar power 
generation data. The CNN-LSTM-TF model performed better when compared with LSTM-TF 
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model, the evaluation metrics showed an R2 score of 92% for CNN-LSTM-TF model, second 
best after CNN-TF model. LSTM-TF model performed the lowest when compared with other 
two models, which shows that even though LSTM layers can capture temporal dependencies, 
it’s not necessary that it can help in improving the performance, because of LSTM addition. 
Also, when the convolutional layer is removed from the LSTM-TF model the model 
performance shows the lowest with R2 score of 85%, this is due to the impact of model not 
extracting spatial features from the input data. These results show that CNN-TF model has a 
good efficiency in transfer learning method because of the convolutional layers help in 
detecting the spatial features and when combined with attention mechanisms to detect the 
temporal patterns in solar power data. These performance results show that, it is very important 
to choose a right model architecture that can help generalize well from a lower capacity station 
to a higher capacity by applying transfer learning approach for solar power forecasting. With 
these finding in chapter 6.3.1, the research sub question outlined in chapter 1, section 1.2 and 
the objective 5 outlined in chapter 1, section 1.2 has been completed successfully by 
comparison analysis of developed models and confirming that CNN-LSTM-TF model does not 
outperform other developed models, but the model does have a good prediction accuracy and 
is the next best model after CNN-TF. 

6.3.2 Comparison of Developed Models vs Existing Models 

 
Table 3 shows the summary of the performance metrics (RMSE and MAE) of the developed 
models against the models developed in existing studies. 
 

Table 3: Comparison of Developed Models with Existing Models 

 
 
The developed CNN-TF model showed a lower RMSE (5.97) and MAE (3.03) when compared 
to the other existing models as shown in Table 3, but the CNN-LSTM-TF models from the 
existing studies by Al-Ali et al. (2023) and Salman et al. (2023), performed better in terms of 
RMSE and MAE. The existing models showed a low error metrics, with CNN-LSTM-TF 
model by Al-Ali et al. (2023) scored an RMSE of 0.344 and an MAE of 0.393. The developed 
LSTM-TF model showed the highest RMSE of 10.48 and MAE of 4.80 when compared with 
existing models, which shows that the model is not as effective as CNN in capturing the 
complex patterns of solar power generation. While the developed models have shown good 
performance in predicting solar power, they fall short when compared with other models from 
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Al-Ali et al. (2023) and Salman et al. (2023), in terms of RMSE and MAE. The existing models, 
particularly the CNN-LSTM-TF architectures, showed much lower error rates compared to the 
developed models. This shows that there is lot of room for improvement in the developed 
models by further optimizing the architecture or tuning hyperparameters. With the findings in 
chapter 6.3.2, the research objective 6 outlined in chapter 1, section 1.2 has been successfully 
completed by doing comparison analysis of the developed models with exiting models. 
 
 

7 Conclusion and Future Work 
 

This research explores the potential of solar power prediction across different capacity stations 
using advanced hybrid deep learning techniques and transfer learning. To address the research 
question and sub-question discussed in chapter 1, section 1.2 the main objective was to develop 
three hybrid deep learning models CNN-LSTM-TF, CNN-TF, and LSTM-TF and train them 
on data from a lower capacity solar station and tested on a higher capacity solar station. The 
developed models show a good overall performance in predicting solar power prediction, in 
which CNN-TF model showed the best performance by achieving 95% accuracy. These results 
show that transfer learning has lot of potential in solar power forecasting, particularly for new 
or expanding installations with limited historical data. But on the other hand, the most complex 
model CNN-LSTM-TF did not outperform the simpler CNN-TF, which suggests that 
sometimes, less is more in AI design. 
However, the research has some limitations as the developed models show a very high error 
rates when compared to existing models discussed in the section 6.3, particularly by Al-Ali et 
al. (2023) and Salman et al. (2023), which suggests that there is still room for improvement. 
For future work the study can include more solar stations with varying capacities and 
geographical locations to test the robustness and generalizability of the transfer learning 
approach. 
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