~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Purnima Pandey
Student ID: X22191151

School of Computing
National College of Ireland

Supervisor: Prof. Furgan Rustam

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Purnima Pandey
Student ID: X22191151
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Prof. Furqan Rustam
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: 860
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Purnima Pandey

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Purnima Pandey
X22191151

1 Configuration Manual for Research

This purpose of this document is to provide directions and instructions which can help
to replicate the machine learning frameworks in the research study of Prediction of
Story Point Estimation with Transformer-Based architecture and Machine Learning Mod-
els. This document ensures any user can accurately set up and start the deployment of the
necessary environment and implement the same successfully/Choetkiertikul et al.| (2018)

2 System Configuration

This section is going to give you brief about the hardware configurations to run the
programme.

2.1 Hardware Configuration

@ Device specifications

Device name PurnimaPandey

Processor 11th Gen Intel(R) Core(TM) i5-11320H @ 3.20GHz 3.19 GHz
Installed RAM 16.0 GB (15.8 GB usable)

Device ID SEB36F5C-C9E1-4542-8FC9-D2FBE3B2C687

Product ID 00342-42629-95317-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Figure 1: Hardware con guration of the system

2.2 Software Configuration

This section will focus majorly on sharing the software details and configuration that
would be required throughout.

5{ Visual Studio Code Docs Updates Blog APl Extensions FAQ Learn D P searchDocs

Version 1.92 is now available! Read about the new features and fixes from July. x
« > P my-app 0B mos
| @ EXPLORER TS button.ts X # button.css
_ vMvare interface ButtonProps {
Free. Built on open source. Runs everywhere. £ > components 2 onClick: () => void;
> actionbar 3 text: string;
¥

.. $o > bradorumos :
(ode Ed itin > buton S const it RERCE:Fe<Props = (1 ek et 1) 55 ¢
. > # buttoncss 6

return <outton onClick={onClick}>{text}</button=;
™S button.ts g

. 8
> countBadge -
R fin & o .
5 > dialog N
> dropdown [reate a new button component B
> findinput)
s grd 2 Discard O Changeds1nes 5 52
Download for Windows o 2
> inputBox s
Web, Insiders edition, or other platforms © gitignore PROBLEMS OUTPUT TERMINAL Her+v D& ~ x
= maimap e Tl
By using VS ® - [09:44:50] [n d.ts] Starting monaco.d.ts generation
- [09:44:56] [Finished monaco.d.ts generation
{3} = [09:44:56] F: ompilation with 557 errors after 80542 ms
. + my-app ol
C R O Tesert G

Figure 2: Visual Studio Code Installer Download Page

2.3 Visual Studio Code : Microsoft

Visual Studio Code or VS Code is a code editor developed by Microsoft for building and
especially debugging the cloud and web applications. 1. Included JavaScript / TypeScript
/ Node support, the editor has a built-in lightweight, intuitive IDE. js, along with a vast
assortment of supplements for Python, C++4, Java, and many others. Visual Studio
Code is obtained from the official Visual Studio code website. 2. The availability of the
download in respect to different operating systems is also given in Figure 2

R —

< |}

) ANACONDA NAVIGATOR o

L] =

Ll sy o v on e o v Channels
@ Ericonments e —
L] <
g Leaing 3 JIAApylc!
S o~
&% Community Anaconda Notebooks upyterLab Notebook

Anocenda Toslbox

Figure 3: Softwares installed

2.4 Other Softwares

Other Softwares such as python, Google Chrome will help the best in execution of the
code. The below Software overleaf was used in order to create the documentation of
research.

List of Software used in the study

e Python 3.12.1
e Lucid Chart

e Anacoda

Figure 4: Overleaf Visualisation

e Snippet

e Overleaf

3 Python Dependecies Installation

Below is the list of dependencies and libraries used which were helpful
e Core Project Dependencies:

— transformers
— torch

— pandas

— numpy
tokenizers

webbrowser

e Custom/Local Modules:

— GPT25P

— custom-tra
e Visualization Libraries:

— matplotlib
— seaborn

— plotly

— altair

— bokeh

4 Data Description

The Data set in the study was chosen from open different open sources which were
used in the study shared by (Choetkiertikul et al| (2018)including 16 projects with a
total of 23,313 issues. All of the datasets for 16 different projects are available in the
dataset folder attached and had columns names as below issuekey: Issue ID,title: Issue
Title,description: Issue Description,storypoint: Assigned Story Point of the Issue,split
mark: Represent whether the row was used as training, validation, or testing Below is

the Code to load the data into into the environment.

C: > Users > LENOVO (F9IN) > Desktop > testpurnima > gpt2sp > B Final Code.ipynb >
+ Code -+ Markdown | [» RunAll ‘O Restart == Clear All Outputs Variables = Outline -+

import pandas as pd

import re

from sklearn.preprocessing import LabelEncoder
from transformers import GPT2Tokenizer, GPT2Model
import torch

Correct file path by using a raw string or double backslashes

file_path_csv = r'C:\Users\LENOVO (F9IN)\Desktop\testpurnima\gpt2sp\sp_dataset\marked_data\appceleratorstudio.csv'

Load the CSV file into a DataFrame
df = pd.read_csv(file_path_csv)

Function to clean text by removing HTML tags and special characters
def clean_text(text):

if pd.isnull(text):
return ''

Figure 5: Data Loading

5 Data Preprocessing

This section will help you replicate the pre processing steps .

like Previewing the data

,check for duplicates, handling missing values,data transformation with standard scaler,

feature engineering. Devlin et al| (2019)

Function to clean text by removing HTML tags and special characters

def clean_text(text):
if pd.isnull(text):
return '*
text = re.sub(r'<.*?>', "', text) # Remove HTML tags

text = re.sub(r'[*\w\s]', "', text) # Remove special characters

text = text.lower() # Convert to lowercase
return text

Apply the clean_text function to the "title' and ‘'description’ columns

df['title'] = df['title'].apply(clean_text)
df['description'] = df['description’].apply(clean_text)

Encode the 'split_mark' column if necessary
label_encoder = LabelEncoder()
df['split_mark'] = label_encoder.fit_transform(df['split_mark'])

Split the dataset into training and test sets based on the 'split_mark' column
train_df = df[df['split_mark'] == label_encoder.transform(['train'])[0]]
test_df = df[df['split_mark'] == label_encoder.transform(['test'])[0]]

Figure 6: Data Cleaning

Initialize the GPT-2 tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained(’gpt2’)
model = GPT2Model.from_pretrained('gpt2')

Add a padding token to the tokenizer
‘tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model. resize_token_embeddings (len(tokenizer))

Function to generate embeddings for a given text
def generate_embeddings (text):
if text.strip() = "':
return torch.zeros((1, model.config.hidden_size)).numpy() # Return a zero vector for empty text
inputs = tokenizer(text, return_tensors='pt’, max_length=512, truncation=True, padding='max_length')
outputs = model (**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy ()
return embeddings

Figure 7: Model Implementation

LLLLS pPISULLLSU_Dd LUl y_puiiic

0 add ca against object literals in function inv...

update branding for appcelerator plugin to app...

create new json schema for sdk team

create project references property page

new desktop project wizard 8

title predicted_story_point

2335 330 studio installer status bar resets back to...

2336 update content assist to support fixedspace tag

2337 update content assist to support shorthand not...

2338 alloy enable developers to create new widget c...
2339 update content assist to support setting actio... 5

C:\Users\LENOVO (F9IN)\AppData\Local\Temp\ipykernel_9196\4146200115.py:44: SettingWithCopyWarning:

B w N R
B R oW

N A~V u

Figure 8: Output of story points on Modelling

6 Model Configuration

The purpose of this research is to enhance Agile project management by creating story
point estimation based on KNN, SVM, and other machine learning models including
GPT-2SP. The models were trained on a corpus of 23,313 user stories and the performance
of the best model was validated on the test data set. The corpus was tokenized with the
help of GTP-2 and the TF-IDF features then scaled were used for the training of the
model. Hyper-parameters settings were optimized through the

e cross-validation process.

e Hyperparameter Settings:

Learning Rate: 0.1 (GBM)

Batch Size: 32

Epochs: 50

Optimizer: Adam (Neural Network)

Loss Function: Categorial Cross-Entropy

7 Implementation with Machine learning models

Further, for improving the model, the former states that experimentation matters most.
Some of the tunable parameters include hidden layers, and depending on how they are
adjusted, it is possible to discover improvements that were not possible before as it allows
for continuous alteration in an attempt to get the best set of parameters.

7.1 Logistics regression and Random Forest

Firstly we will discuss the first two models that were applied in order to get the perform-
ance metrics

ect_rf] + 1) % len(labe

Figure 9: Model With Output

7.2 Support Vector Machine+KNN+GBM

param_grid_knn

=1
578 I3y By 7

‘weights': ['uniform', 'distance’]

}

grid_search_knn = GridSearchCV(KNeighborsClassifier(), param_grid_knn, cv=5, scoring='accuracy')

grid_search_knn.fit(X_train, y_train_class)

best_knn = grid_search_knn.best_estimator_

y_pred_knn = best_knn.predict(X_test)

accuracy_knn = accuracy_score(y_test_class, y_pred_knn)

param_grid_gbm = {
‘n_estimato [100, 200, 300],
‘learning_rate': [@.01, 0.1, 0.2],
‘max_depth': [3, 5, 7]

}

grid_search_gbm = GridSearchCV(GradientBoostingClassifier(random_state=42), param_grid_gbm, cv=5, scoring="accuracy')
grid_search_gbm.fit(X_train, y_train_class)

best_gbm = grid_search_gbm.best_estimator_

y_pred_gbm = best_gbm.predict(X_test)

accuracy_gbm = accuracy_score(y_test_class, y_pred_gbm)

param_grid_svm = {
'c': [0.1, 1, 10, 100],
‘kernel': ['linear', 'rbf']
}
grid_search_svm = GridSearchCV(SVC(random_state=42), param_grid_svm, cv=5, scoring=‘accuracy')
grid_search_svm.fit(X_train, y_train_class)
best_svm = grid_search_svm.best_estimator_
y_pred_svm = best_svm.predict(X_test)
accuracy_svm = accuracy_score(y_test_class, y_pred_svm)

Figure 10: Modelling for models

8 Evaluation

This section will speak about the evaluation that has been done on each of the models in
order to assess the metrics of the tokenizers with machine learning models . Post using
the code in the file . You would be able to achieve the below visualization.

Models

Scores

0.68 068
I I | I
recall

Metrics

0.68
06
0.60
04
02
0
precision

The code below will help you to find the accuracy post the experiment which is
dividing that into categories .

f1_score

Figure 11: Evaluation

Figure 12: Code for Experiment including the categorization

8.1 Evaluation with K fold cross validation

This study also included the evaluation of Accuracy of the models with the k fold cross
validations methods . Below is the output we got and code is attached.

Model Accuracy vs Training Time

Accuracy

o
IS

Training Time (seconds)

0.2

0.0 R ridom Forest (RF) Gradient Boosting Machine (GBMINearest Neighbors (KNN) _Logistic Regression (LR)

Models

Figure 13: K fold Validation Graph

References

Choetkiertikul, M., Dam, H. K., Tran, T. and Ghose, A. (2018). A deep learning model
for estimating story points, Journal of Systems and Software 137: 160-172.

7

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding, Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, pp. 4171-4186.

	Configuration Manual for Research
	System Configuration
	Hardware Configuration
	Software Configuration
	Visual Studio Code : Microsoft
	Other Softwares

	Python Dependecies Installation
	Data Description
	Data Preprocessing
	Model Configuration
	Implementation with Machine learning models
	Logistics regression and Random Forest
	Support Vector Machine+KNN+GBM

	Evaluation
	Evaluation with K fold cross validation

