~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Priyadharsini Packirisamy
Student ID: x22199098

School of Computing
National College of Ireland

Supervisor: Furgan Rustam

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Priyadharsini Packirisamy
Student ID: x22199098
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Furqan Rustam
Submission Due Date: 16/09/2024
Project Title: Configuration Manual
Word Count: 2234
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Priyadharsini Packirisamy

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U
Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | (I
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Priyadharsini Packirisamy
x22199098

1 Introduction

This document is the configuration manual for the research Project - ” Analysis of the
Underlying Factors Impacting the Outcomes of AR Based Education Approach in STEM
Learning Using Machine Learning”. The document is a step by step explanation of the
hardware and software requirements, input dataset and execution of the project code.
2 Software and Hardware Requirements

The software requirements to build and deploy this project are shown in the Table [I}

Table 1: Software Requirements

Software and Tools Usage

Anaconda Navigator 3 To access the IDE for Jupyter Notebook

A web-based interactive computing platform

to build, execute, and evaluate data analytics code in Python.
Python 3.12.4 Programming language versatile to develop Machine learning models.

Jupyter Notebook

The Python frameworks and libraries required to build and deploy this project are
shown in the Table 2

Table 2: Libraries and Frameworks

Libraries and Packages Usage

pandas, numpy Data Preprocessing.

matplotlib, seaborn, datetime, and itertools Visualization

Data preprocess, build and evaluate
machine learning models.
tensorflow Build deep learning models.

sklearn

The hardware requirements required to build and deploy this project are given in the
Table 3] Please note that these are the minimum requirements and the specification are
given as in the local machine.

Table 3: Hardware Requirements

Hardware Specification

Processor Intel(R) Core(TM) i5-8265U
RAM 8 GB

Storage 256 GB

GPU Intel(R) UHD Graphics 620.

Operating System Windows 11 64-bit

3 Dataset Description

The dataset used for this project is sourced from the URL - H The dataset consists of the
data collected for the evaluation of the ARETE’s project, the Pilot 2 by Mangina (2023).
Pilot 2 is the AR enhanced learning for STEM specifically for Science and Mathematics.
This study was carried out involving 1988 students from 11 countries. Three major cri-
teria were evaluated in the Pilot 2 project. They are the knowledge test for the students
before (pre-test), immediately after(post-test) and six weeks later (memory retention
test). To compare and analyse the impacts of AR, the students were sub-categorized
into intervention and control groups in which intervention group received the AR based
education while control group received conventional education.

The input data is an excel file with raw categorical data and the filename is 20230118 _P2
Students Test_share_ids_info.xlsx. It has 412 columns and 1988 rows. Few of the columns
are Student 1D, Gender, Year of Birth, Country, and few other columns to collect the
response of the students on their attitude and self efficacy towards Math and Science on
before, after and memory retention criteria. The sample input data (raw data) with first
five rows is shown in the Figure [II There are 16 qualified features which can be used
as input variables. The dataset has been renamed to AR_Impact_Analysis.xlsx before
importing into project. The columns which are not required has been dropped. Only
the required columns have been renamed for the ease of understanding. The data is
preprocessed and only 16 input variables and each of the 6 respective target variables is
stored into individual dataframes for further processing. A sample dataframe of one of
the preprocessed dataframes for the variable 'Pre_A_MAT Enjoy_Learning’ is shown in
the Figure [2]

StudentlD TeacherlD SUBJ GRP TB CNTY LANG €G1 CG2A CG2B .. S2 03 .ret 52 04 ret 52 05ret S2 06A ret S2 06B.ret S2 07 ret 52 08 ret S2 09 re
423274 501788 1 1 13 1 1 1 10 3 . 8 8 8 8 8 8 8
501992 501788 1

648372 501788

A w N a2 o

11 1 3 8 8 8 8
11 1 3 8 8 8 8
799792 501788 1 1 13 1 1 2 11 8 = 8 8 8 8 8 8 8
11 1 3 8 8 8 8

158692 501788

5 rows x 412 columns

Figure 1: Raw Data

!Dataset Source: https://zenodo.org/records/7877072

https://zenodo.org/records/7877072

Data columns (total 17 columns):

Column Non-Null Count Dtype
@ TB 429 non-null int64
1 CNTY 429 non-null int64
2 LANG 429 non-null int64
3 Gender 429 non-null int64
4 Year 429 non-null Int6d
5 Frequency_of_Language_Usage_at_Home 429 non-null int64
6 Own_Computer 429 non-null int64
7 Shared Computer 429 non-null inte4
8 Table 429 non-null int64
9 Own_Rcom 429 non-null int64
18 Internet Connecticn 429 non-null inte4
11 Mobile_Phone 429 non-null inte4
12 Gaming_System 429 non-null int64
13 Media Use Home 429 non-null inte4
14 Media_Use_School 429 non-null inte4
15 Media Use Other 429 non-null int64
16 Pre_ A MAT Enjoy Learning 429 non-null int64

dtypes: Inted4(l), inte4(16)
memory usage: 68.7 KB

Figure 2: Final DataFrame

4 Order of Execution

The project has been built and deployed by splitting the entire code into 6 Jupyter
Notebook files for ease of understanding and processing. Note that before executing the
code, all the requirements mentioned in the Section 2l must be satisfied. The input dataset
"AR _Impact_Analysis.xlsx” should be uploaded to the Jupyter Notebook web interface as
shown in Figure [3] The order of execution of the code is given in the Table [4

: Jupyter

File View Settings Help

m Files | © Running

Select items to perform actions on them. ~ New | * Upload |C

m/RP/

Name - Last Mocified File Size
« [1.x22199098_RP_DataPreprocessing.ipyns 28 minutes ago 64.1 KB
« (Al 2.x22199098_RP_EDA. ipynb 28 minutes ago 429.6 KB
+ [3.x22199098_RP_LSTM_with_Stratified_KFold_Cross_Validation.ipynb 15 minutes ago 1.4 M8
« [7] 4.x22199098_RP_SVM_with_Hyperparameter_Tuning.ipynb 47 minutes ago 818.1KB

« [A 5.x22199098_RP_XGBoost.ipynb 43 minutes ago 8383 KB

O 000000

- [622199098 RP Individual_Factor_Impact_Analysisipynb 41 minutes ago 7257 KB

Figure 3: Input Dataset Upload

Table 4: Order of Execution

Notebook Sequence Description
1.x22199098_RP _DataPreprocessing.ipynb Data Preprocessing.
2_x22199098_RP_EDA .ipynb Exploratory Data Analysis.

3.x22199098 RP_RNN_with_Stratified_KFold_Cross_Validation.ipynb ~ RNN for 6 variables.

4 x22199098_RP_CNN _with_Stratified KFold_Cross_Validation.ipynb ~ CNN for 6 variables.
5x22199098_RP_LSTM with_Stratified_KFold _Cross_Validation.ipynb LSTM for 6 variables.
6-x22199098_RP_SVM_with_Hyperparameter_Tuning.ipynb SVM for 6 variables.

7 x22199098_RP _Individual Factor_Impact_Analysis.ipynb Factor Influence Analysis.

5 Code Implementation

In this section, the code implementation of the machine learning models will be discussed
in detail. Please refer Section [for the order of execution and names of the notebook
files. To import and process the raw data in excel file, the data is read into a pandas
dataframe as shown in Figure [l After necessary cleansing and processing of the data
is completed, the data is loaded into pickle files to make it accessible to the following
notebook files as shown in Figure [f]

Read Input File

Read excel input and store into pandas dataframe
AR_Impact_Dataset_Main = pd.read_excel("AR_Impact_Analysis.xlsx", sheet_name = "Raw Data")

Display the rows and columns of the dataframe
AR_Impact_Dataset_Main.shape

(1988, 412)

Figure 4: Read Input File

Converting Dataframes to Pickle Files to use in other notebooks
Converting Dataframes to Pickle Files to use in following Dataframes

DF_AR_Impact_Pre_MAT_EL.to_pickle('DF_AR_Impact_Pre_MAT_EL.pkl')
DF_AR_Impact Pre_SCI_UDW.to_pickle('DF_AR Impact Pre SCI_UDW.pkl')
DF_AR_Impact_Post MAT_EL.to_pickle('DF_AR Impact_Post MAT_EL.pkl")
DF_AR_Impact_Post SCT_UDW.to_pickle('DF_AR_Impact_Post SCI_UDW.pkl')
DF_AR_Impact Ret MAT_EL.to_pickle('DF_AR Impact Ret MAT EL.pkl')
DF_AR_Impact_Ret_SCI_UDW.to_pickle('DF_AR_Impact_Ret_SCI_UDW.pkl")

Figure 5: Convert to Pickle Files

The code to read the pickle files into dataframes for using in the subsequent notebook
files is shown in the Figure[6] This should be executed before proceeding with respective
code building steps to access the input data for processing.

Read Input File

DF_AR_Impact_Pre MAT_EL = pd.read_pickle('DF_AR_Impact_Pre MAT EL.pkl")
DF_AR_Impact_Post MAT EL = pd.read_pickle('DF_AR_Impact Post MAT EL.pkl")
DF_AR_Impact_Ret MAT_EL = pd.read_pickle('DF_AR_Impact_Ret MAT EL.pkl')
DF_AR_Impact Pre_SCI_UDW = pd.read_pickle('DF_AR_Impact_Pre_SCI_UDW.pkl')
DF_AR_Impact_Post_SCI_UDW = pd.read_pickle('DF_AR_Impact_Post SCI_UDW.pkl")
DF_AR_Impact_Ret SCI_UDW = pd.read_pickle('DF_AR_Impact Ret SCI_UDW.pkl')

Figure 6: Read Pickle Files

Next, the 2 x22199098 RP_EDA .ipynb notebook is executed for performing explorat-
ory data analysis. In this step, the overall impact of AR based education between the
intervention and control groups are identified by plotting data. Also, the data imbalance
of the classes in the 6 target variables are identified.

Data imbalance of the classes is handled by upscaling the data. The input variables are
scaled and reshaped. The target variables encoded as it is categorical data. These steps
are common for the machine learning model. However, they are implemented separately
for each model. As the steps are same for all the 6 variables, these steps are defined as
functions for code reusability. The Figure [7]shows the code snippet for data preprocessing
from LSTM model.

Handling the class imbalance by upsampling

def balance_data(self):

df_list = [self.data[self.data[self.target_column] == i] for i in self.data[self.target_column].unique()]
max_size = max([len(df) for df in df_list])
df_resampled = [resample(df, replace=True, n_samples=max_size, random state=42) for df in df _list]

self.data = pd.concat(df_resampled)
Split Data inte X and Y and Encoding of the target Labels
def preprocess_data(self):
self.X = self.data.drop([self.target_column], axis=1)
self.¥ = self.data[self.target_column]
self.¥Y_encoded = self.encoder.fit_transform(self.Y.values.reshape(-1, 1))

Reshape Data for LSTM

def reshape_for_lstm(self, X):
return X.reshape((X.shape[8], 1, X.shape[1]})

Figure 7: Data Preprocessing

5.1 RNN, CNN and LSTM

The following steps explain the code for RNN, CNN and LSTM models. Although each
model design is different, the process using stratified K-fold is the same for all the models.
Stratified K-fold has been used as it works efficiently on multi-class classification problems
to make sure the validation data has the same class distribution as the test data. The
code shown in the Figure [§] shows setting random seed and then configure Tensorflow
to clear outputs from previous models, and enable operation determinism for repeatable
computations. This step is carried out to ensure that the performance of the models are
consistent. The code shown is from RNN model but it is similar for all models.

def set random_seeds(self, seed=90898):
np.random.seed(seed)
random. seed(seed)
tf.random.set_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)

Configure TensorFlow for reproducibility
tf.keras.backend.clear session()
tf.config.experimental.enable op determinism()

Figure 8: Set Seed for Reproducibility

Figure [0 shows the model build for RNN. It is a sequential model with input layer
as per the shape of input data, SimpleRNN layer with 100 units, Dense layer with 50
units and output layer as per the number of unique classes in the target. The activation
function for SimpleRNN and Dense layers is. ReLLU It is softmax for the output layer.

Defining Simple RNN Model

def build_model(self, input_shape, rnn_units=100, dense_units=58, learning_rate=0.001):
model = Sequential()
model.add (Input(shape=input_shape))
model.add(SimpleRNN(rnn_units, activationz'relu', return_sequences=False))
model.add(Dense(dense units, activation='relu'))
model.add(Dense(self.¥_encoded.shape[1], activation='softmax'))
optimizer = Adam(learning_rate=zlearning rate)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])

return model

Figure 9: Code for RNN Model

The CNN model has input layer, ConvolD, Max Pooling, Flatten, Dense and output
layers. The activation function is ReLLU for the ConvolD and Dense layers and softmax
for the output layer. This is depicted in Figure

Defining CNN Model

¢50 (il redEilealls, Sonnt diope, e (Rikimreet, (warreil cimesd, doree nnioesd, derrmie, FedeET)s
model = Sequential()
model . add(Input (shape=input_shape))
model . add(ConviD(filters=conv_filters, kernel_size=kernel_size, activation='relu’))
model . add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(dense_units, activationz'relu'))
model.add(Dense(self.Y_encoded.shape[1], activation='softmax'))
optimizer = Adam(learning_rate=learning rate)
model . compile(optimizerzoptimizer, loss='categorical _crossentropy’, metricsz|'accuracy’)

return model

Figure 10: Code for CNN Model

The LSTM model with with input, bidirectional layer, LSTM layer, Dense and output
layers has been built with ReLU for the LSTM and Dense layers and softmax for output
layer as activation functions as shown in Figure [I1]

6

Defining LSTM Model

def build_model(self, input_shape, lstm_units=10@, dense_units=5@, learning_rate=0.001):
model = Sequential()
model . add(Input (shape=input_shape))
model . add{Bidirectional(LSTM(1lstm units, activation='relu', return_sequences=True)))
model.add(LSTM(1lstm _units, activation='relu'))
model.add(Dense(dense_units, activation='relu'))
model.add(Dense(self.Y_encoded. shape[1], activationz'softmax'))
optimizer = Adam(learning_rate=zlearning rate)
model.compile(optimizer=optimizer, loss='categorical crossentropy’', metrics=['accuracy'])
return model

Figure 11: Code for LSTM Model

The models have been compiled with Adam optimizer, ’categorical_crossentropy’ has
been used as loss function as it is well suited for multi-class classification problems and
"accuracy’ has been chosen for metrics. It is defined along with the model build for all
the three models.

After validating through stratified K-fold cross validation which is split into 5-folds,
the model with the best accuracy has been chosen to predict the target variables. The
evaluation metrics for the models have also been visualized. "EarlyStopping’” and 'Re-
duceLROnPlateau’ have been incorporated into the models to increase the efficiency.
This is shown is Figure (12}, Figure (13, and Figure This step is common for all the
models. The code snippets are from RNN model.

K-Fold Cross-Validation

def cross_validate_model(self, epochs=50, batch_size=32):
best_accuracy = @
best_fold = @

best_model = None

class_weights = compute_class_weight(class_weight="balanced',
classes=np.unique(self.Y),
y=self.Y)

class_weights = dict(enumerate(class_weights))

early stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best weights=True)
1r_scheduler = ReduceLROnPlateau(monitor="val loss', factor=@.5, patience=3)

for fold, (train_idx, val_idx) in enumerate(self.kfold.split(self.X, self.Y), 1):
print(f"Training on fold {fold}...")
X_train, X_val = self.X.iloc[train_idx], self.X.iloc[val_idx]
Y_train, Y_val = self.Y encoded[train_idx], self.Y encoded[wal idx]

Scaling
X_train_scaled = self.scaler.fit_transform(X_train)
X val_scaled = self.scaler.transform(X_val)

Reshaping for Simple RNN
X_train_rnn = self.reshape_for_rnn(X_train_scaled)
X val_rnn = self.reshape for_rnn(X_val scaled)

Build and train the model

model = self.build medel(input shape=(X train rnn.shape[1], X train rnn.shape(2]))

history = model.fit(X_train_rnn, Y_train, epochs=epochs, batch_size=zbatch_size,
validation_data=(X_val_rnn, Y_val), verbose=2,
class_weight=class _weights,
callbacks=[early_stopping, lr_scheduler])

Figure 12: K-Fold Cross Validation - Model Building and Training

e e ety et s G

Evaluate the model
val pred = model.predict(X val_cnn)
val pred classes = np.argmax(val pred, axis=1)
val_true_classes = np.argmax(Y_val, axis=1)
accuracy = accuracy score(val true classes, val pred classes)
Save the best model
if accuracy > best_accuracy:

best_accuracy = accuracy

best_fold = fold

best_model = model

self_history = history

Convert target names to strings for classification report
target_names = [str(i) for i in self.encoder.categories_[©]]

Print classification report for each fold
print(f"Classification Report for Fold {fold}:\n")

print(classification_report(val_true_classes, val_pred_classes, target_namesstarget_names, zero_division=1))

print(f'Best model found on fold {best_fold} with accuracy {best_accuracy:.4f}")
self.best_model = best_model

Fvaluate the best model on its validation set

self.evaluate_best _model(X val cnn, Y_val)

Figure 13: K-Fold Cross Validation - Find the Model with the Best Accuracy

def evaluate best model(self, X val cnn, Y val):
Y pred = self.best model.predict(X val cnn)
Y _pred_classes = np.argmax(Y_pred, axisz1)
¥ val classes = np.argmax(Y_val, axis=1)
target_names = [str(i) for i1 in self.encoder.categories [8]]

Figure 14: Prediction Using the Best Model

Once the functions are defined, they are using to implement the model for each variable
using the respective dataframe and target column name as parameters. The following
Figure (15| shows how the model is called for one of the variables in the LSTM model. It
is similar for all 3 models. The notebooks with code for RNN, CNN and LSTM models
are shown in the Table [l

Predicting Pre A MAT Enjoy Learning
Pre_MAT_EL Predictor = LSTMPredictor(data=DF_AR_Impact Pre_ MAT EL, target column='Pre A MAT_Enjoy_ Learning', n_splits=5)
Pre_MAT_EL_Predictor.balance_data()

Pre_MAT_EL_Predictor.preprocess_data()
Pre_MAT_EL_Predictor.cross_validate_model(epochs=5@, batch_size=32)

Figure 15: LSTM Implementation for the Target Variables

5.2 SVM

The SVM model is built with hyperparameter tuning to increase the efficiency. This code
is in the notebook - 6_x22199098_RP_SVM _with_Hyperparameter_Tuning.ipynb. The hy-
perparameter for SVM are C, gamma and kernel and to tune these GridSearchCV has
been used. The model runs on 3-fold validation. Once the model with the best hyper-
parameters are identified, predictions are done using the best model and hyperparameter
values. To achieve code reusability, the model is defined as function as shown in Figure|16]

Define Grid Parameters and Model Building

def tune_and_train_model(X_train_scaled, Y_train, param_grid=None):
if param grid is None:
param_grid = {
'c': [e.1, 1, 1@, 1ee],
'gamma': [1, 0.1, ©8.01, 9.801],
‘kernel’: ['rbf']

grid = GridSearchCV(SVC(probability=True), param_grid, refit=True, verbosez2, cv=3, n_jobs=-1)
grid.fit(X_train_scaled, Y_train)

print("Best parameters:", grid.best_params_)
return grid.best_estimator_

Model Evaluation

def evaluate_model(model, X_test_scaled, Y_test):
Y_pred = model.predict(X_test_scaled)
Y_pred_proba = model.predict_proba(X_test_scaled)

conf_matrix = confusion_matrix(Y_test, Y pred)

class_report = classification_report(Y_test, Y_pred)
print("Classification Report:\n", class_report)

disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=model.classes_)
disp.plot(cmap=plt.cm.Blues)

plt.title('Confusion Matrix')

plt.show()

Figure 16: Code for SVM Model

To implement the model for the target variables, it is called with respective parameters
as shown in the Figure [I7] This is for one of the target variables.

Predicting Ret SE SCI Usually Do Well

Ret SCI_UDW DF = DF_AR Impact Ret SCI UDW
Ret_SCI_UDW Tgt Col = 'Ret SE_SCI Usually Do Well'
run_pipeline(Ret SCI_UDW DF, Ret SCI_UDW Tgt Col)

Figure 17: SVM Implementation for the Target Variables

5.3 Identifying the Influencing Factors

In this project, RNN has provided the highest accuracy and performed well with respect
to other evaluation metrics. As a result, from the RNN model, the input variables
that influence the outcome of the target variables most have been determined by using
variable importance plot. These features are then plotted to analyse the patterns. The
code snippet from 7_x22199098_RP _Individual Factor_Impact_Analysis.ipynb for one of
the variables, Gender versus Self Efficacy in Science is shown in Figure

icacy in Science towards Doing Well in Exams

CI_UDW, DF_AR Impact Post SCI UDW, DF_AR Impact Ret SCI_UDW,
 SE_SCI Usually Do Well’, 'Post SE SCI Usually Do Well®, 'Ret SE SCI Usually Do Well',
er’, 'Gender', '

SE_SCI_Usuall

', 'Post SE SCI Usually Do Well', 'Ret SE_SCI Usually Do Well',
r vs Pre SCI Doing Well in Exams', 'Gender vs Post SCI Doing Well in Exams', 'Gender vs Retention SCI Doing Well in Exams’,
'Disagree a lot', 'Disagree a little', 'Agree a little', 'Agree a lot'

S0 o3
a " a
o

Figure 18: Influencing Factors

6 Overall Implementation and Hyperparameter Set-
tings

After standard data preprocessing steps, through exploratory data analysis with data
visualization, the class imbalance has been identified. The target variables have 4 unique
class labels, 1, 2, 3 and 4 and falls under multiclass classification problem. As the
class 4 has higher distribution, other classes have been balanced with the highest number
classes using upscaling technique. All the steps for each model have been defined through
functions to ensure code reusability. To assure result reproducibility, random state has
been assigned with the fixed seed value 9098. RNN, CNN and LSTM models have been
implemented with stratified K-Fold cross validation as it is well suited for muti-class clas-
sification to ensure that the class distribution is equal amongst all folds. The models run
on 5-fold validation. Tensorflow environment has been enabled for deterministic opera-
tions to maintain stability. The neural networks follow, initialization of Class, followed
by setting random seed, handling class imbalance, scaling and reshaping the input vari-
ables using StandardScaler() and encoding the target variables using OneHotEncoder as
they are categorical values, defining the model building and compiling stage, defining the
stratified K-fold cross validation with early_stopping and Ir_scheduler for optimization,
identifying the model with the highest accuracy and predicting the target variables using
the best model. Once this is done, the model is evaluated using classification report
showing the accuracy, precision, recall and F2-score, confusion matrix, accuracy and loss
for the training and validation data. Finally using permutation importance, the input
variable affecting the outcomes most have been shown using variable importance plot.
All the steps are similar for SVM. Main difference is instead of stratified K-Fold cross
validation, SVM uses GridSearchCV for hyperparameter tuning and run on 3-fold valida-
tion. The data is stratified in train-test split to ensure fair class distribution by explicitly
defining the parameter, stratify=Y while splitting. GridSearchCV automatically optim-
izes the best hyperparameter combinations of ‘C’, ‘gamma’ and ‘kernel’ retrieving the
best model and use it to classify the target variables. The hyperparameter settings are
shown in Table Bl

10

Table 5: Hyperparameter Values and Tuning Range of the Models

Model Hyperparameter Values Tuning Range
RNN random_state=9098 Default is 42
learning_rate=0.001 0.01, 0.001, 0.0001, 0.00001

class_weight based on training data
EarlyStopping : monitor="val loss’, patience=>5, restore_best_weights=True
ReduceLROnPlateau: monitor="val loss’, factor=0.5, patience=3

CNN random state=9098 Default is 42
learning_rate=0.001 0.01, 0.001, 0.0001, 0.00001
class_weight based on training data
FarlyStopping : monitor="val loss’, patience=>5, restore_best_weights=True
ReduceLROnPlateau: monitor="val loss’, factor=0.5, patience=3

LSTM random_state=9098 Default is 42
learning_rate=0.001 0.01, 0.001, 0.0001, 0.00001
class_weight based on training data
FarlyStopping : monitor="val loss’, patience=>5, restore_best_weights=True
ReduceLROnPlateau: monitor="val loss’, factor=0.5, patience=3

SVM C=1 [0.1, 1, 10, 100]
gamma=1 [1, 0.1, 0.01, 0.001]
kernel=rbf Linear, Polynomial, RBF, Sigmoid, Precomputed

7 Conclusion

This document summarizes all the prerequisites, steps and files required to build and im-
plement the research project on the ” Analysis of the Underlying Factors Impacting the
Outcomes of AR Based Education Approach in STEM Learning Using Machine Learn-
ing”.

References

Mangina, E. (2023). Pilot 2 - research data.

11

	Introduction
	Software and Hardware Requirements
	Dataset Description
	Order of Execution
	Code Implementation
	RNN, CNN and LSTM
	SVM
	Identifying the Influencing Factors

	Overall Implementation and Hyperparameter Settings
	Conclusion

