ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Jacob Benny Packiaraj
Student ID: x22188801

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet

School of Computing
Jacob Benny Packiaraj

Integrating audio and text data with deep learning to detect
depression

1885 14

... Page Count: ...,

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Jacob Benny Packiaraj

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jacob Benny Packiaraj
x22188801

1 Introduction

This configuration manual is related to the project ‘Integrating audio and text data with deep
learning to detect depression’. The report contains the information about the system
configuration, the site to request access and download the dataset, the steps carried out for
preprocessing and the implementation of deep learning models. The report also contains
some high-level information of the dataset.

2 System Configuration

Jupyter notebook IDE is installed in the local machine is used for the development,
preprocessing, model building and training, and evaluation for this project.

2.1 Hardware

A 64-bit windows 11 operating system machine is used in this project. It has 16 GB of RAM
and requires minimum 100GB of storage to place the audio files of the participants. The
processor in the machine is Intel i5-12500H with an integrated Intel Iris Xe graphics which is
used to train the deep learning models.

2.2 Software

A local instance of 64-Bit Anaconda navigator 2.6.0 is installed to access Jupyter notebook
for the development of the learning models.

Python 3.12.4 is the programming language used to connect with the dataset and to build the
models.

2.3 Python packages used
The modules and libraries used for the development of deep learning models are

Data Manipulation : Numpy 1.26.4 and Pandas 2.2.2
Data Preprocessing and Evaluation : Scikit- learn 1.4.2

Deep learning : tensorflow 2.17.0 and pytorch
Modelling - Keras 3.4.1, keras-tuner 1.4.7
Visualization : Seaborn 0.13.2, Matplotlib 3.8.4
Storing large datasets - h5py 3.11.0

Data Manipulation in transcript : Spacy 3.7.5

Natural language processing - nltk 3.8.1 (Natural language toolkit)
Data Imbalance - imblearn 0.12.3 for performing SMOTE
Metrics : Scikit- learn 1.4.2

Audio file manipulation : pyAudioAnalysis 0.3.14

Audio file creation :scipy 1.12.0

1

Reading and writing audio file - wave 1.5.0

Audio Analysis - librosa 0.10.2
Ensemble models : Scikit- learn 1.4.2 for Gradient boosting
3 Dataset

The dataset used for in this research is Distress Analysis Interview Corpus (DAIC-WQOZ)
containing clinical interviews to support the diagnosis of psychological distress conditions
such as anxiety, depression and post-traumatic stress disorder (PTSD). To gain access to the
dataset, submit a non-disclosure agreement in the website from an academic e-mail address.

DAIC-WOZ Database

DAIC-WOZ End-User License Agreement

jownload and use this database only after signing and returning
nent, the user agrees to the following terms.

? ncy,
in Proceedings of

Figure 1: Dataset request form DAIC WOZ.

The dataset contains 189 recording of the participants in the clinical study and has the
transcript file and audio and video features extracted from the participant’s recording.

To download the complete dataset that is used for this research project,follow the
steps outlined in the Jupyter notebook that is accessible at the URL. Due to space constraint
in Moodle, the complete dataset and code artefact is available in this OneDrive URL and it is
accessible by users from National College of Ireland.

" Integrating audio and text data with deep learning to detect depression

Note to download the whole dataset

for replicating the

URL to download the whole dataset along with artefact

Figure 2: Full Dataset available in the URL.

> ThisPC > NewVolume (D) > daicwoz > 300_P
T Sort ~ = View ~ .

Name Date modified Type Size

©| 300_AUDIO 18-02-2016 13:50 WAV File 20,266 KB
=] 300_CLNF_AUs 02-05-2017 12:51 Text Document 2,126 KB
=] 300_CLNF _features 02-05-2017 12:51 Text Document 23,493 KB
= 300 CLNF features3D 02-05-2017 12:51 Text Document 35,626 KB
=| 300_CLNF_gaze 02-05-2017 12:51 Text Document 2917 KB
=] 300_CLNF_hog 02-05-2017 12:52 Text Document 3,39,603 KB
=| 300_CLNF_pose 02-05-2017 12:52 Text Document 1,637 kKB
300_COVAREP 18-02-2016 13:42 Microsoft Excel Com... 35,954 KB
300_FORMANT 18-02-2016 13:42 Microsoft Excel Com... 2,100 KB

300 TRANSCRIPT

18-05-2016 13:58

Microsoft Excel Com...

Figure 3: Files from the dataset used for the analysis.

9 KB

For this research, the highlighted files xxx_AUDIO and xxx_TRANSCRIPT is picked from
all the participant’s recordings and features are extracted from these files for deep learning

(Figure 3).
DAICWOZDepression_Documentation AVEC2017 15-02-2024 17:02 Adobe Acrobat Docu... 93 KB
| B9 dev_split Depression AVEC2017 | 15-02-2024 17:02 Microsoft Excel Com... 2 KB
=== documents 15-02-2024 17:02 Compressed (zipped)... 5,969 KB
full_test_split 15-02-2024 17:02 Microsoft Excel Com... 1KB
test_split_Depression_AVEC2017 15-02-2024 17:02 Microsoft Excel Com... 1KB
| B train_split Depression_AVEC2017 | 15-02-2024 17:02 Microsoft Excel Com... 4KB
e util 15-02-2024 17:02 Compressed (zipped)... 2 KB

Figure 4: Files for splitting the dataset into train and test.

The dataset is split into train and test based on the files train_split_Depression_ AVEC2017
and dev_split_Depression_ AVEC2017 respectively (Figure 4). The individual files contain
107 and 35 records respectively where 107 participant’s features is used for the training of
the model and 35 participant’s features is used for the testing of the model.

GloVe — Global Vector for word representation is used for the natural language processing
and the file “glove.840B.300d” is downloaded from the Glove website and placed in the root
directory where the Jupyter notebook runs (Figure 5).

nlp.stanford.edu/projects/glove/

Download pre-trained word vectors

e Pre-trained word vectors. This data is made available under the Public Domain Dedication and License vi.0 whose full text can be found at:
http://www.opendatacommons.org/licenses/pddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 175 GB download): g\ovo,ng jood Zi0
o Common Crawl (8408 Ltokens, 2.2M vocab, (.rJ\aCd, J)O(Jd vectors, 2.03 GB duwn\oad): g\ovc.8AOB. ’;(.)Od.z\;._y
o lwitter (2B tweets, 27B tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter.27B.zip

e Ruby script for preprocessing Twitter data

Figure 5: URL to download GloVe pre-trained word vectors.

The audio and the transcript file are placed inside train and test folders respectively based on
the train -test split file and these 2 folders are placed inside “wavFiles” and “Transcript”
folders respectively in the root.

4 Preprocessing

The preprocessing steps contains the steps involved in extracting the features the raw file and
transformed into Numpy arrays to feed into the deep learning models for binary classification
of the depressive state. This section contains the highlights on the pre-processing followed in
this research.

4.1 Transcript processing

The preprocessing steps followed in the transcript file are the removal of punctuations,
removal of stopwords, removal of most frequently used words. In this dataset “um” and “uh”
are used predominantly by the participants and it is removed from the dataset.

#Removal of Punctuations
import re
def clean_punctuation(text):

return re.sub(r'[*A-Za-z]+"', " ', text)
train_df['value']=train_df['value'].apply(clean_punctuation)
val_df['value']=val_df['value'].apply(clean_punctuation)

#Removal of stopwords
from nltk.corpus import stopwords
", ".join(stopwords.words('english'))
STOPWORDS = stopwords.words('english')
custom_stop_word_list=["'xxx', 'synch’
final_stopword_list = custom_stop_word_list + STOPWORDS
def remove_stopwords(text):
return " ".join([word for word in str(text).split() if word not in final_stopword_list])

train_df['value']= train_df['value'].apply(lambda text: remove_stopwords(text))
val_df['value']= val_df['value'].apply(lambda text: remove_stopwords(text))

Figure 6: Pre-processing of transcript files-1.

cnt.most_common(2)

[("um', 3535), ('uh', 2914)]

[26]: #remove the most frequent words
FREQWORDS = set([w for (w, wc) in cnt.most_common(2)])
def remove_freqwords(text):
return " ".join([word for word in str(text).split() if word not in FREQWORDS])

train_df['value']= train_df['value'].apply(lambda text: remove_freqwords(text))
val_df['value']= val_df['value'].apply(lambda text: remove_frequords(text))
train_df.head()

Figure 7: Pre-processing of transcript files 2.

Lemmatization of the text data is done using the spacy library by loading the
“en_core_web_sm” English language model that contains components for tokenization, part-
of-speech tagging,named entity recognition, etc. Lemmas are extracted and the original
dataset is updated.

The file from the GloVe website is loaded into the Python notebook file and is used to train
the dataset with the pre-trained GloVe model and the embedded matrix generated at the final
step is used directly in machine learning models providing meaningful word representations
that improve the performance of NLP tasks (Figure 8).

Load word embeddings
glove = codecs.open('glove.840B.30ad. txt', encoding='utf-8')

(" Temsbiny cord) o bt - o)
embeddings_index =
for line in tgdm(glove):
vilies = MAne. rer (). remlf® o)
word = values[@
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
glove.close()

print('found %s word vectors' % len(embeddings_index))
print(‘Number of words in word indesx:®, len(word_index))

MAX_NB_WORDS = 5260

Prepare embedding matrix

print('preparing embedding matrix...")

vl e Pt &
nb_words = min(MAX NB WORDS, len(word index) + 1)
embedding_matrix = np.zeros((nb_words, 300))

for word, i in word index.items():

if 1 >= nb_words:
continue

embedding_vector = embeddings_index.get(word)

if (embedding_vector is not None) and len(embedding vector) > 8:
Words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector

else:
words_not_found. append(word)

print('Number of null word embeddings: %d' % np.sum(np.sum(embedding_matrix, axis=1) == @))
print(‘Words not found:', len{words not found))

loading word embeddings...
2196018it [06:01, 6073.22it/s]
found 2196016 word vectors

Number of words in word index: 5889
preparing embedding matrix...
Number of null word embeddings: 56
Words not found: 55

Figure 8: GloVe toolkit to generate embedding matrix.

4.2 Audio processing

The key pre-processing step performed is the removal of Silence from the raw audio file for
effective features only extracted in the further steps of modelling. Here remove_silence,
is_segmentable and concatenate_segments functions were defined to process individual files,
create segments from a file, remove the silence part and concatenate the segments to a single
file with the name xx_no_silence_wav (Figure 9).
def remove_silence(filename, out_dir, smoothing=1.8, weight=6.3, plot=False):
partic_id = 'P' + filename.split('/')[-1].split('_")[e] # PXXX
if is_segmentable(partic_id):
create participant directory for segmented wav files
participant_dir = os.path.join(out_dir, partic_id)
if not os.path.exists(participant_dir):
os.makedirs(participant_dir)

os.chdir(participant_dir)

[Fs, x] = aI0.read_audio_file(filename)

segments = aS.silence_removal(x, Fs, ©.820, ©.020,
smooth_window=smoothing,
weight=weight,
plot=plot)

for s in segments:
seg_name = "{:s}_{:.2f}-{:.2f}.wav".format(partic_id, s[e], s[1])
wavfile.write(seg_name, Fs, x[int(Fs * s[@]):int(Fs * s[1])])

concatenate segmented wave files within participant directory
concatenate_segments(participant_dir, partic_id)

def is_segmentable(partic_id):
troubled = set([])
return partic_id not in troubled

def concatenate_segments(participant_dir, partic_id, remove_segment=True):
infiles = os.listdir(participant_dir) # List of wav files in directory
outfile = '{}_no_silence.wav'.format(partic_id)

data = []
for infile in infiles:
W = wave.open(infile, 'rb")
data.append([w.getparams(), w.readframes(w.getnframes())])
w.close()
if remove_segment:
os.remove(infile)

output = wave.open(outfile, 'wb"')
details of the files must be the same (channel, frame rates, etc.)
output.setparams(data[@][@])

write each segment to output

for idx in range(len(data)):
output.writeframes(data[idx][1])

output.close()

Figure 9: Functions defined for Pre-processing Audio files.

Note: While running the python notebook file, please replace the dir_name and out_dir to
your corresponding root folder locations as this part is hardcoded and it needs to be updated
to replicate the process (Figure 10).

if _ namé = " main ':
directory containing raw wav files
| dir_name = 'C:/Users/jackb/daic/wavFiles/train/" |

directory where a participant folder will be created containing their
segmented wav file
I out_dir = 'C:/Users/jackb/daic/interim/' I

iterate through wav files in dir_name and create a segmented wav_file
for file in os.listdir(dir_name):
if file.endswith('.wav'):
filename = os.path.join(dir_name, file)
remove_silence(filename, out_dir)

directory containing raw wav _files
Idir‘_name = 'C:/Users/jackb/daic/wavFiles/test/" I

directory where a participant folder will be created containing their
segmented way file
Iout_dir‘ = 'C:/Users/jackb/daic/interim/’ I

iterate through wav files in dir_name and create a segmented wav_file
for file in os.listdir(dir_name):
if file.endswith('.wav'):
filename = os.path.join(dir_name, file)
remove_silence(filename, out_dir)

Figure 10: Directory Rename for replicating the results.

5 Feature Extraction

This section covers the individual features extracted from the transcript and audio files. The
transcript file is pre-processed and is ready to feed into deep learning models for training and
validation. Here only the feature extraction from the audio file is discussed.

def extract_features_librosa(file_name):
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
mfces = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=48)
mfces_processed = np.mean(mfccs.T,axis=0)
return mfccs_processed
def extract_chroma_features(file_name):
audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')
stft = np.abs(librosa.stft(audio))
chroma = librosa.feature.chroma_stft(S=stft, sr=sample_rate, n_fft=2048, hop_length=512,window="hann', center=True, pad_mode='constant', tuning=None,
chroma_processed = np.mean(chroma.T, axis=0)
return chroma_processed

def extract_melfrequency(file_name):
audio, sample_rate = librosa.load(file_name, res_type='kaiser fast')
mel = np.mean(librosa.feature.melspectrogram(y=audio, sr=sample_rate,n_fft=20848, hop_length=512, win_length=None, window='hann', center=True, pad_mod
return mel

Figure 11: Feature extraction for Audio files.

From the pre-processed audio file extract features_librosa, extract_chroma_features,
extract_melfrequency are defined to read the file by loading the wav file using librosa module
and extracting the required features MFCCs, Chroma features and Mel-frequency from these
files (Figure 11).

These features are extracted and stored into csv files named librosa_mfcc_feature_train and
librosa_mfcc_feature test

6 Deep learning models

This section covers the deep learning models identified for the training and evaluation of the
text and audio modality.

6.1 Bi-GRU Model for transcript

seed = 300
np.random.seed(seed)
tf.random.set_seed(seed)
random. seed(seed)

acc_per_fold =

loss_per_fold =

num_folds = 5

kfold = KFold(n_splits=num_folds, shuffle=True, random_state=seed)
fold_no =1

best_accuracy = @
best_fold = -1
best_model_GRU = None

for train, test in kfold.split(inputs, targets):
Apply SMOTE to the training data
sm = SMOTE(random_state=seed)
inputs_res, targets_res = sm.fit_resample(inputs[train], targets[train])

model = Sequential()

model.add(Embedding(nb_words, embed_dim, input_length=max_seq_len, weights=[embedding_matrix], trainable=False))
model.add(Bidirectional(GRU(128, return_sequences=True)))

model.add(Dropout(@.4))

model.add(Bidirectional(GRU(128, activation='tanh', return_sequences=True)))
model.add(Dropout(@.4))

model.add(Bidirectional(GRU(128, activation="tanh', return_sequences=True)))
model.add(Dropout(@.4))

model.add(GlobalMaxPooling1D())

model.add(Dropout(@.25))

model.add(Dense(256, activation='relu'))

model.add(Dropout(@.4))

reduce_lr = ReducelLROnPlateau(monitor='val_loss', factor=6.1, mode="auto", patience=3)
modelBinary = model

modelBinary.add(Dense(1l, activation='sigmoid'))

Figure 12: Implementation of Bi-GRU.

The above image contains the implementation of Bidirectional Gated Recurrent Unit where
the synthetic samples are generated for the training dataset using SMOTE and is fed into the
model for training. 5-fold cross validation is used during the training and the model having
highest accuracy during the training is used as the best model for further analysis.

optimizer = tf.optimizers.Adam(learning_rate=0.004)
modelBinary.compile(loss="'binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
es_callback = EarlyStopping(monitor="val_loss', patience=18)

history = modelBinary.fit(inputs_res, targets_res, batch_size=18, epochs=28, callbacks=[reduce_lr, es_callback])

Generate generalization metrics

scores = modelBinary.evaluate(inputs[test], targets[test], batch_size=18)

print(f'Score for fold {fold_no}: {model.metrics_names[®]} of {scores[8]}; {model.metrics_names[1]} of {scores[1]*166}%")
acc_per_fold.append(scores[1] * 1@@)

loss_per_fold.append(scores[8])

Check if this fold has the best accuracy
if scores[1] * 180 > best_accuracy:
best_accuracy = scores[1] * 1@@
best_fold = fold_no
best_model_GRU = modelBinary

Increase fold number
fold_no += 1

Print the metrics for all folds
print('Accuracy per fold:', acc_per_fold)
print('Loss per fold:', loss_per_fold)
print('Average accuracy:', np.mean(acc_per fold))
print('Average loss:', np.mean(loss_per_fold))

Print the best fold
print(f'Best fold: {best_fold} with accuracy: {best_accuracy}%')

Figure 13: Compilation of Bi-GRU and Metrics evaluation.

Adam optimizer is used during the compilation of the model and the model is trained with 20
epochs for each fold.

6.2 Bi-LSTM Model for transcript

A similar implementation of the bidirectional Long Short-term memory (Bi-LSTM) is present
in the image for training the transcript file. 5-fold cross validation and SMOTE is similarly
used to find the model with highest accuracy and to nullify the imbalance in the dataset
respectively.

seed = 360

np.random. seed(seed)
tf.random. set_seed(seed)
random. seed(seed)

acc_per_fold_LSTM = []

loss_per_fold_LSTM = []

num_folds_lstm = 5

kfold_lstm = KFold(n_splits=num_folds_lstm, shuffle=True, random_state=seed)
fold_no_lstm = 1

best_accuracy_lstm = @
best_fold_lstm = -1
best_modellLSTM = None

for train, test in kfold_lstm.split(inputs, targets):
sm = SMOTE(random_state=seed)
inputs_res_lstm, targets_res_lstm = sm.fit_resample(inputs[train], targets[train])

Initialize the model
modellLSTM = Sequential()

Embedding Layer with pre-trained weights

modellLSTM. add (Embedding(input_dim=nb_words,
output_dim=embed_dim,
input_length=max_seq_len,
weights=[embedding_matrix],
trainable=False))

Bidirectional LSTM layers with dropout
modellLSTM.add(Bidirectional(LSTM(128, return_sequences=True)))
modellLSTM. add(Dropout(8.4))

modellLSTM.add(Bidirectional(LSTM(128, activation="tanh', return_sequences=True)))
modellLSTM. add(Dropout(8.4))

modelLSTM. add(Bidirectional(LSTM(128, activation='tanh', return_sequences=True)))
modelLSTM. add (Dropout(©.4))

Global Max Pooling Layer
modelLSTM. add (GlobalMaxPoolinglD())
modelLSTM. add (Dropout(8.25))

Dense Layer with RelU activation
modelLSTM. add(Dense (256, activation='relu'))
modelLSTM. add (Dropout(8.4))

Output Layer for binary classification
modelLSTM. add(Dense(1, activation='sigmoid'))

Compile the model
optimizer = tf.keras.optimizers.Adam(learning_rate=6.ee4)
modelLSTM. compile(loss="binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])

Callbacks for reducing Learning rate and early stopping
reduce_lr = ReducelROnPlateau(meonitor='val_loss', factor=8.1, patience=3)
es_callback = EarlyStopping(monitor='val_loss', patience=18)

historyLSTM = modellLSTM.fit(inputs_res_lstm, targets_res_lstm,
epochs=28,
batch_size=10,
callbacks=[reduce_lr, es_callback]

Generate generalization metrics

scores = modellLSTM.evaluate(inputs[test], targets[test], batch_size=10)

print(f'Score for fold {fold_no_lstm}: {modelLSTM.metrics_names[@]} of {scores[@]}; {modelLSTM.metrics_names[1]} of {scores[l
acc_per_fold_LSTM.append(scores[1] * 188)

loss_per_fold_LSTM.append(scores[@])

Figure 14: Implementation of Bi-LSTM.

10

6.3 CNN Model for Audio

Load datasets
train_data_CNN = pd.read csv('librosa_mfcc_feature_train.csv')
test_data_CNN = pd.read_csv('librosa_mfcc_feature_test.csv')

Extract features and lLabels

X_train_mfcc = convert_to_array_safe(train_data_CNN, 'MFCC')
X_train_mel = convert_to_array_safe(train_data_CNN, 'MelFrequency')
X_train_chroma = convert_to_array_safe(train_data_CNN, 'Chroma')
y_train = train_data_CNN['PHQ8_Binary'].values

X_test_mfcc = convert_to_array_safe(test_data_CNN, 'MFCC')
X_test_mel = convert_to_array_safe(test_data_CNN, 'MelFrequency')
X_test_chroma = convert_to_array_safe(test_data_CNN, ‘Chroma‘)
y_test = test_data_CNN['PHQ8_Binary'].values

Reshape the input data to fit the model's expectations
X_train_mfcc = np.expand_dims(X_train_mfcc, axis=-1)
X_train_mel = np.expand_dims(X_train_mel, axis=-1)
X_train_chroma = np.expand_dims(X_train_chroma, axis=-1)
X_test_mfcc = np.expand_dims(X_test_mfcc, axis=-1)
X_test_mel = np.expand_dims(X_test_mel, axis=-1)
X_test_chroma = np.expand_dims(X_test_chroma, axis=-1)

Flatten the inputs for SMOTE

X_train_flatten = np.hstack([X_train_mfcc.reshape(len(X_train_mfcc), -1),
X_train_mel.reshape(len(X_train_mel), -1),
X_train_chroma.reshape(len(X_train_chroma), -1)])

Figure 15: Reshaping of features for CNN.

The Convolutional Neural Network model is identified for modelling and training of the
audio features extracted from the raw wav files. The individual files
librosa_mfcc_feature_train and librosa_mfcc_feature_test are loaded from the csv file and is
loaded the string file to a numpy array for modelling. The indivual features are extracted from
the indivdual array for each feature type and is reshaped to fit into the CNN model. The data
is flattened to apply SMOTE and generate synthetic samples to balance the minority class in
the dataset.

11

Apply SMOTE
smote = SMOTE(random_state=300)
X_train_resampled, y train_resampled = smote.fit_resample(X_train_flatten, y_train)

Reshape back to original format

X_train_mfcc_resampled = X_train_resampled[:, :48].reshape(-1, 48, 1)
X_train_mel_resampled = X_train_resampled[:, 40:168].reshape(-1, 128, 1)
X_train_chroma_resampled = X_train_resampled[:, 168:].reshape(-1, 12, 1)

Define a HyperModel class for Keras Tuner
class CNNHyperiModel (HyperModel):
def build(self, hp):
mfcc_input = Input(shape=(48, 1), name='mfcc_input')
mel_input = Input(shape=(128, 1), name='mel_input')
chroma_input = Input(shape=(12, 1), name='chroma_input')

CNN branch for MFCC input

mfcc_branch = layers.ConviD(filters=hp.Int('mfcc_filters', 32, 128, step=32),
kernel_size=hp.Choice('mfcc_kernel_size', [3, 5]),
activation="'relu')(mfcc_input)

mfcc_branch = layers.MaxPoolinglD(pool_size=2)(mfcc_branch)

mfcc_branch = layers.ConviD(filters=hp.Int('mfcc_filters_2', 32, 128, step=32),
kernel_size=hp.Choice('mfcc_kernel_size_2', [3, 5]),
activation="'relu')(mfcc_branch)

mfcc_branch = layers.GlobalAveragePoolinglD()(mfcc_branch)

CNN branch for MelFrequency input

mel_branch = layers.ConvlD(filters=hp.Int('mel_filters', 32, 128, step=32),
kernel_size=hp.Choice('mel_kernel_size', [3, 5]),
activation="relu')(mel_input)

mel_branch = layers.MaxPoolinglD(pool_size=2)(mel_branch)

mel_branch = layers.ConvlD(filters=hp.Int('mel_filters_2', 32, 128, step=32),
kernel_size=hp.Choice('mel_kernel_size_2', [3, 5]),
activation='relu')(mel_branch)

mel_branch = layers.GlobalAveragePoolinglD()(mel_branch)

CNN branch for Chroma input

chroma_branch = layers.ConviD(filters=hp.Int('chroma_filters', 32, 128, step=32),
kernel_size=hp.Choice('chroma_kernel_size', [3, 5]),
activation='relu')(chroma_input)

chroma_branch = layers.MaxPoolinglD(pool_size=2)(chroma_branch)

chroma_branch = layers.ConviD(filters=hp.Int('chroma_filters_2', 32, 128, step=32),
kernel_size=hp.Choice('chroma_kernel_size_2', [3, 5]),
activation='relu')(chroma_branch)

chroma_branch = layers.GlobalAveragePoolinglD() (chroma_branch)

Concatenate all branches
concatenated = layers.concatenate([mfcc_branch, mel_branch, chroma_branch])

Fully connected Layers

x = layers.Dense(units=hp.Int('dense_units', 64, 256, step=64), activation='relu')(concatenated)
x = layers.Dropout(rate=hp.Float('dropout_rate', 0.3, 0.7, step=08.1))(x)

output = layers.Dense(l, activation='sigmoid')(x)

Define the model
model = models.Model(inputs=[mfcc_input, mel_input, chroma_input], outputs=output)

Compile the model

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp.Choice('learning_rate', [le-2, le-3, le-4])),
loss="binary_crossentropy',
metrics=["'accuracy'])

return model

Instantiate the HyperModel
hypermodel = CNNHyperModel()

Figure 16: Implementation of CNN.

A custom class CNNHyperModel is defined for performing the hyperparameter tuning of the
proposed CNN model using keras tuner. The shape of the input layer is defined and each of
the features are modelled as a separate branch in the CNN and three branches for MFCC,
Chroma and Mel-frequency is designed. The layers are then concatenated, and the model is
compiled using Adam optimizer.

12

Define the tuner

tuner = RandomSearch(
hypermodel,
objective="'val_accuracy',
max_trials=18,
executions_per_trial=1,
directory="'hyperparameter_tuning',
project_name="'cnn_with_smote’

Search for the best hyperparameters

tuner.search([X_train_mfcc_resampled, X_train_mel_resampled, X_train_chroma_resampled], y_train_resampled,
validation_data=([X_test_mfcc, X_test_mel, X_test_chroma], y_test),
epochs=38, batch_size=32)

Get the best model
best_model_cnn = tuner.get_best_models(num_models=1)[8]

Evaluate the best model

loss, accuracy = best_model_cnn.evaluate([X_test_mfcc, X_test_mel, X_test_chroma], y_test)
print(f'Test Loss: {loss}')

print(f'Test Accuracy: {accuracy}')

Figure 17: Hyperparameter tuning for CNN.

Hyperparameter tuning using randomsearch is used to find the optimal hyparameters for this
multi-input CNN model. A maximum of 10 trials is used and the criteria for the tuning is to
have the maximum accuracy during training of the model. The best model is identified and is
used further.

6.4 Meta-learner for a stacking ensemble

Obtain predictions from the GRU model

gru_predictions = best_model GRU.predict(seq_test)

Obtain predictions from the CNN model

cnn_predictions = best_model_cnn.predict([X_test_mfcc, X_test_mel, X_test_chroma])
Convert to numpy arrays if not already and flatten

gru_predictions = np.array(gru_predictions).flatten()

cnn_predictions = np.array(cnn_predictions).flatten()

Combine predictions into a feature set for the meta-Learner
combined_predictions = np.vstack((gru_predictions, cnn_predictions)).T

Split the combined predictions and true labels for training and validation
X_train_meta, X_val_meta, y_train_meta, y_val_meta = train_test_split(combined_predictions, y_test, test_size=8.2, random_state=42)

Define and train the meta-learner using Gradient Boosting

meta_learner = GradientBoostingClassifier(
n_estimators=100, # number of trees
max_depth=3, # maximum depth of each tree
learning_rate=8.1 # learning rate

)

meta_learner.fit(X_train_meta, y_train_meta)

Make final predictions using the meta-Learner
final_predictions = meta_learner.predict(X_val_meta)

Fvaluate the final predictions

accuracy = accuracy_score(y_val_meta, final_predictions)
conf_matrix = confusion_matrix(y_val_meta, final_predictions)
report = classification_report(y_val_meta, final_predictions)

print(f"Accuracy: {accuracy}")
print("Confusion Matrix:")
print(conf_matrix)
print("Classification Report:")
print(report)

Figure 18: Stacking Ensemble using gradient Boosting.

13

The individual predictions from the model is obtained and the output is stacked as a feature
for the meta-learner. A Gradient Boosting classifier is used for the meta-learner and the final
prediction is performed for the dataset.

If you want to make predictions on the entire test set
final_predictions_full = meta_learner.predict(combined_predictions)

Evaluate the final predictions on the full test set

accuracy_full = accuracy_score(y_test, final_predictions_full)
conf_matrix_full = confusion_matrix(y_test, final_predictions_full)
report_full = classification_report(y_test, final_predictions_full)

Plotting the confusion matrix for the entire test set

plt.figure(figsize=(4,3))

sns.heatmap(conf_matrix_full, annot=True, fmt='d', cmap='Blues', xticklabels=['Class &', 'Class 1'], yticklabels=['Class @', 'Cla
plt.ylabel('Actual')

plt.xlabel('Predicted')

plt.title('Confusion Matrix - Full Test Set')

plt.show()

print(f"Full Test Accuracy: {accuracy_full}")
print("Full Test Confusion Matrix:")
print(conf_matrix_full)

print("Full Test Classification Report:")
print(report_full)

Full Test Accuracy: ©.9428571428571428

Full Test Confusion Matrix:

[[21 2)
[e 12]]
Full Test Classification Report:
precision recall fl-score support
2 1.00 0.91 8.95 23
1 0.86 1.0 8.92 12
accuracy 0.94 35
macro avg 9.93 .96 9.94 35
weighted avg 8.95 9.94 8.94 35

Figure 19: Evaluation metrics for the ensemble classifier

Figure 19 contains the final prediction of the overall model with results including Accuracy,
confusion matrix and classification report.

This approach improves the performance of the classification by leveraging the strengths of
multiple model and making the final binary classification more robust.

References

University of Southern California. Distress Analysis Interview Corpus (DAIC). Institute for
Creative Technologies. Available at: https://dcapswoz.ict.usc.edu/ (Accessed: 11 August
2024)

Stanford University. GloVe: Global Vectors for Word Representation. Stanford NLP Group.
Available at: https://nlp.stanford.edu/projects/glove/ (Accessed: 11 August 2024)

14

https://dcapswoz.ict.usc.edu/
https://nlp.stanford.edu/projects/glove/

