|

National

Collegeof
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Jothybala Murugan
StudentID: x22245201

School of Computing

National College of Ireland

Supervisor: Dr. Abid Yaqoob

National College of Ireland Project —
Submission Sheet School of Computing \ National

Collegeof
Ireland

Student Name: Jothybala Murugan

Student ID: x22245201

Programme: Data Analytics

Year: 2024

Module: MSc Research Project

Supervisor: Dr. Abid Yaqoob

Submission Due Date: 12/08/2024

Project Title: Configuration Manual

Word Count: 719

Page Count: 12

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August2024
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). o

Attach a Moodle submission receipt of the online project submission, to each project| o
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own | o
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Jothybala Murugan
x22245201

1 Introduction

Research on the intrusion detection system remains continuing with researchers and
computer programmers in improving and enhance deep learning algorithms globally. A
description of the steps needed to carry out the outcomes of this research is given in this
configuration manual. This configuration manual includes the use of both software and
hardware in research experiments. Knowing the Python programming is used here to
achieve the target can be enhanced by this. We followed the instructions, each section will
explain the function.

2 System Configuration

In this research, the hardware specification of the system is Windows 11 64-bit operating
system, x 64-based processor system, 8 GB RAM, 256 GB of ROM, AMD Ryzen 5 - 5625U
with Radeon Graphics -2.30 GHz is utilized. More hardware and operating system
specification are shown in Figurel.

o
System Summary Item Value
Hardware Resources 0OS Name Microsoft Windows 11 Home Single Language
Components Version 10.0.22631 Build 22631

Software Environment

Other OS Description Not Available

05 Manufacturer Microsoft Corporation
System Name JOTHYBALA

System Manufacturer HP

System Model HP Pavilion Laptop 14-ecc

System Type ¥64-based PC
System SKU 689HAPA#AC)
Processor AMD Ryzen 5 5625U with Radeon Graphics, 2301 Mhz, 6 Core(s), 12 Logical Pr

BIOS Version/Date AMI F.07, 19-07-2023

SMBIOS Version 33
Embedded Controller Version 29.50
BIOS Mode UEFI
BaseBoard Manufacturer HP
BaseBoard Product 8AOF
BaseBoard Version 29.50
Platform Role Mobile
Secure Boot State On

PCRY Configuration
Windows Directory

System Directory

Boot Device

Locale

Hardware Abstraction Layer
User Name

Time Zone

Elevation Required to View
Cwindows
Cwindows\system32
\Device\HarddiskVolume1
United States

Version = "10.0.22621.2506'
Jothybala\Tom

GMT Daylight Time

Installed Physical Memory (RAM) 8.00 GB

Figure 1: Hardware and Operating system specification

System > About

Jothybala

@ Device specifications

Device name

Rename this PC

Copy A

Processor AMD Ryzen 5 5625U with Radeon Graph

Installed RAM
Device ID
Product ID
System type
Pen and touch

Related links Domain or workgroup ~ System protection Advanced system settings

BE Windows specifications

Edition Windows 11 Home

Version 23H2
Installed on
OS build

Copy ~

Figure 2: Detailed specifications of the system

In figure 2, the detailed specifications of the system environment mentioned clearly.

3 Environment Setup

3.1 Anaconda Navigator

The deep learning models in this study experiment was implemented using the Python
programming language. The programming code portion of the script is completed using
Jupyter Notebook, which has been configured by Anaconda Navigator (available at this site), as

Figure 3 illustrates.

) ANACONDA NA

. @ O

3.2 Environment

Figure 3: Anaconda Navigator

The anaconda base command prompt is used for developing a new environment in order
to handle the libraries for Python programs. The python was Installed with Python 3.10

with numerous packages such as pandas, numpy, mathplotlib, seaborn, Tensorflow, keras,
time. For this research, the main tools used were anaconda navigator, Jupyter notebook,
word, excel. The new environment jupyter notebook was activated using the anaconda
navigator. In figure 4, the activation of jupyter notbook in the command is shown clearly
which is used for faster execution.

£ Jupyter Notebook X + v

AV | RSl Wy W) N |
11

Read the migration plan to Notebook 7 to learn about the new features and the actions to take if you are using extension

https://jupyter-notebook.readthedocs.io/en/latest/migrate_to_notebook7.html
Please note that updating to Notebook 7 might break some of your extensions

[W 15:25:52.707 NotebookApp] Loading Jupyterlab as a classic notebook (v6) extension.
.707 NotebookApp] You must use Jupyter Server vl to load JupyterlLab as notebook extension. You have v2.5.0 in

fix this by executing:

:58.486 NotebookApp] Jupyter Notebook 6.5.4 is runnin
58.486 NotebookApp] http://localhost:8888/7t: =b7¢ cdb30428352b511bc1feel398b9cb3daB366e984
86 NotebookApp] or http://127.0.0 7t 23efcdb30U28352b511bc1fee1398b9cb3da8366e984
:58.U486 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
552 NotebookApp]

file:///C:/Us
Or copy and paste on s

http://localhost:8 ? 0428352b511bc1fee1398b9cb3dal
or //127.0.0.1:8 ken=| 259h £ a1398h9chad;

Figure 4: Jupyter notebook

4. Dataset Sources

In this research, the RT-IoT2022 dataset was used with number of network traffic data in
the IoT devices. It contains 123117 instances with 85 features. This dataset has been
obtained from the UCI repository. In figure 5, the dataset is mentioned.

Datasets Contribute Dataset About Us

RT-10T2022

The RT-10T2022, a proprietary dataset derived from a real-time loT infrastructure, is introduced as a comprehensive resource
integrating a diverse range of loT devices and sophisticated network attack methodologies. This dataset encompasses both

Dataset Characteristics Subject Area Associated Tasks

Tabular, Sequential, Multivariate Engineering Classification, Regression, Clustering
Feature Type # Instances # Features

Real, Categorical 123117 83

Dataset Information 2
Has Missing Values?

[

Figure 5: Dataset from UCI repository

5 Research Experiment
The program code is divided into sections that help in a detailed and clear understanding
of all the parts.

5.1 Importing Libraries

The first step of coding is to load the necessary python libraries and packages which is

shown in Figure 6.

In [1]:

« Importing Libraries

M import pandas as pd

import numpy as np

import matplotlib as plt

import seaborn as sns

import time

import tensorflow as tf

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.metrics import classification_report, confusion_matrix, precision_score, recall_score, fl_score

from sklearn.metrics import confusion_matrix

from keras.models import Sequential

from keras.layers import GRU, Bidirectional, Conv1D, MaxPoolinglD, Dense, Dropout
from keras.callbacks import EarlyStopping

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from keras.models import Sequential

from keras.layers import LSTM, Dense

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import classification_report

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, GRU, LSTM, Dropout
from tensorflow.keras.callbacks import EarlyStopping

Figure 6: Importing Libraries

5.2 Data Loading

The dataset used in this experiment is gathered from the UCI repository website 1. The
dataset is donated by the authors Sharmila, B. S., & Nagapadma, R. (2023). The dataset
was downloaded in a zip file with the 3.3mb size and loaded in the jupyter file which is

shown in Figure 7.

2 (1)\\RT_IOT2022.csv")

fwd_pkts_tot bwd_pkts_tot

A uwn a0

123112
123113
123114
123115
123118

123117 rows x

85 column:

Figure 7: Loading data into pandas dataframe.

L https://archive.ics.uci.edu/dataset/942/rt-iot2022

4

In [86]: M print("\nMissing values:")
print(data.isnull().sum())

Missing values:
Unnamed: ©
id.orig_p
id.resp p
proto

service

[SISIGI RS

idle.std
fwd_init_window_size
bwd_init_window_size
fwd_last_window_size
Attack_type

Length: 85, dtype: int64

oo o ®-

Figure 8: Null values

The dataset had no missing values which was mentioned by the authors as well and in
figure 8, we checked for the null values, and we can see there is no null values.

5.3 Exploratory data analysis

In the EDA part, we analyzed the distribution of the target variable, which is attack type,
which is one of the categorical variables, outlier detection which was shown in Figure 9.

Cat_Var = data2[Categorical variables]

melted data = Cat _Var.melt('Attack type', var_name='Category', value name='Value')
sns.pairplot(melted_data, hue='Category', diag_kind="kde', height=3)

plt.suptitle('Pair Plot of Categorical Variables with Attack type', y=1.02)
plt.show()

Figure 9: Pair Plot of Categorical Variables with Attack type

In Figure 10, this code snippet is used for the visually summarizing the distribution of
data, identifying potential outliers using Boxplot.

plt.figure(figsize=(15, 10))

for i, col in enumerate(new_columns_1, 1):
plt.subplot(3, 3, i)
sns.boxplot(x=data2[col])
plt.title(f'Boxplot of {col}")
plt.xlabel(col)

plt.tight_layout()
plt.show()

Figure 10: Boxplot of selected features.

5.4 Data preprocessing

After the data is pre-processed by encoding the categorical variables, scaling the
numerical variables. The next step was selecting the important features which was shown
in figure 11.

correlations = data6[numerical_vars].corrwith(data6['Attack_type'].astype('category').cat.codes)
correlation df = pd.DataFrame(correlations, columns=['Correlation’])

top features = correlation df.abs().nlargest(10, 'Correlation’).index

¥matplotlib inline

plt.figure(figsize=(25, 12))

sns.heatmap(data2[top_features].corr(), annot=True, cmap='coolwarm')

plt.title(Correlation Heatmap of Top 10 Features with Attack_type', fontsize=16)
plt.show()

Figure 11: Correlation of Top 10 Features with Attack_type.

After the feature selection, using train_test_split function, we split dataset into training
(80%) and testing (20%) sets and reshaped the test and train data before the use of the
standardScaler function which is shown in figure 12.

Split into training and testing sets without stratification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Standardize the feature matrix

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Reshape input data to fit GRU input requirements
X_train_reshaped = X_train_scaled.reshape((X_train_scaled.shape[0], X_train_scaled.shape[1], 1))
X_test_reshaped = X_test_scaled.reshape((X_test_scaled.shape[0], X_test_scaled.shape[1], 1))

Figure 12: Data splitting

5.5 Model Implementation

5.5.1 Gated Recurrent Unit

GRU model

M def build_gru_model(input_shape, num_classes, activation, loss):
model = Sequential()
model.add(GRU(128, input_shape=input_shape, return_sequences=True))
model.add(GRU(64))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation=activation))
model.compile(optimizer="adam’', loss=loss, metrics=['accuracy'])
return model

M # Build and train GRU model
gru_model = build_gru_model((X_train_reshaped.shape[1], 1), num_classes, activation, loss)
early stopping = EarlyStopping(monitor=‘val loss', patience=3, restore_best weights=True)

start_time = time.time()
gru_history = gru_model.fit(X_train_reshaped, y_train, epochs=5, batch_size=32, validation_split=0.2, callbacks=[early_stoppi
gru_time = time.time() - start_time

D:\anaconda\Lib\site-packages\keras\src\layers\rnn\rnn.py:204: UserWarning: Do not pass an ~input_shape” /" input_dim~ argumen
t to a layer. When using Sequential models, prefer using an " Input(shape)” object as the first layer in the model instead.
super()._ init__ (**kwargs)

Epoch 1/5
2463/2463 35s 12ms/step - accuracy: ©0.9061 - loss: 0.3506 - val_accuracy: ©.9747 - val_loss: 0.0888
Epoch 2/5
2463/2463 30s 12ms/step - accuracy: 0.9712 - loss: ©0.0935 - val_accuracy: 0.9445 - val_loss: 0.0927
Epoch 3/5
2463/2463 29s 12ms/step - accuracy: 0.9798 - loss: 0.0667 - val_accuracy: 0.9828 - val_loss: 0.0527
Epoch 4/5
2463/2463 30s 12ms/step - accuracy: 0.9820 - loss: 0.0599 - val_accuracy: ©.9858 - val_loss: 0.0426
Epoch 5/5
2463/2463 30s 12ms/step - accuracy: 0.9840 - loss: ©0.0524 - val_accuracy: 0.9878 - val_loss: 0.0396

Figure 13: Model Implementation

Evaluation of GRU model

gru_loss, gru_accuracy = gru model.evaluate(X test reshaped, y test)
print(f'GRU Test Accuracy: {gru_accuracy:.4f}")

print(f'GRU Training Time: {gru time:.2f} seconds')

770/770 4s 5ms/step - accuracy: 0.9878 - loss: 0.0434
GRU Test Accuracy: 0.9870
GRU Training Time: 154.27 seconds

Predictions
gru_y pred = gru_model.predict(X_test reshaped)
gru_y_pred_classes = np.argmax(gru_y_pred, axis=1)

Evaluation metrics

gru_precision = precision_score(y_test, gru_y_pred_classes, average='weighted"')
gru recall = recall score(y_test, gru y pred classes, average='weighted"')
gru f1 = f1_score(y_test, gru y pred classes, average='weighted')
gru_conf_matrix = confusion_matrix(y_test, gru_y_ pred_classes)

print(f'GRU Precision: {gru_precision:.4f}")
print(f'GRU Recall: {gru_recall:.4f}")

print(f'GRU F1-Score: {gru_f1:.4f}')

print(f'GRU Confusion Matrix:\n{gru_conf_matrix}')

GRU Precision: 0.9862
GRU Recall: 0.9862

GRU F1-Score: 0.9859
GRU Confusion Matrix:

[[1484 0 0 0 0 0 2 1 6 o 84 1]
[2 71 0 0) 0 0 e 26 0 1 0]
[o 0 18897 0 0 0 0 0 0 0 0 0]
[1 1 0 867 0 1 0 0 0 0 1 0]
[6 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 2 0 0 0 0 0 0]
[o 0 0 0 0 o 391 0 2 0 0 0]
[1 0 0 4) 0 o0 215 0 0 0 0]
[13 0 0 0 0 o 20 @ 453) 3 0]
[3 0 0 0 0 0 0 0 o 381 0 0]
[120 0 0 0 0 0) o 11 0 1494 0]
[6 1 1 0 0 2 1 1 5 o 12 29]]

Figure 14: Evaluation

5.5.2 Bidirectional GRU

BIGRU model

M def build_bi_gru_model(input_shape, num_classes, activation, loss):
model = Sequential()
model.add(Bidirectional (GRU(128, return_sequences=True), input_shape=input_shape))
model.add(Bidirectional(GRU(64)))
model .add(Dropout(0.5))
model.add(Dense(num_classes, activation=activation))
model.compile(optimizer="adam", loss=loss, metrics=['accuracy'])
return model

M # Build and train BiGRU model
bi_gru_model = build_bi_gru_model((X_train_reshaped.shape[1], 1), num_classes, activation, loss)
early stopping = EarlyStopping(monitor='val loss', patience=3, restore_best weights=True)

start_time = time.time()

bi_gru_history = bi_gru_model.fit(X_train_reshaped, y_train, epochs=5, batch_size=32, validation_split=0.2,
callbacks=[early_stopping])

bi_gru_time = time.time() - start_time

Epoch 1/5

D:\anaconda\Lib\site-packages\keras\src\layers\rnn\bidirectional.py:107: UserWarning: Do not pass an ~input_shape”/ input_di
m~ argument to a layer. When using Sequential models, prefer using an ~Input(shape)™ object as the first layer in the model
instead.

super()._ init_ (**kwargs)

2463/2463 —————————————— 28s 10ms/step - accuracy: 0.9319 - loss: ©.2545 - val_accuracy: 0.9826 - val_loss: 0.0625
Epoch 2/5
2463/2463 —————————————— 23s 9ms/step - accuracy: 0.9797 - loss: 0.0677 - val_accuracy: 0.9853 - val_loss: 0.0474
Epoch 3/5
2463/2463 —————————— 23s 10ms/step - accuracy: 0.9824 - loss: 0.0549 - val_accuracy: 0.9777 - val_loss: 0.0631
Epoch 4/5
2463/2463 ———————————— 23s 9ms/step - accuracy: 0.9845 - loss: 0.0497 - val_accuracy: 0.9870 - val_loss: 0.0361
Epoch 5/5
2463/2463 ——————— 23s 9ms/step - accuracy: 0.9849 - loss: 0.0456 - val_accuracy: 0.9704 - val_loss: 0.0696

Figure 15: Model Implementation

Evaluation of BiGRU model

bi_gru_loss, bi_gru_accuracy = bi_gru_model.evaluate(X_test reshaped, y test)
print(f'BiGRU Test Accuracy: {bi_gru_accuracy:.4f}")

print(f'BiGRU Training Time: {bi_gru_ time:.2f} seconds"')

770/770 2s 3ms/step - accuracy: ©0.9868 - loss: 0.0399
BiGRU Test Accuracy: 0.9861
BiGRU Training Time: 121.44 seconds

Predictions
bi gru_y pred = bi_gru model.predict(X_test_reshaped)
bi gru y pred classes = np.argmax(bi gru y pred, axis=1)

Evaluation metrics

bi_gru precision = precision_score(y_test, bi gru y pred classes, average='weighted")
bi_gru_recall = recall score(y_test, bi_gru y pred classes, average='weighted"’)
bi_gru f1 = f1_score(y_test, bi_gru_ y pred_classes, average='weighted"')
bi_gru_conf_matrix = confusion_matrix(y_test, bi_gru_ y pred_classes)

print(f'BiGRU Precision: {bi_gru_precision:.4f}")
print(f'BiGRU Recall: {bi_gru recall:.4f}")
print(f'BiGRU F1-Score: {bi_gru f1:.4f}")

print(f'BiGRU Confusion Matrix:\n{bi_gru_conf_matrix}')

BiGRU Precision: ©0.9861
BiGRU Recall: 0.9861

BiGRU F1-Score: 0.9860
BiGRU Confusion Matrix:

[[1482 6 2 1 0 0 1 0 1 @ 85 0]
[o 73 0 0 0 0 0 0 26 0 i 0]
[o 0 18897 0 0 0 0 0 0 0) 0]
[1 1 0 867 0 0 0 0 0 0 0 2]
[2) 0 0 4 0 0 0) 0 0 0]
[1 0 0 0 0 2 0 0 0 0 0 0]
[o 0 0 0 0 0 386 0 4 0 3 0]
[o 1 0 3 0 0 0 216) 0 0 0]
[10 0 0 0 0 0 0 0 460 o 18 1]
[3 0 0 0 0 0 0 0 o 381 0 0]
[138 3 0 0 0 0 0 0 0 0 1483 1]
[5 0 1 2 0 0 0 0 5 e 14 31]]

Figure 16: Evaluation

5.5.3 Convolutional gated recurrent unit

ConvGRU model

M def build_conv_gru_model(input_shape, num_classes, activation, loss):
model = Sequential()
model.add(ConviD(filters=64, kernel size=3, padding='same', activation='relu', input_shape=input_shape))
model.add(MaxPoolinglD(pool size=2))
model.add(GRU(128, return_sequences=True))
model.add(GRU(64))
model. add(Dropout(@.5))
model.add(Dense(num_classes, activation=activation))
model.compile(optimizer="adam", loss=loss, metrics=["accuracy’'])
return model

M # Build and train ConvGRU model
conv_gru_model = build conv_gru_model((X_train_reshaped.shape[1], 1), num_classes, activation, loss)
early stopping = EarlyStopping(monitor="val loss', patience=3, restore best weights=True)

start_time = time.time()

conv_gru_history = conv_gru model.fit(X train_reshaped, y train, epochs=5, batch size=32, validation split=e.2,
callbacks=[early stopping])

conv_gru_time = time.time() - start time

Epoch 1/5

D:\anaconda\Lib\site-packages\keras\src\layers\convolutional\base_conv.py:107: UserWarning: Do not pass an ~input_shape’/ in
put_dim™ argument to a layer. When using Sequential models, prefer using an ~Input(shape)™ object as the first layer in the
model instead.

super().__init_ (activity regularizer=activity_regularizer, **kwargs)

2463/2463 ————— 14s 5ms/step - accuracy: ©.9136 - loss: ©.3439 - val_accuracy: 0.9784 - val_loss: 0.0730
Epoch 2/5
2463/2463 —————————————— 11s 4ms/step - accuracy: 0.9754 - loss: ©0.0780 - val_accuracy: 0.9832 - val _loss: 0.0502
Epoch 3/5
2463/2463 —————— 11s 4ms/step - accuracy: 0.9815 - loss: ©0.0603 - val_accuracy: ©.9859 - val _loss: 0.0478
Epoch 4/5
2463/2463 —————————————— 11s 4ms/step - accuracy: ©.9831 - loss: ©0.0532 - val_accuracy: 0.9854 - val loss: 0.0426
Epoch 5/5
2463/2463 ————— 11s 5ms/step - accuracy: ©.9852 - loss: ©0.0491 - val_accuracy: 0.9850 - val _loss: 0.0428

Figure 17: Model Implementation

Evaluation of ConvGRU model

conv_gru_loss, conv_gru_accuracy = conv_gru model.evaluate(X_test reshaped, y_test)
print(f'ConvGRU Test Accuracy: {conv_gru_accuracy:.4f}")

print(f'ConvGRU Training Time: {conv_gru_time:.2f} seconds')

Predictions
conv_gru_y_pred = conv_gru_model.predict(X_test_reshaped)
conv_gru_y pred classes = np.argmax(conv_gru_ y pred, axis=1)

Evaluation metrics

conv_gru_precision = precision_score(y_test, conv_gru_y pred_classes, average='weighted")
conv_gru_recall = recall_score(y_test, conv_gru_y pred_classes, average='weighted')
conv_gru_f1 = f1_score(y_test, conv_gru_y pred_classes, average='weighted")
conv_gru_conf_matrix = confusion_matrix(y_test, conv_gru_y pred_classes)

print(f'ConvGRU Precision: {conv_gru_precision:.4f}")
print(f'ConvGRU Recall: {conv_gru_recall:.4f}")
print(f'ConvGRU F1-Score: {conv_gru_f1:.4f}")
print(f'ConvGRU Confusion Matrix:\n{conv_gru_conf_matrix}")

10

ConvGRU Precision: ©.9861
ConvGRU Recall: 0.9859

ConvGRU F1-Score: 0.9858
ConvGRU Confusion Matrix:

[[1442 1 0) 1 0 1 1 19 o 111 2]
[2 97 0 0) 0 0 0 0 0 1 0]
[o 0 18897 0 0 0 0 0 0 0) 0]
[1 1 o 868) 0) 0 0) al 0]
F 2 0) 0 4))) 0) 0 0]
[1) 0 0) 2 0 0 0) 0 0]
[o 0 0 0 0 0 387 0 6 0 0 0]
[1 0 0 3 0) 0 216 0 0 0 0]
[10 24 0 0) 0 0 0 452 0 3 0]
[3 0) 0 0 0)) o 381 0 0]
[115 1) 0) 0 0 o 13 0 149 0]
[3 1 1 0) 0) 1 6 o 12 34]]

Figure 18: Evaluation

6 Final Evaluation

from sklearn.metrics import precision_score, recall_score, fl1_score

def evaluate_model(model, X_test, y_test):
y_pred = model.predict(X_test)
y_pred_classes = np.argmax(y_pred, axis=1)

accuracy = np.mean(y_pred_classes == y_test)
precision = precision_score(y_test, y pred_classes, average='weighted')
recall = recall_score(y_test, y pred_classes, average='weighted")

fl = f1_score(y_test, y_pred_classes, average='weighted’)

return accuracy, precision, recall, f1

GRU model
gru_accuracy, gru_precision, gru_recall, gru fl = evaluate model(gru model, X test reshaped, y test)

BiGRU model
bi_gru_accuracy, bi_gru_precision, bi_gru_recall, bi_gru_f1 = evaluate_model(bi_gru_model, X_test_reshaped, y_test)

ConvGRU model
conv_gru_accuracy, conv_gru_precision, conv_gru_recall, conv_gru_f1l = evaluate_model(conv_gru_model, X_test_reshaped, y_test)

11

models = ['GRU', 'BiGRU', 'ConvGRU']

accuracies = [gru_accuracy, bi_gru_accuracy, conv_gru_accuracy]
precisions = [gru_precision, bi_gru_precision, conv_gru_precision]
recalls = [gru_recall, bi_gru_recall, conv_gru_recall]

f1_scores = [gru_f1, bi_gru f1, conv_gru_f1]

x = np.arange(len(models))
width = 0.2

fig, ax = plt.subplots(figsize=(10, 6))

rectsl = ax.bar(x - width*1.5, accuracies, width, label='Accuracy')
rects2 = ax.bar(x - width/2, precisions, width, label='Precision")
rects3 = ax.bar(x + width/2, recalls, width, label='Recall")

rects4 = ax.bar(x + width*1.5, f1 scores, width, label='F1-Score")

ax.set_xlabel('Models")

ax.set_ylabel('Scores")

ax.set_title('Comparison of Evaluation Metrics for Different Models"')
ax.set_xticks(x)

ax.set_xticklabels(models)

ax.legend()

Out[47]: <matplotlib.legend.Legend at 0x200da239510>

Comparison of Evaluation Metrics for Different Models

1.0 1

0.8

0.6

Scores

0.4

0.2 A

0.0 -

GRU BIGRU
Models

Figure 23: Final Evaluation.

References

Sharmila, B. S., & Nagapadma, R. (2023). RT-10T2022. UCI Machine Learning.

https://doi.org/10.24432 /C5P338. Available
https://archive.ics.uci.edu/dataset/942 /rt-iot2022.

12

B Accuracy
I Precision
BN Recall

HE F1-Score

ConvGRU

at:

https://doi.org/10.24432/C5P338

