~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Sahil Mulani
Student ID: x22234144

School of Computing
National College of Ireland

Supervisor: Paul Stynes

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sahil Mulani
Student ID: x22234144
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Paul Stynes
Submission Due Date: 12/09/2024
Project Title: Configuration Manual
Word Count: 744
Page Count: [13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sahil Mulani

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sahil Mulani
x22234144

The configuration Manual will provide a step by step guidance of the project in terms
of installation, implementation, development and deployment for the research project of
”Comparative performance analysis of Machine Learning with Quantum Machine Learn-
ing for breast cancer prediction”.

1 System Requirements :

1.1 Hardware Requirements :
e Processor : Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz.
e Installed RAM : 16.0 GB (15.9 GB usable)
e System type : 64-bit operating system, x64-based processor
e Operation System : Windows 11 , 23H2 (Version), 22631.3880 (OS build)

1.2 Software Requirements :
e Python : Version Python 3.7 or higher is recommended.

e Jupyter Notebook(Optional but Recommended) : Provides an interactive environ-
ment to develop and visualize the plots.

e IDE : Visual Studio Code or Pycharm can be used to write and execute Python
scripts

e Dependencies Management (Optional) : Virtualenv or Conda can be used to man-
age dependencies and maintain an isolated environment for the project.

2 Runtime Installation Pre-requisites

2.1 Jupyter Notebooks Local Installation

Installation of the Anaconda Python distribution is recommended as it is the easiest
way to set up JupyterLab. Please refer to https://www.anaconda.com/products/
individual for step-by-step guidance on installing Anaconda. For information on in-
stalling JupyterLab as a standalone application, visit https://jupyter.org/install.
To access IBM quantum processing backends locally, an IBM quantum account and
a personal access API token are required. For more information, please visit https:
//quantum-computing.ibm.com/| for further information.

1

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://jupyter.org/install
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/

2.2 Jupyter Notebooks using Google Colaboratory

Jupyter Notebooks can be accessed using the Google Colaboratory. Please visit https:
//colab.google/| for further information on setting up Jupyter notebooks on Google
Colab. Even while executing the code on Jupyter notebooks via Google Colab, an
IBM quantum account and a personal access API token are required to access the IBM
quantum processing backends. Please visit https://quantum-computing.ibm.com/ for
further information.

3 Data Preparation

In this research, the Breast Cancer UCI Machine Learning dataset E| was used.

df = pd.read_csv('data.csv’)

df=df.dropna(axis=1)
df['diagnosis'].replace({'M': 1, 'B":

Figure 1: Data Preparation

As shown in Figure [1] categorical values in the ’diagnosis’ column are being replaced
by numerical values.

X_train, X_test, Y_train, Y_test = train_test_split(X_stat, Y, test_size=8.25, random_state=42)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Figure 2: Splitting the Data

As shown in Flgure 2] the data set is divided into training and testing sets using the
train test_split function. X_stat. The test_size=0.25 parameter indicates that 25%
of the data will be used for testing, and random_state=42 ensures that the split is repro-
ducible. The features in the training and testing sets are scaled using StandardScaler.
Figure |3 shows a implementation code for feature selection in which a t-test is performed
for each feature to determine if there is a statistically significant difference between the
means of benign and malignant cases.

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

https://colab.google/
https://colab.google/
https://quantum-computing.ibm.com/
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

t_test_results = []

feature range(X_stat.shape[1]):
benign_values = X_stat[Y == @, feature]
malignant_values = X_stat[Y == 1, feature]

t_stat, p_value = ttest_ind(benign_values, malignant_values)

t_test_results.append([t_stat, p_value])

t_test_results = np.array(t_test_results)

significance_level = 0.05
significant_features = [i i, (_, p_value) enumerate(t_test_results) p_value < significance_level]

Figure 3: Feature Selection

4 Implementation Codes for Machine Learning Mod-
els

In this research project, we have applied four machine learning models - Logistic Regres-
sion, Random Forest, SVM and KNN.

.sklearn linear model LogisticRegression
RandomForestClassifier

KNeighborsClassifier

Figure 4: Importing the Machine Learning Models

Figure |4 shows the libraries imported from sklearn to implement all the machine
learning models.

train_models(X_train_selected, Y_train):

models = []

log = LogisticRegression(random_state=42)
log.fit(X_train_selected, Y_train)
models.append(log)

forest = RandomForestClassifier(n_estimators=1@, criterion="entropy', random_state=42)
forest.fit(X_train_selected, Y_train)
models.append(forest)

svc_model = SVC(kernel='linear’, random_state=42)
svc_model.fit(X_train_selected, Y_train)
models . append(svc_model)

knn = KNeighborsClassifier(n_neighbors=5, metric='minkowski®, p=2)
knn.fit(X_train_selected, Y_train)
models . append(knn)

models

Figure 5: Training Machine Learning Models

As shown in Figure 5], the train models() which consists of implementation code for
training all the machine learning models.

sklearn.metrics confusion_matrix
i range(len(model)):
print(‘model:’,i)
cm=confusion matrix(Y test,model[i].predict(X test selected))
tp=cm[@][@]
tn=cm[1][1]
fn=cm[1][@]
fp=cm[@][1]

print(cm)
print('Testing Accuracy: ', (tp+tn)/(tp+tn+fn+fp))
print()

Figure 6: Evaluating the Models

Figure 6] shows the implementation code for evluating the performance of the machine
learning models.

5 Implementation Code for the Deep Learning Mod-
els

In this research project, we have applied four deep learning models - artificial neural
network, convolutional neural network, recurrent neural network, and multiple layer per-
ceptron.

5.1 Implementation Code of ANN

te E layers
tensorflow. keras.callbacks EarlyStopping

.Sequential([

24 ,activation="relu’
8,activatio
16,activation="relu’
64,activation="relu’
16,activation="relu’
8,activation="relu’),
1,activation="sigmoid"

D
ANN.compile(loss = 'binary crossentropy',optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005),metrics=["accuracy'])
early=EarlyStopping(monitor="val_loss',mode="min',patience=20)

ANN.fit(X_train, Y_train, epochs=10@, validation_data=(X_test,Y_test),callbacks=[early])

Figure 7: Implementation Code of ANN

Figure [7] shows the implementation code for the artificial neural network.

5.2 Implementation Code of CNN

keras. tf keras.keras.layers Conv2D, MaxPooling2D
Conv1D

epochs = 16@
model = Sequential()
model.add(ConvlD(filters=32, kernel size=2, activation='relu’, input_shape = (30,1)))

model. add(BatchNormalization())
model . add (Dropout(©.2))

model.add(ConvlD(filters=64, kernel_size=2, activation='relu'))
model . add(BatchNormalization())
model. add(Dropout(©.5))

model .add(Flatten())

model.add(Dense(64, activation='relu'))
model . add(Dropout(@8.5))
model.add(Dense(1, activation="sigmoid'))

Figure 8: Implementation code of CNN
Figure [7] shows the implementation code for the convolutional neural network.

tensorflow.keras.optimizers

model.compile(optimizer=Adam(learning_rate=0.00005),
loss="binary_crossentropy’,
metrics=["accuracy’])

CNN = model.fit(X_train, Y_train, epochs=epochs, validation_data=(X_test, Y_test), verbose=1)

Figure 9: Compilation of CNN

Figure [9 shows the compilation and evaluation code for the convolutional neural net-
work.

5.3 Implementation Code of RNN

time_steps=X_ train.shape[1]
X_train=X_train.reshape(-1, time_steps, 1)
X test=X test.reshape(-1, time steps, 1)

y_train=y train.astype(np.float32).reshape(-1, 1)
y_test=y test.astype(np.float32).reshape(-1, 1)

Figure 10: Data Preparation for RNN

Figure shows the implementation code of the data preparation for recurrent neural
network and figure [11] shows model implementation and evaluation code.

model=Sequential()
model .add(SimpleRNN(64,activation="relu’, input_shape=(time_steps, 1)))
model.add(Dense(1,activation="sigmoid"))

model.compile(optimizer="adam', loss='binary crossentropy', metrics=["accuracy’
2 I — J 2 74

model.fit(X train, y train, epochs=100, batch size=32, validation split=0.1)

loss, accuracy=model.evaluate(X test,y test)
print(f'Test accuracy: {accuracy}’)

Figure 11: Implementation Code of RNN

5.4 Implementation Code for MLP

StandardScaler
Sequential
Dense

model = Sequential()

model.add(Dense(8, input_dim=X_train.shape[1], activation="selu'))
model.add(Dense(16, activation='selu'))

model.add(Dense(32, activation="selu"))

model.add(Dense(8, activation="relu'))

model.add(Dense(2, activation='relu’))

model.add(Dense(1, activation="sigmoid"))

Figure 12: Implementation of Multilayer Perceptron

model.compile(optimizer="adam', loss="binary_crossentropy’, metrics=["accuracy’])
MLP = model.fit(X_train, Y_train, epochs=180, batch_size=1@, validation_split=0.2, verbose=1)

loss, accuracy = model.evaluate(X_test, Y_test, verbose=0)

1%

print(f'Test Accuracy: {accuracy*10@ }%

Figure 13: Evaluation of MLP

Figure shows the implementation code for recurrent neural network and figure
shows the model evaluation code.

6 Implementation Code of Quantum Machine Mod-
els

In this research project, we have applied two quantum machine learning models, the
variable quantum classifier and the quantum support vector.

As shown in figure [I4] the giskit machine learning library needs to be imported
to install the necessary dependencies required to execute the quantum machine learning
models.

pip install qiskit pylatexenc qiskit _machine_learning

Figure 14: Importing Qiskit Machine Learning

6.1 Implementation Code of Variational Quantum Classifier

ZZFeatureMap
num_features = features_dataset.shape[1l]

feature map = ZZFeatureMap(feature dimension=num_features, reps=1)
feature_map.decompose().draw(output="mpl™)

Figure 15: Implementation code of ZZFeatureMap

Figure [15| shows the implementation code for data encoding using the ZZFeatureMap.

PauliFeatureMap

num_features = features_dataset.shape[1]

feature_map = PauliFeatureMap(feature_dimension=num_features, reps=1)
feature_map.decompose() .draw(output="mpl™)

Figure 16: Implementation code of PauliFeatureMap

Figure shows the implementation code for data encoding using the PauliFea-
tureMap.

ZFeatureMap

num_features = features_dataset.shape[1]

feature _map = ZFeatureMap(feature _dimension=num_features, reps=1)
feature_map.decompose() .draw(output="mpl")

Figure 17: Implementation code of ZFeatureMap
Figure |17 shows the implementation code for data encoding using the ZFeatureMap.

EfficientSuU2

ansatz = EfficientSU2(num_qubits=num features, reps=3)
ansatz.decompose().draw(output="mpl™)

Figure 18: Implementation Code of EfficentSU2 ansatz

RealAmplitudes

ansatz = RealAmplitudes(num_qubits=num_features, reps=3)

ansatz.decompose().draw(output="mpl")

Figure 19: Implementation Code of Real Amplitudes ansatz

10

COBYLA

optimizer = COBYLA(maxiter=100)

Sampler

sampler = Sampler()

Figure 20: Implementation code of Optimizer and Sampler

matplotlib

objective func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

callback graph(weights, obj_func_eval):

clear output(wait=)

objective func_vals.append(obj func_eval)

plt.title("Objective function value against iteration™)
plt.xlabel("Iteration™)

plt.ylabel("Objective function value")
plt.plot(range(len(objective func_vals)), objective func_vals)
plt.show()

Figure 21: Implementation Code of Callback Graph

11

vgc = VQC(
sampler=sampler,
feature_map=feature_map,
ansatz=ansatz,
optimizer=optimizer,
callback=callback_graph,

objective_func_vals = []

train_features = np.array(train_features)
train_labels = np.array(train_labels)
start = time.time()
vgc.fit(train_features, train_labels)

elapsed = time.time() - start

print(f"Training time: {round(elapsed)} seconds™)

Figure 22: Implementation Code of Varitational Quantum Classifer
6.2 Implementation of Quantum Support vector
ZZFeatureMap

q ki'___t__:[r_]ac ne ke____r_:neJ:_g FidelityQuantumKernel

algorithm_globals.random _seed = 12345

feature_map = ZZFeatureMap(feature_dimension=num_qubits, reps=1)
feature_map.decompose() .draw(output="mpl™)

gkernel = FidelityQuantumKernel(feature_map=feature_map)

Figure 23: Encoding the Data & Generating the Fidelity Quantum Kernel

12

PegasosQSVC
pegasos_gsvc = PegasosQSVC(quantum_kernel=gkernel, C=C, num_steps=tau)
pegasos_gsvc.fit(train_features, train_labels)

pegasos_score_train = pegasos_gsvc.score(train_features, train_labels)
print(f“QSVC Training Accuracy: {pegasos_score_train}")

pegasos_score = pegasos_gsvc.score(test_features, test_labels)
print(f"QSVC Testing Accuracy: {pegasos score}")

Figure 24: Implementation Code of Quantum Support Vector Classifier

References

13

	System Requirements :
	Hardware Requirements :
	Software Requirements :

	Runtime Installation Pre-requisites
	Jupyter Notebooks Local Installation
	Jupyter Notebooks using Google Colaboratory

	Data Preparation
	Implementation Codes for Machine Learning Models
	Implementation Code for the Deep Learning Models
	Implementation Code of ANN
	Implementation Code of CNN
	Implementation Code of RNN
	Implementation Code for MLP

	Implementation Code of Quantum Machine Models
	Implementation Code of Variational Quantum Classifier
	Implementation of Quantum Support vector

