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Configuration Manual

Sahil Mulani
x22234144

The configuration Manual will provide a step by step guidance of the project in terms
of installation, implementation, development and deployment for the research project of
”Comparative performance analysis of Machine Learning with Quantum Machine Learn-
ing for breast cancer prediction”.

1 System Requirements :

1.1 Hardware Requirements :
e Processor : Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz.
e Installed RAM : 16.0 GB (15.9 GB usable)
e System type : 64-bit operating system, x64-based processor
e Operation System : Windows 11 , 23H2 (Version), 22631.3880 (OS build)

1.2 Software Requirements :
e Python : Version Python 3.7 or higher is recommended.

e Jupyter Notebook(Optional but Recommended) : Provides an interactive environ-
ment to develop and visualize the plots.

e IDE : Visual Studio Code or Pycharm can be used to write and execute Python
scripts

e Dependencies Management (Optional) : Virtualenv or Conda can be used to man-
age dependencies and maintain an isolated environment for the project.

2 Runtime Installation Pre-requisites

2.1 Jupyter Notebooks Local Installation

Installation of the Anaconda Python distribution is recommended as it is the easiest
way to set up JupyterLab. Please refer to https://www.anaconda.com/products/
individual for step-by-step guidance on installing Anaconda. For information on in-
stalling JupyterLab as a standalone application, visit https://jupyter.org/install.
To access IBM quantum processing backends locally, an IBM quantum account and
a personal access API token are required. For more information, please visit https:
//quantum-computing.ibm.com/| for further information.
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2.2 Jupyter Notebooks using Google Colaboratory

Jupyter Notebooks can be accessed using the Google Colaboratory. Please visit https:
//colab.google/| for further information on setting up Jupyter notebooks on Google
Colab. Even while executing the code on Jupyter notebooks via Google Colab, an
IBM quantum account and a personal access API token are required to access the IBM
quantum processing backends. Please visit https://quantum-computing.ibm.com/ for
further information.

3 Data Preparation

In this research, the Breast Cancer UCI Machine Learning dataset E| was used.

df = pd.read_csv('data.csv’)

df=df.dropna(axis=1)
df[ 'diagnosis'].replace({'M': 1, 'B":

Figure 1: Data Preparation

As shown in Figure [1] categorical values in the ’diagnosis’ column are being replaced
by numerical values.

X_train, X_test, Y_train, Y_test = train_test_split(X_stat, Y, test_size=8.25, random_state=42)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Figure 2: Splitting the Data

As shown in Flgure 2] the data set is divided into training and testing sets using the
train test_split function. X_stat. The test_size=0.25 parameter indicates that 25%
of the data will be used for testing, and random_state=42 ensures that the split is repro-
ducible. The features in the training and testing sets are scaled using StandardScaler.
Figure |3 shows a implementation code for feature selection in which a t-test is performed
for each feature to determine if there is a statistically significant difference between the
means of benign and malignant cases.

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
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t_test_results = []

feature range(X_stat.shape[1]):
benign_values = X_stat[Y == @, feature]
malignant_values = X_stat[Y == 1, feature]

t_stat, p_value = ttest_ind(benign_values, malignant_values)

t_test_results.append([t_stat, p_value])

t_test_results = np.array(t_test_results)

significance_level = 0.05
significant_features = [i i, (_, p_value) enumerate(t_test_results) p_value < significance_level]

Figure 3: Feature Selection

4 Implementation Codes for Machine Learning Mod-
els

In this research project, we have applied four machine learning models - Logistic Regres-
sion, Random Forest, SVM and KNN.

.sklearn linear model LogisticRegression
RandomForestClassifier

KNeighborsClassifier

Figure 4: Importing the Machine Learning Models

Figure |4 shows the libraries imported from sklearn to implement all the machine
learning models.



train_models(X_train_selected, Y_train):

models = []

log = LogisticRegression(random_state=42)
log.fit(X_train_selected, Y_train)
models.append(log)

forest = RandomForestClassifier(n_estimators=1@, criterion="entropy', random_state=42)
forest.fit(X_train_selected, Y_train)
models.append(forest)

svc_model = SVC(kernel='linear’, random_state=42)
svc_model.fit(X_train_selected, Y_train)
models . append(svc_model)

knn = KNeighborsClassifier(n_neighbors=5, metric='minkowski®, p=2)
knn.fit(X_train_selected, Y_train)
models . append(knn)

models

Figure 5: Training Machine Learning Models

As shown in Figure 5], the train models() which consists of implementation code for
training all the machine learning models.

sklearn.metrics confusion_matrix
i range(len(model)):
print( ‘model:’,i)
cm=confusion matrix(Y test,model[i].predict(X test selected))
tp=cm[@][@]
tn=cm[1][1]
fn=cm[1][@]
fp=cm[@][1]

print(cm)
print('Testing Accuracy: ', (tp+tn)/(tp+tn+fn+fp))
print()

Figure 6: Evaluating the Models

Figure 6] shows the implementation code for evluating the performance of the machine
learning models.



5 Implementation Code for the Deep Learning Mod-
els

In this research project, we have applied four deep learning models - artificial neural
network, convolutional neural network, recurrent neural network, and multiple layer per-
ceptron.

5.1 Implementation Code of ANN

te E layers
tensorflow. keras.callbacks EarlyStopping

.Sequential([

24 ,activation="relu’
8,activatio
16,activation="relu’
64,activation="relu’
16,activation="relu’
8,activation="relu’),
1,activation="sigmoid"

D
ANN.compile(loss = 'binary crossentropy',optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005),metrics=["accuracy'])
early=EarlyStopping(monitor="val_loss',mode="min',patience=20)

ANN.fit(X_train, Y_train, epochs=10@, validation_data=(X_test,Y_test),callbacks=[early])

Figure 7: Implementation Code of ANN

Figure [7] shows the implementation code for the artificial neural network.



5.2 Implementation Code of CNN

keras. tf keras.keras.layers Conv2D, MaxPooling2D
Conv1D

epochs = 16@
model = Sequential()
model.add(ConvlD(filters=32, kernel size=2, activation='relu’, input_shape = (30,1)))

model. add(BatchNormalization())
model . add (Dropout(©.2))

model.add(ConvlD(filters=64, kernel_size=2, activation='relu'))
model . add(BatchNormalization())
model. add(Dropout(©.5))

model .add(Flatten())

model.add(Dense(64, activation='relu'))
model . add(Dropout(@8.5))
model.add(Dense(1, activation="sigmoid'))

Figure 8: Implementation code of CNN
Figure [7] shows the implementation code for the convolutional neural network.

tensorflow.keras.optimizers

model.compile(optimizer=Adam(learning_rate=0.00005),
loss="binary_crossentropy’,
metrics=["accuracy’])

CNN = model.fit(X_train, Y_train, epochs=epochs, validation_data=(X_test, Y_test), verbose=1)

Figure 9: Compilation of CNN

Figure [9 shows the compilation and evaluation code for the convolutional neural net-
work.



5.3 Implementation Code of RNN

time_steps=X_ train.shape[1]
X_train=X_train.reshape(-1, time_steps, 1)
X test=X test.reshape(-1, time steps, 1)

y_train=y train.astype(np.float32).reshape(-1, 1)
y_test=y test.astype(np.float32).reshape(-1, 1)

Figure 10: Data Preparation for RNN

Figure shows the implementation code of the data preparation for recurrent neural
network and figure [11] shows model implementation and evaluation code.

model=Sequential()
model .add(SimpleRNN(64,activation="relu’, input_shape=(time_steps, 1)))
model.add(Dense(1,activation="sigmoid"))

model.compile(optimizer="adam', loss='binary crossentropy', metrics=["accuracy’
2 I — J 2 74

model.fit(X train, y train, epochs=100, batch size=32, validation split=0.1)

loss, accuracy=model.evaluate(X test,y test)
print(f'Test accuracy: {accuracy}’)

Figure 11: Implementation Code of RNN



5.4 Implementation Code for MLP

StandardScaler
Sequential
Dense

model = Sequential()

model.add(Dense(8, input_dim=X_train.shape[1], activation="selu'))
model.add(Dense(16, activation='selu'))

model.add(Dense(32, activation="selu"))

model.add(Dense(8, activation="relu'))

model.add(Dense(2, activation='relu’))

model.add(Dense(1, activation="sigmoid"))

Figure 12: Implementation of Multilayer Perceptron

model.compile(optimizer="adam', loss="binary_crossentropy’, metrics=["accuracy’])
MLP = model.fit(X_train, Y_train, epochs=180, batch_size=1@, validation_split=0.2, verbose=1)

loss, accuracy = model.evaluate(X_test, Y_test, verbose=0)

1%

print(f'Test Accuracy: {accuracy*10@ }%

Figure 13: Evaluation of MLP

Figure shows the implementation code for recurrent neural network and figure
shows the model evaluation code.

6 Implementation Code of Quantum Machine Mod-
els

In this research project, we have applied two quantum machine learning models, the
variable quantum classifier and the quantum support vector.

As shown in figure [I4] the giskit machine learning library needs to be imported
to install the necessary dependencies required to execute the quantum machine learning
models.



pip install qiskit pylatexenc qiskit _machine_learning

Figure 14: Importing Qiskit Machine Learning

6.1 Implementation Code of Variational Quantum Classifier

ZZFeatureMap
num_features = features_dataset.shape[1l]

feature map = ZZFeatureMap(feature dimension=num_features, reps=1)
feature_map.decompose().draw(output="mpl™)

Figure 15: Implementation code of ZZFeatureMap

Figure [15| shows the implementation code for data encoding using the ZZFeatureMap.

PauliFeatureMap

num_features = features_dataset.shape[1]

feature_map = PauliFeatureMap(feature_dimension=num_features, reps=1)
feature_map.decompose() .draw(output="mpl™)

Figure 16: Implementation code of PauliFeatureMap

Figure shows the implementation code for data encoding using the PauliFea-
tureMap.



ZFeatureMap

num_features = features_dataset.shape[1]

feature _map = ZFeatureMap(feature _dimension=num_features, reps=1)
feature_map.decompose() .draw(output="mpl")

Figure 17: Implementation code of ZFeatureMap
Figure |17 shows the implementation code for data encoding using the ZFeatureMap.

EfficientSuU2

ansatz = EfficientSU2(num_qubits=num features, reps=3)
ansatz.decompose().draw(output="mpl™)

Figure 18: Implementation Code of EfficentSU2 ansatz

RealAmplitudes

ansatz = RealAmplitudes(num_qubits=num_features, reps=3)

ansatz.decompose().draw(output="mpl")

Figure 19: Implementation Code of Real Amplitudes ansatz
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COBYLA

optimizer = COBYLA(maxiter=100)

Sampler

sampler = Sampler()

Figure 20: Implementation code of Optimizer and Sampler

matplotlib

objective func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)

callback graph(weights, obj_func_eval):

clear output(wait= )

objective func_vals.append(obj func_eval)

plt.title("Objective function value against iteration™)
plt.xlabel("Iteration™)

plt.ylabel("Objective function value")
plt.plot(range(len(objective func_vals)), objective func_vals)
plt.show()

Figure 21: Implementation Code of Callback Graph
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vgc = VQC(
sampler=sampler,
feature_map=feature_map,
ansatz=ansatz,
optimizer=optimizer,
callback=callback_graph,

objective_func_vals = []

train_features = np.array(train_features)
train_labels = np.array(train_labels)
start = time.time()
vgc.fit(train_features, train_labels)

elapsed = time.time() - start

print(f"Training time: {round(elapsed)} seconds™)

Figure 22: Implementation Code of Varitational Quantum Classifer
6.2 Implementation of Quantum Support vector
ZZFeatureMap

q ki'___t__:[r_]ac ne ke____r_:neJ:_g FidelityQuantumKernel

algorithm_globals.random _seed = 12345

feature_map = ZZFeatureMap(feature_dimension=num_qubits, reps=1)
feature_map.decompose() .draw(output="mpl™)

gkernel = FidelityQuantumKernel(feature_map=feature_map)

Figure 23: Encoding the Data & Generating the Fidelity Quantum Kernel
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PegasosQSVC
pegasos_gsvc = PegasosQSVC(quantum_kernel=gkernel, C=C, num_steps=tau)
pegasos_gsvc.fit(train_features, train_labels)

pegasos_score_train = pegasos_gsvc.score(train_features, train_labels)
print(f“QSVC Training Accuracy: {pegasos_score_train}")

pegasos_score = pegasos_gsvc.score(test_features, test_labels)
print(f"QSVC Testing Accuracy: {pegasos score}")

Figure 24: Implementation Code of Quantum Support Vector Classifier

References
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