~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Bilal Mustaq Mulani
Student ID: x22212132

School of Computing
National College of Ireland

Supervisor: Dr. Ahmed Makki

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Bilal Mustaq Mulani
Student ID: x22212132
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Dr. Ahmed Makki
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 889
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:
Bilal Mustaq Mulani
Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Bilal Mustaq Mulani
x22212132

1 Introduction

The intent of this document is to give the process that was followed during the coding
phase for the project. The hardware and software configurations are given in detail
so as to enable any future researcher reproduce the research. It includes programming
and deployment phases for making code run smoothly and the steps to be followed in
executing the code.

2 System Configuration

2.1 Hardware Configuration

@ Device specifications Copy ~

Device name LAPTOP-QG6UTUGI

Processor 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz
Installed RAM 16.0 GB (15.6 GB usable)

Device ID 80C0CA97-D558-4609-BFIC-7C6CCCB451CA
Product ID 00356-24669-34626-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection ~ Advanced system settings

mm Windows specifications Copy 2
Edition Windows 11 Home Single Language
Version 23H2
Installed on 04-09-2023
OS build 22631.3958
Experience Windows Feature Experience Pack 1000.22700.1026.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: Attention UNet Model Trends

2.2 Software Configuration

In this part, you will find all the details about the software that was used, as well as
its specifications. The right configuration of software and tools is crucial not only to

make models run smoothly but also to ensure optimal performance during training and
evaluation. In this regard, there are several subsections that will help you set up Google
Drive and Google Colab, install required libraries, and configure data.

2.2.1 Google Drive

Google Drive stores input files such as model files, historical records for training, among
others. To ease access while training, consider uploading your zipped input data file
to Google Drive while noting down its path. Besides, it is important to use the same
Google Drive account which is linked with your Google Colab Pro subscription so that
no accessing issues arise. Proper filing within Google Drive can also make it easier for it
to be integrated smoothly with Google Colab.

NOTE:You need to manually upload the file in Google Drive.

L Drive Q Search in Drive E @ ® © 0
+ New My Drive > Colab Notebooks ~ v=| 2)0 B
@ Home Type ~ || People ~ H Modified ~ ‘
» My Dri
(8 by orive Name Owner Last.. v ¥ Filesize S
»[B Computers

me 11:34 AM = : :

BB Igg-mri-segmentation

Figure 2: Google Drive File Upload

2.2.2 Google Colab

Because of GPUs being such a scarce resource, this study was carried out on a Google
Colab Pro subscription that leveraged the ‘L4 GPU’ runtime. This configuration is
sufficient for efficiently handling deep learning tasks. The following are the steps to
mount Google Drive in Google Colab, load data, and start running the code.

Change runtime type
Runtime type

Python 3 -

Hardware accelerator (%)

QO cpru O atooePu (@ LacPu (O T4GPU

QO TPUV2

Cancel Save

Figure 3: Colab Runtime Setup

2.2.3 Python 3.10

For this research, the Python version used was 3.10, and a requirements.txt file is in
the artifacts folder, which lists all dependencies needed by the environment. You need to
manually install the albumentations 0.4.6 library.

All the other packages, such as CUDA 12.2, TensorFlow 2.17.0, Keras 3.4.1, OpenCV,
scikit-learn, and matplotlib, are pre-installed. It’s just required to import them. The
requirements.txt file is in the artifacts folder, which lists all dependencies needed by
the environment.

3 Execution of Python Files

NOTE: you can only run one file at a time in Google since it is computer intensive.

3.1 Installing Libraries

Install albumentation package for data augmentation

lpip install albumentations=—0 4 &
Figure 4: Package Installation

3.2 Importing Libraries and setting up global varibles

Most of the libraries are preinstalled hence, as required importing them based on the
dependencies

unport numpy as np

impeort pandas as pd

impert plotly.graph_objects as go

import os

import cv2

from mpl_toolkits axes_grid] import ImageGrid

import matplotlib_pyplot as plt

from skimage import io

import time

impert random

import torch

umport torch.nn as nn

impert torch.nn functional as F

from torch utils data import Dataset, Datal.oader

import albumentations as A

#from albumentations pytorch import ToTensor

from sklearn model_selection import train_test_split

umport sys

from sklearn metrics import accuracy_score, precision_score, recall_score, fl_score, confusion_matrix
impeort tensorflow keras.backend as K

import tensorflow as tf

from tensorflow keras import Input

from tensorflow keras models import Model, load_model, save_model
from tensorflow keras. layers import Input. Activation, BatchNormalization, Dropout, Lambda, Conv2D, Conv2DTranspose, MaxPooling2D, concatenate,add
from tensorflow keras optimizers import Adam

from tensorflow keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow keras preprocessing.image import ImageDataGenerator
impeort pickle

Figure 5: Import Libraries

Setting up configuration parameters or variables

+ Setting Global Varibles

 =3etrandom sead for reproducbility
rzndomm_sesd = 2312
torch meemal_zeadi{random ssad)
iorch coda marmal sesd{randam_s==d)
torch ooda marmal sesd zll{random s==d) # for pmitiple GPLU:
np randoen seadiTandom_seed)
randnam sead{random_seed)
torch backends oodnn deterministic = Trus
torch backends codnn benchmark = False

=imazs Styling
pli.siyle u=e"dark_backsroumd")

=input file parmeters

BARE BATH="/confent |5z-mori-zesmenation”

BALE 1EN =1sn/BASE DATH}+45 = 45 iz patient po-H-patisnt_no die to file stucure
END LEN=4

END MASE LEN=0

MG BIZE = 1546

Z3ettinz up GAU
davice = torch devica"nuda® if tarch onda is_awailablal) alz= “cpu”)
primi{ Processar is' davice]

=Anzmentatan variables
PATCH SIZE =136

tremefiormes = A Composs(]
A Resiza(width=BATCH_EIZF, heisht=RATCH_3IFE, p=1.0),
A HorizontaIFlip{p={i 3],
A Vertical Flip(p={. 5],
A BandomPoeistlip=0 3],
A Transpoze(p={ 3],
A ShiftScaleRotatelshift linadt=0 01, scala Hmit=0 04, mtate lmi={ p=023),
A Normalize(p=1.00,
= ToTemsor),
]. additonal ferzet—{'mazk’ ‘mazk’}}

lzaming_rats = lz-4
EPOCHS =15

BATCH SIZE =131
leaming rate = le-4

Prooeszor is coda

4
i

[

Figure 6: Global variable definition

3.3 Data Preprocessing

Performing the initial data loading cleaning sanity cheques data analysis and augmenta-
tion in order to prepare them for modelling

print(" Amount of patients: ", len(set(dff patient no)))
print(" Amount of records: ", len(dff))

Amount of patients: 110
Amount of records: 3929

Figure 7: Record Validation

Before performing data split, we need to cheque the distribution of images in order
to avoid bias

Patient Diagnosis Distribution

W o Cancer
B cCancer

Figure 8: Patient Distribution

Performing data sanity cheque by checking if all images have their corresponding mask
present.

Sorting check

1dx = random randint(0, len(imgs)-1)

print("Path to the Image:", ungs[idx], "nPath to the Mask:", masks[1dx])

Path to the Image: /content/lgg-mri-segmentation TCGA DU 8163 19961119/TCGA DU 8163 19961119 28 uaf

Path to the Mask: /content/lgg-mri-segmentation TCGA_DU 8163 19961119 TCGA_DU_8163_19961119 28 mask.uf

Figure 9: Sanity Check

3.4 Data Split
In order to train the data and then validate it. Will split the data accordingly.

print(f" Train: {train df shape} 'nVal: {val dfshape} ‘nTest: {test df shape}”)

Train: (2376, 3)
Val: (708, 3)
Test: (645, 3)

Check the distribution of classes in the training set
print(train_df] diagnosis'] value counts(normalize=True))

Checlk the distribution of classes in the validation set

prntival di]'diagnosis’].value counts{normalize=True))

Checl the distribution of claszes in the test set

printitest df]'diagnosis’].value counts(normalize=True))

diagnosis

0 0.630233

1 0349767

MName: proportion, dtype: floatéd
diagnosis

0 063113

1 034887

Name: proportion, dtype: floatb4
diagnosis

0 0631163

1 0348837

Name: proportion, dtype: floatéd

Figure 10: Data Splitting

3.5 Model Configuration

It usually involves and entails the specification of deep learning model topology that
will be used. This section includes code snippets for setting up the U-Net architecture,
Attention U-Net, and ResU-Net. In principle, there are differences between the models,
and their characteristics are derived from the structure of the architecture which influences
the efficiency of the segmentation tasks. The configuration of these models is important as
it determines how well they will be trained and the quality of the segmentation outcomes.

3.5.1 Hyperparameter Settings

e Learning Rate: le-4
e Batch Size: 32

e Dropout Rate: 0.3

e Epochs: 25
e Resize Image: 128%128
e Optimizer: Adam

e Loss Function: Cross-Entropy Loss

3.5.2 U-Net Model Configuration

U-Net is popular for image segmentation problems because of the encoder-decoder struc-
ture connected with skip connections. The following is a list of codes that form the core of
the U-Net model and, once compiled, will help in training from your dataset Ronneberger
et al.| (2015)

Epoch 23 val_loss improved from -0.80764 to -0 82310
50/80
CPU times: user S1lmin s, sys: 35.4 5, total: 5 1min 425
Wall time: 32min 25s

Figure 11: UNet Model Training Time

3.5.3 Attention U-Net: Model Configuration

Attention U-Net model is an improved version of the U-Net model where attention mech-
anisms have been applied. They are only able to attend to specific features in the input
data, which could enhance the segmentation performance. Below you can see the code
to define and compile the Attention U-Net model Oktay et al.| (2018)

Epoch [25/25], Train Loss: 0.3127, Dice: 0.8550, F1 Score: 0.6812, IoU
Epoch [25/25]. Val Loss: 03005, Dice: 0.8809, F1 Score: 0.6895, IoU: (
CPU times: user 26min 52s, sys: 41 3 s_total: 27min 33s

Wall time: 17min 465

Figure 12: Attention UNet Model Training Time

3.5.4 ResU-Net Model Configuration

The proposed ResU-Net model is based on the pre-existing model of U-Net which contains
the idea of residual connections to increase stability in the functioning of neural networks.
Essential in this segment is the code that will help in the creation of the ResU-Net model
that has been pre-coded and developed to undergo training and testing with your dataset
He et al. (2016)

Epoch 25: val loss did not unprove from -0.67425
80/80 43s
CPU times: user 25min 39s, sys: 19.8 5, total: 25min 59s

Wall time: 19min 12s

Figure 13: ResUNet Model Training Time

3.5.5 Retaining Model

Google collapse pro runtime involvements deletes on the same data. Hence, we need to
copy data back to drive in order to access the train model to future tests.

Epoch 25: val loss did not improve from -0.67425

80/80 45s
CPU times: user 25min 39z, sys: 19.8 s, total: 25min 59s
Wall time: 19min 125

Figure 14: Saving Model to Google Drive

3.6 Model Testing

After training the model thoroughly in fine tuning the parameters we use test data to
validate the output generated by the model.

i Us 21ms/step

Original Image Original Mask] Prediction
0

50
100
150

200

250
0 50 100 150 2 25 50 100 150 200 250 0 50 100 150 200 250

Figure 15: Model Prediction

References

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recogni-
tion, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778.

URL: https://doi.org/10.1109/CVPR.2016.90

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Mc-
Donagh, S., Hammerla, N. Y., Kainz, B., Glocker, B. and Rueckert, D. (2018). Atten-
tion u-net: Learning where to look for the pancreas, arXiv preprint arXiv:1804.03999

URL: https://arziv.org/abs/1804.03999

Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation, arXiv preprint arXiw:1505.04597 .
URL: https://arziv.org/abs/1505.04597

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration
	Google Drive
	Google Colab
	Python 3.10

	Execution of Python Files
	Installing Libraries
	Importing Libraries and setting up global varibles
	Data Preprocessing
	Data Split
	Model Configuration
	Hyperparameter Settings
	U-Net Model Configuration
	Attention U-Net: Model Configuration
	ResU-Net Model Configuration
	Retaining Model

	Model Testing

