~

\"'?
\ National
College

Ireland

Multi-Modal Brain Tumor Segmentation with
Attention Mechanisms

MSc Research Project
Data Analytics

Bilal Mustaq Mulani
Student ID: x22212132

School of Computing
National College of Ireland

Supervisor:  Dr. Ahmed Makki




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Bilal Mustaq Mulani
Student ID: x22212132
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Dr. Ahmed Makki
Submission Due Date: 12/08/2024
Project Title: Multi-Modal Brain Tumor Segmentation with Attention
Mechanisms
Word Count: 7429
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:
Bilal Mustaq Mulani
Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | I
your own reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Multi-Modal Brain Tumor Segmentation with
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Abstract

The study of this research is basically aimed to improve and enhance the
brain tumor segmentation in the scope MRI Scans which are integrated with
advanced deep learning architectures which include Vanilla U-shaped Network,
Residual U-shaped Network and Attention U-shaped Network. The research is
specifically focusing on enhancing the segmentation accuracy while keeping and
maintaining the computational efficiency, a critical requirement for clinical based
applications.The segmentation of LGG dataset was used in the evaluation models
where Dice Coefficient and Intersection over Union(IoU) along with precision and
recall performance metrics which were employed in assessment of the performance.
The output results show that Attention UNet model has outperformed well
in comparison with other models very significantly, with the dice Coefficient
value of 0.9123 and IoU value of 0.8612. The Attention U Network also showed
highest precision at 0.9234 along with recall of 0.8912 by implying that it has
the ability to precisely segment the complicated tumor regions. Observation of
these performance metrics show and reveal that with integration of attention
mechanism in the architecture and focusing on pertinent image areas is the
intensified lead towards improvement of segmentation’s outcomes. The research
shares and offers and optimized model for the application in the clinical cases
and develops the program models which have been made openly available for
studies. However it shreds and shows hints on further optimization needs when
it comes to deal with complexity especially in low settings of computational resource.

Keywords: Brain Tumor Segmentation, Magnetic Resonance Imaging (MRI),
Deep Learning, UNet (U-Shaped Network), ResUNet (Residual UNet), Attention
Universal Network (Attention UNet), Automated Segmentation, Machine Learning
in Healthcare.

1 Introduction

One of the very important tasks in the field of medical imaging which is known as
Segmentation of brain tumours, as it actually helps in accurate diagnosis along with
treatment planning and monitoring of the tumors in brain. The revolution that deep
learning has had a very great impact particularly in this mentioned area, as it offers strong
and effective automatic image segmentation methods. This research introduces novel
integration of advanced deep learning architectures (Vanilla UNet, ResUNet, and Attention



UNet) to address the challenges of accurate and efficient brain tumor segmentation in
multi-modal MRI scans. By focusing on attention mechanisms, the study improves
segmentation precision, especially in critical regions, offering a more practical solution for
clinical deployment. Segmentation of medical image over the decade has an exemplary
improvements which were mainly driven by convolutional neural networks(CNNs) and the
variants. Designs like UNet, VNet or transformer based models were able to show some
promising segmenting of complex anatomical structures. But not least to forget these
models are very high in cost association and complexities which limit their application
in real world clinical settings. With that perspective this research is endeavouring to
addresses these types of problems with the help of deep learning models.

In order to do that this model will deliver an improvisation in the accuracy of the results
, with the reduced computation that can include advanced techniques like attention
mechanism and dense connections among transformers. |Gao et al.| (2023) The major aim
of study was to develop a scalable yet efficient solution that could be applied in clinical
settings in order to enhance the accuracy and speed for the diagnosis.

1.1 Problem Background

These days when there’s an increase in incidents of brain tumours, it has highlighted need
for precision and effective diagnostics tools. Traditional segmentation methods are time
consuming and are subject to inter-observer variability. The automated segmentation
which basically uses the deep learning models offer a good alternative , delivering consistent
and an accurate results with time Kaur et al. (2022). The Use of CNNs and its variants
represent very important milestone in medical image processing. Liu et al.| (2021]))

1.2 Research Motivation

Accurate brain tumor segmentation in MRI scans is crucial for diagnosis and treatment
planning. While deep learning models such as UNet and VNet have shown promising
results, they often require significant computational resources, limiting their application
in resource-constrained clinical settings Zhang et al. (2021). This creates a barrier to
wider clinical adoption, especially in facilities with limited infrastructure.

This research seeks to overcome these challenges by adopting deep learning architectures
that incorporate attention mechanisms, with a specific focus on the Attention UNet model.
Attention U-Net has been shown to keep the model’s focus on key regions of MRI scans
to segment better and more efficiently |Gao et al.| (2023)). The originality of this research
is in creating a model that improves the accuracy of segmentation but is also designed for
low computational capacity environments. Attention UNet is ideal for this situation as it
solves the problem in a quick and affordable manner thus improving the availability of
advanced medical imaging technologies in different health care environments [Mishra et al.
(2022)).

1.3 Research Question and Objectives

The research question posed in this study is: ”How can integrating attention
mechanisms into deep learning models improve segmentation accuracy while
making the models suitable for environments with limited computational



resources?” To address this research question, the following specific research objectives
were derived:

1. Investigate the state of the art in medical image segmentation, focusing on deep
learning techniques.

2. Designing and implementing Vanilla UNet, ResNeXt UNet, and Attention UNet
models for brain tumor segmentation.

3. Evaluate the performance of these models using standard metrics such as Dice
coefficient, accuracy, precision, specificity, and loU

4. Compare the models to determine the most effective architecture for this task .

1.4 Structure of the Report

The study is structured to guide the researcher through the research study systematically.
Chapter [2| reviews literature, already available on brain tumor segmentation and identifies
gaps filled by this research. Chapter [3| details how the methodology was carried out in
respect to data set, preprocessing and model selection. Chapter 4| presents the design
specifications of the deep learning models implemented. Chapter [5| describes how to
implement this approach in practice, including issues of data preparation and training.
Chapter [6] the models are assessed by performance measures such as interprets the output,
demonstrates interpretation of results for their meaning and significance. Finally, Chapter
ummarizes the review and provides recommendations for further studies.

2 Related Work

Segmentation of brain tumor is important in accurate diagnosis, treatment planning and
monitoring of brain tumors as it encompasses complex anatomic features that change
in size shape and location. However, manual outlining by radiologists is often used to
perform traditional segmentation techniques but it consumes much time with high inter
observer variability leading to substantial differences in obtained results. Automated
approaches have led to development new methods for segmenting brain tumors that are
efficient and reliable in neuronal structure segmentation.

2.1 Evolution of Brain Tumor Segmentation Techniques

In|Ronneberger et al.| (2015) introduced UNet architecture a biomedical image segmentation
algorithm that achieved Dice coefficient of 0.91 in about 2015. Although structures smaller
than ten pixels could not be segmented by it, but still the model was able to capture small
details which paved way for future improvements on its segmentations models. Later
on Milletari et al. (2016) developed V-Net for three-dimensional (3D) medical image
segmentation which achieved an MRI Segmentation Dice Coefficient of 0.89 in prostate
magnetic resonance images (MRI).Despite being effective, this model had an expensive
cost of computational resources, which was pegged at 40 GFLOPs and further hindered
by an inability to handle very small structures, especially in situations where there is
scarcity.



Cicek et al.| (2016]) developed U-Net for volumetric segmentation with the Dice’s score of
0.88 using sparse annotations. However, this model was quite demanding on memory as it
necessitated the use of 128GB RAM that raises some scalability problems: This approach
allowed a new architecture like UNet++ to be created as explained by [Zhou et al.| (2022)),
resulting in a dice coefficient of up to 0.90 due to iterative steps were applied. However,
this resulted in higher computational needs that meant that training time would increase
by about 30% and also presented challenges related to scaling and efficiency.

The UNet Architecture has been advanced in the field by |Oktay et al.| (2018) and |Gu
et al.| (2022) who have introduced attention mechanisms to the architecture. What Oktay
et al.| (2018) did was that they added gates to UNet so that its pancreas segmentation
reached Dice coefficient of 0.84 but with twice as much training time as standard UNet.
On the otherhand, Gu and others developed SAR UNet which incorporated segmentation
awareness, attention mechanisms leading an increase in memory usage although accuracy
increased to a Dice coefficient of 0.90.

The nnU-net framework was developed by [Isensee et al.| (2021)) which is self-configuring
UNet and worked well longitudinal across a myriad of datasets 0.93 for the dice score. As
for its height dimensions, the spatial domain of the model, as well as the filter domain, have
very tall nature structure, now this elevation of complexity together with other problems
of hyper-parameters means that its practical execution was much more challenging than
such problems and hyper parameters tuning during field work of implementation due to
high dimensionality which is the same as that of the spatial domain and the filter space
among others aspects that relate directly or indirectly thereto. Further,|Chen et al.| (2022)
advanced on this premise and development of the UNet model was further enhanced by
making use of transformer blocks which helped them reach a Dice coefficient of 0.89 by
this method but it takes 128 TPU hours meaning that only places with adequate resource
can be able to apply it.

Zhang et al.| (2021)) and Zhu et al. (2021) presented further improvements on the UNet
model. To create the Residual UNet (ResUNet), [Zhang et al. (2021)used residual
connections in a UNet, which was able to achieve a Dice coefficient of 0.91 for brain MRI
segmentation. Nevertheless, this increased training time by 25%. As such, |Zhu et al.
(2021)’s introduced multi-scale attention mechanisms which resulted in a Dice coefficient
of 0.90 and an improved training time by 30%. This again shows that there is always a
trade-off between complex models and their performance.

In another study by Xue et al.| (2024)), who segmented multi-modal images using MRI,
CT scans as well as PET scans with convolutional neural networks (CNNs) and hybrid
models, dice coefficients ranged from 0.85 to 0.90. It was reported that image quality
variability had an impact on generalization while dataset sizes had computational costs
increased by approximately 40% and memory usage raised up to about 60%. Similarly,
AbdElwareth et al.| (2023)’s work examined prominent architectures like UNet, SegNet,
DeepLabV3 for brain tumor segmentation where DeepLabV3 proved to be most accurate
with a dice coefficient of 0.88 but it incurs more costs to compute with increase of the
computational costs by about 35% and memory use rose by half respectively; both studies
recommended improving model architectures towards better generalization and efficiency.

In 2023, /Al Ruba et al.| (2023) presented a deep learning model named JGate-AttResUNet
that employs attention mechanisms and residual connections for the segmentation of brain



tumors. The model showed a dice coefficient of 0.90 leading to a 45% hike in computation
costs with an additional 55 % escalation in memory usage compared to conventional UNet
models. They also proposed further studies to refine these techniques and investigate the
flexibility of this system concerning various types of tumors.

2.2 Limitations and Gaps in Research

When it comes to deep learning models, the existing research’s gaps and limitations are
well established in the literature on brain tumor segmentation. Although Ronneberger
et al.| (2015) and Milletari et al.| (2016) have observed that image quality varies a lot
and small structures may not be precisely segmented, it is still hard to do so. Using
large memory capacity and processing power for resources-constrained environments is
still difficult as can be seen in VNet and 3D UNet models [Cicek et al.| (2016)|Zhou et al.
(2022). The situation with regard to advanced, nnUNet and transformer-based UNet
model’s complexity has been highlighted by [[sensee et al. (2021) and Chen et al.| (2022),
respectively, which makes implementation as well as scalability more difficult. Besides
that according to Xue et al.| (2024), AbdElwareth et al. (2023) and Al Ruba et al.| (2023))
multi-modal attention-based models significantly increase computational costs as well as
memory usage thus making them inefficient for optimization purposes.

Also, the performance of the model and its generalization are affected by data imbalance,
more so when dealing with under-represented tumor types or sizes. This brings out
the need for bigger and more diverse training data sets as well as advanced data
augmentation techniques to improve model robustness and accuracy in real clinical
scenarios. Although attention mechanisms and transformer-based models offer potential
improvements, they introduce additional challenges related to increased training time and
computational resource demands, as reported by |Gu et al| (2022)) and |Zhu et al.| (2021).
To bridge these gaps, therefore, research studies should be focused on optimizing model
efficiency; improving generalizability; and developing more scalable solutions for brain
tumor segmentation. Thus, the proposed Attention UNet model can improve segmentation
accuracy while keeping computational efficiency high thus making it possible to have
robust or more clinically applicable solutions.

3 Methodology

The intention of this research is to improve brain tumor segmentation in multimodal MRI
images by using sophisticated deep learning techniques. Techniques used, experimental
setup and dataset are presented in this section as shown in Figure 1.
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Figure 1: Proposed Methodology Architecture for Brain Tumor Segmentation

3.1 Dataset Description

This study employed lower-grade glioma(LGG) Segmentation Dataset that consists of
brain Magnetic Resonance (MR) images and manual fluid-attenuated inversion recovery
(FLAIR) abnormality segmentation masks. The Cancer Imaging Archive (TCIA) provided
the dataset that was made up of 110 patients contained in 7860 files, formatted as Tagged
Image File(TIF), for LGG collection under The Cancer Genome Atlas (TCGA), which have
at least FLAIR sequences and genomic cluster data available. This dataset was chosen
because it has a wide range of content areas and high quality imaging data for training
our segmentation model with high accuracy without any legal or ethical objection. These
slices include MR imaging (MRI) from three modalities T1, T2, and FLAIR combined
into an RGB image to enhance the precision of segmentation as shown in the sample
below Figure 2.

The relevance and credibility of the dataset are well-documented, with studies by
et al| (2019) and Mazurowski et al.| (2017)) highlighting its utility and reliability. In
addition, the dataset contains several types of data that are frequently used in practice
such as computed tomography (CT) and MRI for brain tumor diagnosis, which provide a
strong basis for comprehensive analysis and application. This heterogeneity of scanner
modalities and acquisition protocols mirrors real-world conditions, thereby enhancing the
generalizability of our segmentation model Buda et al. (2019)) Mazurowski et al.| (2017)
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Figure 2: Sample multi-modal brain MRI image (T1, T2, and FLAIR modalities) with
their mask

3.2 Data Preparation

A data frame was created to map each image to its corresponding mask file and their
respective diagnosis value before reading the image files with their respective masks. To
identify the paths for images and corresponding image masks accurately, this data frame
encompassed a total of 110 patients and 3,929 records. As seen in Figure 3, patient
diagnoses are distributed in the dataset such that cancerous cases constitute 34.9% while
non-cancerous ones are 65.1%.

Patient Diagnosis Distribution

B Mo Cancer
B cCancer

Figure 3: Brain Tumor Diagnosis Distribution in the dataset

3.3 Data Augumentation

This study is limited in some aspects because of the relatively small sample size including
potential biases that can arise from the small size and heterogeneity of the dataset. A
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small number of MRI scans could result in model overfitting, this is when the model does
well only on the training data but rather poorly on any other data that it has not been
trained on. Also, the variances in the dataset whether in the type of MRI acquisition
protocol, the size of the tumor, and the type of imaging will also affect the performance
of the models. Therefore, these factors lead to poor training of the models as there are
no stable trends that have been captured, and hence bias and low generalizability might
occur.

To mitigate these challenges, data augmentation techniques were employed. This study was
aimed at developing data augmentation to enhance the resilience of segmentation models.
‘Albumentations’ library resized, flipped, rotated and normalized for an attention-based
model in PyTorch. A generator used rotations, shearing, shifts, flipping and zooming on
UNet and ResUNet models in Keras. These changes have made the models more robust in
handling intra-patient variations which are crucial for effective brain tumor segmentation
in real-world applications where medical images may vary greatly |Gu et al. (2022)Al Ruba
et al.| (2023).

3.4 Data Splitting

Stratified sampling was used to separate the dataset into training, validation and testing
subsets to maintain a consistent diagnostic distribution. The first split assigned 18% to
validation and 82% to training. After that, the training set was further partitioned with
20% set aside as the test set. This gave 2,576 for training, 708 for validation and 645 for
test cases. Stratification preserved a balanced ratio of non-cancerous (65%) and cancerous
(35%) cases in all groups which is a fair representation of the entire dataset maintaining
data integrity necessary for correct model construction, validation, and evaluation [ Xue
et al.| (2024)

3.5 Model Building and Training
3.5.1 Model Selection

Each of the deep learning models chosen in this research for the tasks of medical images
segmentation has settled for certain characteristics and thus builds on their pros and cons.

e The Attention UNet Model was chosen as it optimizes sensitivity in images by
concentrating on essential parts of the image with the focus on accentuating the
segmentation. Such attention mechanism helps the model in focusing on important
portion which increases the accuracy [Zhou et al.| (2022). Nevertheless, with the
implementation of attention mechanisms, it adds towards the tier of the model
which simply means extra time in training when compared to the traditional UNet
models. While this possibly improves performance, it also increases the complexity
as the processor has to work harder and use more memory.

e The Vanilla UNet Model whose structure is encoder-decoder was considered as it
is capable of efficiently encompassing the whole picture and some picture parts which
positions it as a good starting point in biometric segmentation |Ronneberger et al.
(2015)). In relation to this simpler architecture, due to the lack of complex factors
such as the attention architecture, training times are shorter than the Attention UNet
which is a good choice for areas of limited processing capabilities. Unfortunately,



this comes at a price of subpar segmentation performance, in this case especially for
complicated tumor outlines.

e The ResUNet Model Since the ResUNet Model has been noted to employ residual
connections, which assist in alleviation of the vanishing gradient problem of deeper
networks and hence enhance the feature extraction He et al. (2016). Whenever
ResUNet seems to be enriching the feature extraction the additional leaves and
the residual connections make the training longer. This model is effective but

computationally more expensive than Vanilla UNet but not as expensive as Attention
U-Net.

In order to solve these computational issues plus to cut down training times, the images
were respectively, preprocessed and optimized through the Adam optimization technique
known to prevent over-fitting by altering the learning rate in the course of training for
faster readiness.Chen et al.| (2022). Tuning of hyper-parameters like the learning rates,
batch size and the dropout rates one intensive and extensive process was done in producing
a trade-off between model performance and operational performance. On the other hand,
Attention U-Net had the most extended training periods, hyperparameter tuning was
the most efficient way to maximize the model convergence. Feedback from the validation
dataset after every epoch was aimed to provide an enhancement for the models, addressing
problems such as underfitting and overfitting. After every epoch, the validation dataset
served as feedback for fine-tuning so that the models could neither underfit nor overfit.
The ability of the tools employed which is the splitter to adjust learning rates was the
most outstanding feature that promoted reduction in training times in most cases and
especially with deeper models like ResUNet or attention unet Chen et al| (2022)). It is
important also to note that metrics such as accuracy, Dice coefficient and IoU had to be
employed in order to analyze the models and improve them eventually for use in real-life
conditions reliably.

3.6 Evaluation Metrics

After fine-tuning the models using the validation dataset, the Vanilla UNet, ResUNet, and
Attention UNet were evaluated using key metrics as mentioned below. These metrics help
to assess model performance in a more comprehensive way as it is stipulated in previous

research/AbdElwareth et al.| (2023)); /Al Ruba et al.| (2023); |Chen et al.| (2022

1. Precision : Precision assesses the positivity prediction accuracy that is important in
minimizing false positives in medical imaging |Liu et al.| (2021))

2. Specificity: It quantifies how well model recognizes non-target areas, reducing false
positives [Zhou et al.| (2022).

3. Sensitivity: Sensitivity measures the ability of the model to effectively identify
positive cases, very important in medical diagnostics as it prevents missing real
patients with diseases |Chen et al.| (2022)) .

4. F1 Score : F1 Score trades off precision and recall providing a single score that
accounts for both false positives and false negatives; this metric is particularly useful
when dealing with imbalanced datasets |Zhang et al.| (2021)).

5. Dice Similarity Coefficient(DSC):It combines recall and precision by measuring how
much of the predicted masks overlaps with the actual ones, the higher being better.
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e |AN B| refers to the intersecting part between predicted set A and ground
truth set B.

Dice =

e |A| The number of elements in the predicted set
e |B| The number of elements in the ground-truth set “B”

6. Intersection over Union(loU) / Jaccard Index :Intersection over Union (IoU) which
is also called Jaccard Index measures how accurate are results gotten for overlapping
areas between the predictive mask and a ground-truth mask.

|AN B

|AU B|

e |AN B is the intersection between the predicted set A and the ground truth set B.

IoU =

e |AU B| is the union of the predicted set A and the ground truth set B.

All these metrics taken together allow us for direct comparison of models in order to
identify their strengths as well as weaknesses rather than individual limitations Xue et al.
(2024)

4 Design Specification

The design of the project concentrated on selecting techniques, frameworks and
architectures that could effectively meet the requirements for medical image segmentation.
Core models consisted of Vanilla UNet, ResUNet, and Attention UNet, which were chosen
because of their strengths in dealing with medical images. The implementation involved
PyTorch for attention based models and Keras for UNet variations to ensure flexibility
and strong performance.

4.1 Initial Requirements

This project was done in Google Colab Pro using pay-as-you-go subscription with an
NVIDIA ‘L4 GPU’ having a memory capacity of 23GB and an Intel Xeon CPU with 12 cores
clocked at 2.20GHz. This configuration offered enough computing power needed for efficient
model training and data processing. For this software environment included Python 3.10.12,
CUDA 12.2, TensorFlow 2.17.0, Keras 3.4.1, albumentations 0.4.6, OpenCV, scikit-learn
and NumPy were used. These tools were selected for compatibility with deep learning
workflows and hence facilitated data augmentation, model training as well as performance
optimization because they are efficient in such operations.

4.2 Base Model Architecture : Vanilla UNet

This investigation applies a base UNet model in finding correct boundaries for medical
images, which, due to its symmetrical structure, has been widely recognized as an effective
biomedical application Ronneberger et al.| (2015)). As shown in figure 4,the UNet consists
of two paths: the contracting path that is called the encoder and expansive path or
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Figure 4: UNet Model Architecture

decoder that are connected through skip connections allowing the model to learn from
both high-level abstract and low-level detailed features. Convolutional layers with filters
detect features such as edges and textures whilst batch normalization ensures faster and
more stable training . ReLU activation brings about non-linearity in the handling of
complex data. Max-pooling reduces map sizes while maintaining important attributes.

The multiplication commences with an input sized at 256x256x3,while filters are
progressively increased to 64, 128, 256, and then to 512, the highest point being at1024 in
order to capture more complicated patterns Zhou et al.| (2022)). The deepest part of the
network called bottleneck layer uses most filters of all sizes that are equal to 1024 for
capturing the most general features in between encoder and decoder Ronneberger et al.|
The last process of image reconstruction is composed of numerous upsampling
layers and skip connections that are able to keep both important details and high level
structures . This helps produce a binary segmentation map with each pixel classified as
either foreground or background by using sigmoid activation followed by final one-by-one
convolutional layer Huang et al| (2022). For medical image segmentation tasks, this
architecture is very strong [Zhang et al.| (2021))

4.3 Proposed Model Architecture : Attention UNet

The current research proposes an Attention UNet model which is made by introducing
attention mechanisms into the classical UNet architecture to improve segmentation
accuracy. By doing so, this mechanism helps the neural network in focusing on significant
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parts of the information while ignoring less important ones thus mimicking human
selectivity |Gao et al| (2023) of selective attention is implemented via attention gates,
which provide coefficients for deciding on the significance of various image regions
The architecture is visually represented shown in figure 5. The encoder path

Input (256*256*3) Output (256*256*1)

“BatchNormalization BatchNormalization
2 2
(1Y

Encoding

Figure 5: Attention UNet Model Architecture

of Attention UNet involves ConvBlocks that are used to extract features from the input
image starting from size 256x256x3. The encoder consists of convolutional layers with
increasing filters; beginning with 64, then 128, 256, moving to 512 and finally finishing off
with 1024 after each batch normalization and ReLU activation. The spatial dimensions
are reduced by max-pooling layers following every ConvBlock. At its deepest point, the
bottleneck layer captures abstract features using 1024 filters. In contrast to max-pooling
operation, up-sampling blocks (UpConvBlocks) based on transposed convolution can
also be adopted for reconstructing images starting with 1024 filters that reduce to 64
at the end of the process.The skip connections combine the up-sampled feature maps
and corresponding encoder maps that have been refined by attention gates, focusing on
important areas of the image.

Starting with upsampled version of encoder’s high resolution encoder feature maps. The
coefficients generated by attention gate provides weight to these features for enhancing
the significant regions while suppressing irrelevant ones. At each skip connection point,
this improved map is added to the encoder features preserving both detailed information
and high-level semantics. These include ConvBlocks, up-sampling operations, as well
as attention gates that create a strong basis for image segmentation in which case they
perform better than any other method by highlighting relevant regions while maintaining
detailed features |Liu et al.| (2021).
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4.4 Model Architecture - ResUNet

A UNet-like architecture with ResNeXt50 backbone comes in the form of a ResUNet
model that improves image segmentation. On the other hand, the encoder based on
ResNeXt50 uses aggregated residual transformations instead of doubling filters at each
stage, which highly enhances its performance in capturing complex patterns [Liu et al.
(2021))Mishra et al. (2022). The use of residual connections to improve learning and
gradient flow enhances the vanishing gradients issue. It consists of an input layer for
RGB images of size 256x256x3 followed by scaling for normalization. In order to speed up
convergence, He-normal initialization is used with ReLLU activation Conv2D layers as well
as Dropout layers to reduce overfitting problems He et al.| (2016]). MaxPooling2D layers
reduce spatial dimensions while keeping important features intact on feature maps He
et al.| (2016). Another major difference from traditional UNet is that it has a bottleneck
layer which captures abstract features using ResNeXt50’s advanced architecture before
passing them through the decoder. Conv2DTranspose increases the size or resolution
of features, which are then concatenated with corresponding ones in encoders via skip
connections for aiding in recovering spatial information.To additionally enhance feature
reconstruction and provide smooth gradient flow, residual connections are also employed
in the decoder. The last layer is Conv2D with sigmoid activation that gives a segmentation
map. For complex segmentation tasks, this hybrid approach effectively combines the
feature extraction abilities of ResNeXt50 with the up-sampling processes of UNet [Huang
et al.| (2022).

Overall, integrating ResNeXt50 into the UNet architecture provides a more powerful
feature extraction process, offering a robust solution for image segmentation tasks. This
hybrid approach combines ResNeXt50’s strengths with UNet’s effective up-sampling and
refinement processes, making it particularly suitable for complex segmentation tasks.

5 Implementation

The implementation section details the practical application of the proposed methodology,
including the development environment, tools used, and the step-by-step process of coding,
testing, and validating the solution to achieve the desired outcomes.

5.1 Data Handling and Preprocessing

The first step involves manual upload of the dataset, which is in a zip file, into Google
Drive. Then, on Google Colab Pro platform they choose L4 runtime and open a notebook.
By drive.mount(’/content/drive’) command Google Drive is mounted to make the dataset
available. The files should be unzipped and placed in order within the working directory
after this. Some of these libraries that need to be set up include “albumentations”,
tensorflow, keras among others. For reproducibility and consistent image formatting
global variables are given. Invidia-smi command can be used to verify GPU information
like NVIDIA L4 23GB memory. A data frame is created listing directories and files in
the dataset. Using ‘mask’ as a filter keyword two more data frames will be obtained
separating MRI images from their corresponding masks. Actually they have been sorted
so as to match images with masks.

Finally, three final columns are generated namely; patient number, image path and mask
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path for that particular patient. OpenCV is then employed to assess pixel values through
the use of “diagnosis” column which indicates the presence or absence of a tumor. Finally
it checks for total number of patients and records by Plotly followed by plotting for patient
diagnosis distribution while visually checking sample images with their masks ensuring
proper preparation before training the model.

5.2 Data Augumentation

In the implementation, data augmentation was tailored differently for the Attention U-Net
model compared to the Vanilla U-Net and ResUNet models due to their varying input
and output tensor shapes.

5.2.1 Attention U-Net Data Augmentation

The Attention U-Net model was processed using albumentations library to undergo
resizing, random flipping of images in batches, 90-degree rotation of images as well as
transpositioning of image axes along with shift-scale-rotate transformations. This resulted
in image batches with a tensor shape: torch.Size([26, 3, 128, 128]) and labels with:
torch.Size([26, 1, 1, 128, 128]) that are optimal for its architecture.

5.2.2 Vanilla U-Net and ResUNet Data Augmentation

These were done alongside other standard augmentations such as rotations, shear,
shifts, zooms, horizontal flips, etc., using the ImageDataGenerator class in Keras
(flow_from dataframe() method) for these models. Hence, we have images shaped (32,
256, 256, 3) with corresponding masks being (32, 256, 256, 1). As shown by Table
1 below these tailor made augmentation schemes were consistent with their respective
architectures to make them generalize better on various datasets without compromising
on their accuracy levels.

Output Shape
(Images)

Output Shape
(Masks)

Augmentation

Model Techniques

Library Used

Resize: 128*128,
Flip p=0.5,

Rotate p=0.5,
Shift Scale Rotate

Attention
U-Net

albumentations

torch.Size([32,
3,128, 128])

torch.Size([32,
1,1, 128,
128])

p=0.25,
shift_limit=0.01,
scale_limit=0.04,
rotate_limit=0,
To_Tensor,
additional targets=
{'mask': 'mask'}

Vanilla
Unet and
ResUNet

Keras
ImageDataGenerator

(32, 256, 256,
3)

(32, 256, 256,
1)

Rotation: 0.2,

Width Shift: 0.05,
Height Shift: 0.05,
Shear: 0.05,

Zoom: 0.05,
Horizontal Flip: True,
Fill Mode: nearest

Table 1: Summary of Data Augmentation Techniques
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Compared to discussing the methods solely based on the ImageDataGenerator library, in
this study the research team utilized model specific advanced data augmentation methods
incorporating the Albumentations library as they were more beneficial. It enriched the
transformations by alternating and concurrently including flips and shear rotations which
also multiplied the training data and therefore enhanced the model’s performance as
observed with the dice coefficient. These techniques made the models reproduce features
more than their training set and made it possible for the models to learn important
features from unseen test set improving performance. Moreover, where relevant, stratified
sampling was used in dividing the dataset so that there was an even distribution of tumor
and non-tumor samples in all three data sets categories: training, validation and testing.
This strategy of distribution made it impossible for the model to be biased towards the
majority class which reduced overfitting and improved the ability of several representatives
to work with the model. These additional approaches were considered unnecessary since
the existing strategies for data augmentation were appropriate and effective in maintaining
the balance and generalization of the model.

5.3 Model Training
5.3.1 Hyperparameter Tuning

An initial learning schedule which commences at a rate between le-4 and le-2 and reduces
at a decay rate of 0.96 was employed in Hyperparameter Tuning. A 16 — 64 range of
batch sizes was made and dropout rates within the range of 0.2 — 0.5 were employed to
curb overfitting. The images that were enhanced were restored on a resolution of 256 —
32 in pixel a format. For the Attention U-Net, in addition, fine tuning was also done
on the attention gate thershold values ranging between 0.1 and 0.9. Likewise, number
of epochs were also experimented upon from 10 — 100 and since there was a criterion of
total exeuction time taken and model performance , the number of epochs run finally was
settled at 25. However, the parameters deemed most suitable were a learning rate of le-4,
a batch of 32, a dropout of 0.3, and an input image of 128*128 pixels. As GPU usage
reduction without affecting performance is a crucial challenge, many of the key values
were determined after thorough testing to fine-tune performance.

5.3.2 Vanilla UNet Implementation

A basic vanilla style U-Net model was developed for brain MRI segmentation and tumor
detection. However, this dataset needs to be stratified into train, validation and test
sets in order to ensure an even distribution of classes Cicek et al| (2016]). In training,
data augmentation was done using Keras’ ImageDataGenerator along with its custom
generator for matching augmented images with their masks. The optimizer used when
the model was compiled is Adam with an exponentially decaying learning rate that starts
at le-4 and decreases by 4% after each decay step . Since a smooth variable has been
incorporated into this loss function it will prevent division by zero hence the custom loss
function based on Dice coefficient i.e dice_coef _loss can be optimized using this method.
After generating fifty batches of images during training using a batch size of thirty two,
the best model was saved with a checkpoint callback which uses early stopping to save
overfitting from happening. These are some of the key performance metrics that were
accounted for; IoU, Dice Coefficient, Precision, Recall F'1 score and Specificity |[Zhou et al.
(2022)). Finally the matplotlib visualization of trn’s history saved as .pkl file shows how
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well our model performed throughout its build up process. On this dataset Vanilla U-Net
architecture achieved very good segmentation performance on held-out set

5.3.3 Attention UNet Implementation

After the preprocessing steps outlined in Sections and [5.2] the dataset was split into
training, validation, and test sets using a stratified approach to ensure an even distribution
of classes based on diagnosis labels |Cicek et al. (2016). After the preprocessing steps,
the dataset was divided into training, validation and test sets so that there is an even
distribution of diagnosis labels (Cicek et al.| (2016)). Data augmentation was done using
albumentations library in a custom dataset class called DataCustomise for correct pairing
of augmented images with their corresponding masks in training. The model was compiled
with Adam optimizer at learning rate le-4. Optimization employed DiceLoss function
which used the Dice coefficient with a smooth variable to prevent dividing by zero.

The proposed model had customized parameters and architectural enhancements including
different values of ch_in and ch_out such as 64, 128, 256, 512 and 1024 respectively which
enabled efficient feature extraction. The attention mechanism enhanced segmentation
accuracy through focusing on relevant features controlled by f g, f 1 and f.int parameters.
Convolutional layers with kernels of size 3x3 were implemented to maintain the spatial
information that is crucial for accurate tumor delineation. Batch normalization along
with ReLU activation served to stabilize as well as speed up the training process whereas
final sigmoid activation preceded by 1x1 convolution ensures exact binary segmentation.

The attention mechanism was optimized across resolutions, epochs, learning rates and
batch sizes. IoU, Dice coefficient, precision, recall, F1 score, and specificity were used
as measures of the effectiveness of model. During training early stopping and model
checkpointing were employed to save the best model a .pth file. The test dataset included
several visualizations of MRI images alongside masks and predicted segmentations; the
latter allowed for an improvement in segmentation performance thanks to the attention
mechanisms used by this model. The trained models (both architecture and weights)
along with their training history files were saved for further analysis.

5.3.4 ResUNet Implementation

The ResUNet model was implemented to perform brain MRI segmentation, specifically
targeting tumor detection. The ResUNet model integrates residual connections into
the UNet architecture, facilitating deeper network training by mitigating the vanishing
gradient problem. The implementation is identical to the Vanilla UNet, except for the
model architecture, as mentioned above in [5.3.2

5.4 Model Evaluation

After training, the models are evaluated on a separate test dataset to confirm their
generalization capability , and its performance metrics were printed. The final outputs
include the trained models, which are now capable of segmenting brain tumors in new
MRI images, and the corresponding code used to implement, train, and evaluate these
models., Test predictions were visualized by comparing the original MRI images, true
segmentation masks, and predicted masks using OpenCV and matplot Xue et al.| (2024]).
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6 Evaluation

Results from experiments in three different deep learning models: Vanilla UNet, Attention
UNet, and ResUNet for the purpose of segmenting MRI images are provided in this section.
Optimal results were achieved after 25 epochs and these are based on evaluations of model
using key performance metrics.

6.1 Performance of Vanilla UNet

These values kept increasing demonstrating that it learnt well during training.As shown in
Table 2, Dice coefficient improved to 0.8451 by the last epoch, F1l-score reached to 0.8757,
IoU became equal to 0.7340.The initial learning rate of the model was set at 1 x10-4 with a
decay rate of 0.96 that let it slowly decrease throughout training.These findings underline
how precise this model is when it comes to segmenting regions of interest.Training loss as
well as validation loss decreased indicating that not only did our model learn well but also
generalized properly on validation data as shown in figure one below (loss curve). The
training Dice coefficient steadily increased, with the validation Dice coefficient following a
similar trend, despite some fluctuations, as depicted in Figure 6.

Epoch Dice Coefficient | F1 Score | loU (0 to | Precision | Recall (0
(0to 1) (0to1) 1) (0to 1) to1)
1st 0.1284 0.3382 | 0.0699 | 0.2385 | 0.8421
Sth 0.3646 0.7183 | 0.2258 | 0.6454 | 0.8337
10th 0.6334 0.8091 | 0.4683 | 0.7896 | 0.8397
15th 0.7586 0.8421 | 0.6162 | 0.8426 | 0.8479
20th 0.8077 0.8565 | 0.6816 0.862 0.857
25th 0.8451 0.8757 0.734 0.8786 0.8774

Table 2: Performance Metrics of Vanilla UNet

Unlike other intricate architectures, Vanilla UNet needed a lot of epochs to attain the
best performance due to its slow convergence. But, within each epoch, this model kept on
improving such that by the end of the training process it had accurate and high recall
values. Then again, validation results showed that the F1 score and Dice coefficient stood
at 0.8275 and 0.8590 respectively when they were finally achieved. The model has strong
generalization power across different segmentation tasks which is evident in the decrease
of Figure 6, validation loss over time .

Model Losses Across Training Epox Model Dice Coefficient Across Training Epochs Model Intersection Over Union Across Training Epochs

Figure 6: Training and Validation Trends (Losses, Dice Coefficient and IoU) of the Vanilla
UNet model over 25 epochs
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Ultimately, even though it took a lot longer to converge than the Simplified and Original
models, Vanilla UNet still offered a respectable degree of performance. This means that it
could be a viable option for segmentation in design, particularly in cases where the use
case only calls for a more straightforward network architecture.More findings, however,
suggest that some of the sophisticated models could help improve their accuracy, at least
when learning boundary detection tasks and when successfully identifying and segmenting
borders ,which in some cases require human judgment,for certain area boundaries.

6.2 Performance of Attention UNet

The UNet architecture can be improved by incorporating attention mechanisms in it, and
this will help in focusing effectively on the regions of interest during segmentation thus
leading to enhanced accuracy and robustness.The Attention UNet model was evaluated
over 25 epochs, using a batch size of 32 and a adaptive learning rate schedule.

6.2.1 Training Performance

There were ignificant improvements were recorded by the Attention UNet model throughout
training for all main metrics. The training loss reduced from 0.9143 to 0.3127, which
means that learning was effective. The Dice coefficient increased from 0.6536 to 0.8550
indicating better segmentation accuracy. Also, F1 score and IoU increased to 0.6812 and
0.5771 from 0.3393 and 0.2208 respectively.The precision rate increased up to 0.7982 from
the previous value of 0.2315 while recall decreased slightly from its original state (0.8411
till 0.6365). With consistently high specificity, the model ensured that false positive rates
fell below 0.9987 at all times.

6.2.2 Validation Performance

As seen in the figure 6, the validation performance closely matched the training
progress. Over the course of the 25 epochs, the validation loss dropped suggesting strong
generalisation to new data. The validation F1 score went from 0.3216 to 0.6895, while the
validation Dice coefficient improved. There were notable improvements in the IoU as
well, going from 0.2058 to 0.5978.As seen by the steady increases in Dice coefficient and
IoU scores, the overall trend in validation measures,figure 6, despite irregular instability,
particularly in the mid-training epochs, shows that the Attention UNet model was able to
learn and generalise well. The strong validation specificity, which stayed above 0.9983,
adds more evidence to support the model’s dependability in precisely and moderately
segmenting the regions of interest.

Dice Coefficient | F1 Score | loU (0 to | Precision | Recall (0
Epoch
(Oto 1) (0to 1) 1) (Oto 1) to1)

1st 0.6536 0.3382 0.3208 0.2315 0.8411

5th 0.8174 0.6038 | 0.6857 | 0.5892 | 0.6857
10th 0.8747 0.6484 0.7904 0.7879 0.6462
15th 0.8743 0.6976 | 0.7873 0.805 0.6517
20th 0.9123 0.7114 0.8612 0.7856 0.6765
25th 0.855 0.6812 | 0.7771 | 0.7982 | 0.6365

Table 3: Performance Metrics of Attention UNet
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Table 3 presents an overview of the most important performance measures from various
epochs. All things considered, the Attention UNet model performed admirably on both
in the course of validation and training.UNet’s architecture has been greatly improved
by including attention mechanisms in it, which made the model better at focusing on
relevant areas and as a result its segmentation accuracy was increased. Figure 7 shows
that more complex segmentation tasks have resulted in improved model performance as
indicated by increasing Dice coefficient, IoU, and lowering loss.

Model Dice Coefficient Across Training Epochs Model Intersec Over Union Across Training Epochs

Figure 7: Training and Validation Trends (Losses, Dice Coefficient and IoU) of the
Attention UNet model over 25 epochs

Further works could include fine-tuning attention layers or learning rates toward better
results for high-precision and high-recall needs. Furthermore, experimenting with various
methods of data augmentation or even more sophisticated attention mechanisms might
bring about additional enhancements. In the same vein, Figure 7 visualizations provide a
holistic overview of how well the Attention UNet model performed over 25 epochs during
different segmentation tasks.

6.3 Performance of ResUNet

The ResNet-UNet model was evaluated over 25 epochs, with a batch size of 32 and an initial
learning rate managed through an exponential decay schedule. This model architecture
leverages ResNet’s deep residual learning capabilities combined with UNet’s symmetric
encoder-decoder structure, enhancing both feature extraction and spatial accuracy in
segmentation tasks.

Massive performance gains were observed with ResNet-UNet model in the course of
training. In the beginning, the model recorded low results at a Dice coefficient of 0.0710,
F'1 score of 0.1151 and Intersection over Union (IoU) score of 0.0387. As shown in the
table 4, by epoch number 25 all these metrics have changed significantly: Dice coefficient
reached to 0.7103, F'1 score increased to 0.7106 while IoU score climbed up to 0.5606. The
model’s loss function which measures predicted segmentation error from ground truth
reduced consistently from -0.0707 to -0.7114 indicating that the model was learning useful
information from the data effectively; thus able to predict better segmentation maps
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during testing than those produced by a random guessing algorithm. At last precision and
recall improved with final values of 0.7477 and 0.6960 correspondingly showing balanced
accuracy in detection of relevant regions while minimizing false positives.

Epoch Dice Coefficient | F1 Score | IoU (0 to | Precision | Recall (0
(0to1) (0Oto1) 1) (0to1) to1l)

1st 0.071 0.1151 0.0387 0.1015 0.6013

5th 0.5554 0.5561 0.3956 0.6224 0.5466
10th 0.6241 0.6245 0.4668 0.6606 0.6212

15th 0.6567 0.6572 0.4999 0.7038 0.6418
20th 0.6798 0.68 0.5227 0.7205 0.6641
25th 0.7103 0.7106 0.5606 0.7477 0.696

Table 4: Performance Metrics of ResUNet

Validation metrics showed similar improvements. The validation Dice coefficient increased
by 0.50 approx, the F1 score from 0.1777 to 0.6510, and the IoU score from 0.0841 to
0.4907 by the 25th epoch. The validation loss consistently decreased as it has good
generalization for unseen data. Although there were minor fluctuations, the model kept
a high specificity of more than 99% . It means that model can be used for non-target
regions identification with less false positives. The ResNet-UNet model generally had
better outcomes across all major indices during its training phase as depicted in Figure 8.

Model Dice Coefficiel nin ochs Model Intersection Over Unio

Figure 8: Training and Validation Trends (Losses, Dice Coefficient and IoU) of the
ResUNet model over 25 epochs

Deep residual connections in ResNet allowed for the learning of complicated picture
characteristics without a substantial loss of spatial precision when paired with UNet’s
segmentation technique. Future works could involve fine-tuning learning rate, exploring
different initializer methods or increasing complexity of ResNet backbone to improve
segmentation accuracy much further.

Overall, the ResNet UNet model showed significant improvements across all key metrics
throughout its training phases.The integration of the deep residual connections in ResNet
and UNet’s segmentation approach enabled this model to capture complicated features
while still maintaining spatial precision.Perhaps another line of inquiry would include
adjusting the learning rate slightly or changing how initialization is done or even adding
other components that will make ResNet backbone more complicated in order to increase
accuracy of segmentation even further.
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6.4 Discussion

By comparing the three prepared models, it is evident that the proposed Attention UNet
yielded better results than Vanilla UNet and ResUNet in virtually all the metrics. Due to
the utilization of the attention mechanisms, Attention UNet was able to provide more
precise attention toward the regions of interests of the MRI images and this is testified
by higher Dice coefficients, F1 scores and IoU as shown in Table 5 Gu et al.| (2022)/Chen
et al.| (2022)). The Vanilla UNet, although a strong base model, did not contain the robust
mechanisms to capture complex patterns.

Loss (0 to| Dice Coefficient | F1 Score | loU (0 to | Precision | Recall (0
1) (0to 1) (0to1) 1) (0to1) to1)
034 | 0.83 | 06384 | 06 | 0774 | 0584

Table 5: Performance Metrics of Attention UNet on test data

Figure 9 shows that model could recognize as intricate features as the other models or
manually generated segmentation mask. ResUNet has a relatively small time of execution
and has a good accuracy in segmentation, but it is still worse than Attention UNet.

Input Image Ground Truth Mask __ Thresholded Mask (Attention U-Net)

Figure 9: Segmentation Output of Attention UNet Model on test MRI data

6.4.1 Model Limitations

Several limitations arise about the assessment of Vanilla UNet, ResUNet, and Attention
UNet models in MRI image segmentation where they point out some drawbacks on their
performance especially for segmentation of brain tumors.

e Model Complexity and Feature Extraction: Vanilla UNet lacks in ability to
identify the complicated characteristics of the tissues mainly when the tissues have
an irregular shape such as in the irregular shape of tumours. It might not detect
suspicious regions within minor tumour volumes because of the sparse structure
and a 256 x 256 matrix as a prerequisite for diagnosis. It becomes a problem,
particularly when the programmes are small particularly when small data sets are
used, and other complex processes like batch normalization or dropout are not
applied.

e Computational Complexity:ResUNet improves feature extraction due to
recurrent connections; but it increases computational expenditure, making training
longer and inference time longer as well. This is somewhat of a problem when
it comes to deploying it to connected resource-scarce devices. Attention UNet

21



likewise brings in more depth with attention gates thus longer times for training
and increased computational needs that make it incompatible in the current state
for identifying smaller regions of the tumour which are crucial in diagnosis.

e Sampling and Data Set Limitations: It is noteworthy that the work performed
supposes the sampling of MRI images Although, the study sample can hardly be
said to be random, or even a representative sample, it points to the possibility of
a bias. restricting the generalizations that can be made about unseen data by a
model. This matter finds support in studies promulgating the idea about the need
for a more encompassing and varied data pool as tools and means to enhance the
stability of a model.

6.4.2 Practical Implications and Scalability in Clinical Settings

Effective segmentation of brain tumors is very critical in the diagnosis and treatment of
patients with tumors in clinical practices. Attention UNets are able to capture all the
fine details very accurately and effectively. However, this model encounters deployment
problems because of its high computational intensity. This unit probably is appropriate
for those advanced clinical settings that possess powerful hardware resources. However,
it also has some disadvantages, for instance, longer inference times and larger memory
requirements make it more difficult for deployment in applications that require real-time
processing such as during surgery or in small hospitals with limited resources. The other
way around the Vanilla UNet, which employs faster training and inference and requires
lower computing power, can be implemented in limited resource environments. This
selfishness has also its downside, which mainly is the lesser segmentation accuracy making
it unfit for applications where fine separation of complex tumor anatomy is necessary.
ResUNet, on the other hand, is expected to be more feature efficient than Vanilla UNet.

Attention UNet is an effective model however in the absence of sufficient data resources
such architectures may become problematic due to their complexity and therefore might
necessitate the use of cloud computing resources or techniques aimed at making the models
more optimal such as pruning, quantization or model distillation. In comparison, Vanilla
UNet is very scalable because of the fact that it is very simple and does not require
complex hardware hence can be used in a variety of clinical environments. Nevertheless,
its comparative lower segmentation accuracy may lead to its disuse in situations where
marked out segmentation is necessary. ResUNet would be in between the two in the sense
of performance and its complexity.

In order for these models to be therapeutically applicable, it is crucial to evolve data
sampling techniques, increase the amount of gathered data, and redesign models in order
to address their computational expense without sacrificing performance. Also, additional
regularization techniques can be utilized to improve the efficiency of attention mechanisms
on accurate detection of the tumor region. The prospects of this project should also
include cloud deployment approaches. Such incorporation could yield more relevant results
which improve the precision and applicability of medical image segmentation across various
clinical factors.
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7 Conclusion and Future Work

This study fully investigated and compared Attention UNet, Vanilla UNet, ResUNet models
for brain tumor segmentation in MRI images supporting the claim that the Attention
UNet works best because it has the attention gates in its design. The architecture is
similar to that of the Vanilla UNet but more advanced in that it includes attention gates
which enable the use of computational resources on the key tumor portion only. Such a
concentration not only contributes to better segmentation results but also optimizes the
computational burden by providing attention on the essential areas of the MRI images.
For that reason, the relatively weak focus on attention gates does not restrict accurate
tumor boundary delineation. It decreases noise, and the occurrence of errors is less on
Attention UNet compared to Vanilla and ResUNet in spotting complicated tumor regions.

The Attention UNet model showcased the best Dice coefficient of 0.9121, which was
better than ResUNet’s 0.7103 and Vanilla UNet’s 0.8451 in lesser epoch run. This further
explains the advantages of the attention gates by showing how a model can concentrate on
important features for better detection of basic and high-level tumor structures in lesser
time. Moreover, the model’s precision increased with the more focused approach taken to
reduce the number of false positives — Attention UNet achieving a precision of 0.7856 at
the 20th epoch compared to ResUNet’s 0.7477 precision at the 25th epoch. Furthermore,
the attention gates also assisted in localization of the tumor region boundaries whereby
more defined boundaries were produced in the predicted tumor regions hence increasing
segmentation efficiency. However, while Vanilla UNet and ResUNet treat all parts of
the image with either equal or no bias, Attention UNet focuses on different regions of
the tumor image depending on the average shape, size and possibly the position of the
tumor. The enhanced efficiency is aided by data augmentation strategies that make use
of albumentations among other libraries, improving the models’ ability to generalize. All
in all, Attention UNet turns out to be the most efficient in the clinical setting involving
brain tumor segmentation with high confounding margins and effective utilization of
resources.The study demonstrated the importance of Attention UNet in increasing the
accuracy of segmentation, illustrating its usefulness in potential clinical usage, where
accurate outlining of tumors is required, and efficiently met the research goals of clearly
demonstrating comparison between the models in terms of their effectiveness.

Among the issues mentioned above, it is suggested that the subject of the investigation
should consider enhancing Attention UNet model focusing on improving Deployment
Optimization, removing computing requirements for places with fewer resources. This
can be done through various types of model compression. For instance, pruning basically
involves reducing the number of parameters towards the model by removing the connections
in the model that is not so important, while quantization goes down by burning highly
precision weights to low precision figures like 32bit to normally an 8bit. Furthermore, the
evaluation took into account that there is a high tendency to reduce attention mechanisms
by using smaller attention blocks or squeeze and excitation methods where moderate
parameters are employed. Alternatively, investigations of the combination of transformers
and Attention UNet models, for example, Swin-UNet could promote attention based image
segmentation and scaling in devices due to transformers’ efficiency in modeling long range
relationships in images. Future aim would be to enhance the dataset with additional CT
and PET scans, and imaging data from patients with different backgrounds. Similarly,
one potential alternative would be multi-stream architectures, such as Modality-Pairing
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Network (MPNet) where each modality stream is taken care of separately. In order to
enhance the generalizability of the model, various methods, including GANs, might be
employed to generate novel MRI images that would further enhance the database and treat
different levels of the model in measure. Implementation of cloud-computing such as AWS
SageMaker and Google Cloud Al would be able to relieve the computational demands
that may strain the local systems and hence the model would be available to clinics with
less infrastructure. This exposes hospitals with insufficient resources to deploy highly
intensive computational models like Attention UNet since such models shall be deployed
in the cloud away from the hospitals. Models need to be easily integrated into radiology
software or PACS (Picture Archiving and Communication Systems) to streamline the
process for clinicians.
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