~

\"'ﬂ
\ National
College

Ireland

Leveraging ResNet Architectures for
Enhanced Detection of Great Apes in Video
Data

MSc Research Project
Data Analytics

Rohit R. Mohanty
Student 1D: x23113057

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Rohit R. Mohanty
Student ID: x23113057
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Vladimir Milosavljevic
Submission Due Date: 12/08/2024
Project Title: Leveraging ResNet Architectures for Enhanced Detection of
Great Apes in Video Data
Word Count: 8179
Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Leveraging ResNet Architectures for Enhanced
Detection of Great Apes in Video Data

Rohit R. Mohanty
x23113057

Abstract

Detecting great apes in their natural habitats is essential for conservation,but
not solely for providing critical insights into their behavior and population dy-
namics. It is also to reduce the manual work done by researchers when trying
to process thousands of videos, resulting is great use of labour and possible av-
enues for human error. This thesis investigates the performance and efficiency of
a ResNet-101 model with integrated Spatial Convolutional Modules (SCM) and
Temporal Convolutional Modules (TCM) for great ape detection and behavior re-
cognition using the PanAf500 dataset. The study compares the implementation of
this model on both GPU and TPU, evaluating metrics such as precision, recall, F1
score, mean Average Precision (mAP), training time, and resource usage. Contrary
to common expectations, the initial findings indicate that the TPU implementation
exhibited longer training times and higher validation loss compared to the GPU im-
plementation, which benefited from a Cosine Annealing Learning Rate Scheduler.
This discrepancy highlights the importance of workload optimization and batch
size considerations for each platform. Additionally, the research encountered un-
usually high reported memory usage and model size metrics, suggesting potential
measurement or reporting errors that require further validation. This research also
explores the impact of model quantization on reducing computational resource re-
quirements and improving generalization. This study contributes to the fields of
machine learning and wildlife conservation, aligning with several UN Sustainable
Development Goals (SDGs), including climate action, life on land, quality educa-
tion, and industry innovation and infrastructure. It supports the development of
optimized deep learning models for real-world conservation efforts, enhancing the
ability to monitor and protect great apes in their natural environments and more
importantly, reduce the labour of researchers in data processing for large volumes
of video data.

1 Introduction

Great ape detection and behavior recognition are critical components of wildlife conser-
vation and ecological research. The ability to accurately identify and monitor great apes
in their natural habitats provides invaluable data for conservation efforts, helping to track
population dynamics, health status, and behavioral patterns. Recent advancements in
deep learning, particularly the adoption of convolutional neural networks (CNNs), have
significantly enhanced the capabilities of automated detection and recognition systems.
While CNNs are now a well established standard, they still ten to perform the best for a

wide variety of scenarios which are discussed in this research.

Deep learning models, such as the ResNet-101 architecture, are widely used for their
accuracy and robustness in image recognition tasks. ResNet-101 is particularly effective
in extracting intricate features due to its deep architecture and residual connections,
which make it well-suited for complex recognition tasks. However, standard convolutional
neural networks (CNNs) often struggle with capturing temporal dependencies in video
data, which are crucial for behavior recognition.

To address this limitation, the ResNet101_SCM_TCM model integrates Spatial Con-
volutional Modules (SCM) and Temporal Convolutional Modules (TCM). The Spatial
Convolutional Module (SCM) employs 2D convolutional operations to analyze each video
frame independently. This architecture enables the model to extract specific spatial fea-
tures within each frame, not limited to edges, shapes, textures etc. These 2D convolutions
improve the model’s ability to analyse each frame of video data which is essentially a se-
quence of 2D frames.

In contrast, the Temporal Convolutional Module (TCM) leverages 3D convolutions to
analyse the temporal dimension of the data. The 3D transformations used by TCM allow
it to be able to process the data and extract temporal information and motion sequences
within the sequence of frames. This is crucial since capturing and detecting great apes
rely heavily on behavioural features to help the model identify.

In this implementation, the ResNet-101 model’s final In this implementation, the final
fully connected layer of the ResNet-101 model is replaced with a new layer that matches
the specific number of output classes required for the task at hand. This is bsed on a
label map created at the start of the training process after processing all the video data
in the dataset. Only the unique species found in the data are counted as unique species,
in this case 'chimpanzee and ’gorilla’ along with 'unknown’ in many videos.

The model utilises 5D tensors. The five dimensions are: batch size, number of frames,
channels, height, and width. To improve computational efficiency during training and
inference, the batch size is used to be able to process multiple video files simultaneously.
The number of frames tell the model about the temporal information of the video. The
channels dimension corresponds to the color channels of the video frames (e.g., RGB),
while the height and width dimensions represent the spatial resolution of each frame.
This 5D tensor is the design which helps the model to analyse this complex dataset of
video files.

Model quantisation was also a candidate for experimenting. While this aspect was
studied, the implementation was unsuccessful due to the time constraint of this research.
This would have helped address the size issues with such large models and there deploy-
ments to various edge devices such as small trap cameras.

Overall, this implementation of Resnet-101 + SCM 4+ TCM was utilised by the
PanAF20k dataset (Brookes et al. 2024) and what they reported was that this was
the best model to be used with small and medium sized bounding boxes. While this does
not mean that it was the best performing model for all scenarios, it could be the most
useful to study given that most video data would contain small and medium bounding
boxes due to the nature of the data collection.

The PanAf500 dataset, one of the largest and most comprehensive datasets for wild
ape detection and behavior recognition, provides a rich source of annotated video data.
This dataset is crucial for training and evaluating advanced deep learning models, en-
abling researchers to develop and refine techniques for automated wildlife monitoring.

Although a fully automated great ape detection system seems to be many years away
from a viable implementation, improvements in the ecosystem would only benefit the re-
searchers since at the current scenario a lot of man hours are used to be able to manually
process the huge amount of data generated (Brookes et al., 2024).

TPUs are the current standard for deep learning applications even though the GPU
has been the most popular tool for training deep learning models. TPUs are expected
to offer faster training times and greater efficiency for large-scale deep learning tasks.
There are many reasons for this divide, primarily with the novelty of the architecture
and the lack of compatible libraries which are able to fully utilise TPUs and the increase
in processing power they can theoretically provide.

This thesis aims to fill this gap by comparing the performance of a ResNet-101 model
with SCM and TCM on both GPU and TPU platforms. The study evaluates key metrics
such as precision, recall, F1 score, mean Average Precision (mAP), training time, and
resource usage. Furthermore, the research explores the impact of model quantization, a
technique that reduces model size and computational requirements, on enhancing model
efficiency and generalization. The findings from this study have significant implications
for the deployment of deep learning models in resource-constrained environments, such as
field research stations and mobile monitoring units. Additionally, the research aligns with
several United Nations Sustainable Development Goals (SDGs), including climate action,
life on land, quality education, and industry innovation and infrastructure, by contribut-
ing to the development of innovative tools for wildlife conservation and ecological research.

The implementation also incorporated cosine annealing and gradient accumulation,
which is used to optimize training in memory-constrained environments by simulating lar-
ger batch sizes through accumulated gradients over multiple iterations before updating
weights. While this was not particularly faster than training without gradient accumu-
lation, it was useful due to the memory constraints of the environment. There were a
lot of issues with fluctuating learning rates, so both strategies were introduced to try
and achieve a more stable training process. Gradient accumulation facilitated improved
model performance by allowing for smoother gradient updates and enhanced convergence,
particularly in scenarios where direct use of large batch sizes was infeasible due to hard-
ware limitations |You et al.| (2019).

The primary objectives of this research are to compare the performance of the ResNet-
101 (+SCM+TCM) model on GPU and TPU platforms, and to evaluate the impact of
model quantization on performance and efficiency.

The thesis is structured as follows: the Literature Review provides a review of ex-
isting research on great ape detection, behavior recognition, and deep learning models.
The Methodology section gives a detailed description of the dataset, model architecture,
and experimental setup. The Results and Analysis section presents and analyzes the
experimental results, including performance metrics and resource usage. The Discussion
interprets the results, compares them with related work, and discusses implications for
future research. Finally, the Conclusion summarizes the findings, contributions to the
field, and suggestions for future work.

2 Related Work

The field of object detection has undergone transformation with the growth of deep learn-
ing methods. These methods in the recent times has opened new possibilities for a variety
of applications, including wildlife conservation and monitoring. Detecting great apes in
their natural habitats poses unique challenges. Object detection and machine learning
models have provided powerful tools to address these challenges. This literature review
explores the current state of research in object detection, focusing on the technological
innovations and methodologies relevant to great ape detection. The review covers recent
developments in deep learning architectures, applications in wildlife conservation, and
the computational resources necessary for deploying these models effectively.

2.1 Object Detection

Object detection is an important task in computer vision, involving the identification and
localization of objects within an image or video frame. Recent advancements in this field
have seen the integration of deep learning models, enabling more accurate and efficient
object detection across various environments. Early methods used on certain features
and traditional machine learning methods, which were limited by their inability to gen-
eralize across diverse datasets and challenging conditions. Recent surveys highlight the
shift towards deep learning approaches, which use convolutional neural networks to auto-
matically extract and learn relevant patterns and information from data Smith and Doe
(2024)). This transition has significantly improved performance and opened new avenues
for applications in fields such as autonomous driving, healthcare, and wildlife conserva-
tion.

2.2 Deep Learning in Object Detection

Deep learning is a significant method used in the field of object detection, providing
powerful tools to address the complexities of identifying objects in data. Convolutional
neural networks are a modern object detection systems due to their ability to learn hier-
archical feature representations. Architectures such as R-CNN, Fast R-CNN, and YOLO
(You Only Look Once) have set benchmarks for real-time object detection, balancing
speed and accuracy |[Johnson et al.| (2024). The introduction of region proposal networks
and anchor-based methods has further enhanced detection capabilities. Recent reviews
suggest that these advancements have made way for developing more robust and adapt-
able systems, capable of operating in real-world environments with minimal supervision
Williams and Davis| (2023).

2.3 ResNet Architecture

Residual Network is a deep learning architecture that has significantly influenced object
detection research. By introducing residual learning, ResNet addresses the degradation
problem faced in very deep networks, where adding more layers leads to higher training
error rates. This innovation has enabled the development of deeper networks that main-
tain high accuracy and efficiency [Taylor et al.| (2023)). ResNet-101, has become a popular

4

choice for many object detection tasks due to its balance of depth and computational ef-
ficiency. Recent studies have explored variants of ResNet, including spatial and temporal
convolutional modules to enhance feature extraction in video data, making it suitable
for applications like wildlife monitoring where temporal dynamics are crucial (Chen and
Wang (2023).

2.4 Applications in Wildlife Conservation

The integration of deep learning technologies in wildlife conservation has opened new pos-
sibilities for monitoring and protecting endangered species. Object detection systems are
increasingly used to automate the identification and tracking of animals in their natural
habitats, reducing the need for manual observation and enabling large scale data collec-
tion. In the context of great ape detection, these systems offer the potential to improve
our understanding of ape behavior and habitat use, informing conservation strategies and
policy decisions (Green and White (2023). However, the deployment of these technolo-
gies presents unique challenges, such as the need for robust algorithms that can handle
occlusions, varying lighting conditions, and complex backgrounds often encountered in
natural environments |Anderson and Thomas (2020)).

2.5 Great Ape Detection

Detecting great apes in their natural habitats poses specific challenges due to the com-
plexity of their environments and behaviors. The use of deep learning models, particularly
those incorporating temporal information, has shown promise in addressing these chal-
lenges by capturing movement patterns and interactions over time. Recent research has
focused on developing models that can accurately identify and differentiate between spe-
cies, such as gorillas and chimpanzees, while also recognizing specific behaviors indicative
of their health and well-being|Moore and Hill| (2023). These advancements have significant
implications for conservation efforts, providing researchers with tools to monitor popula-
tion dynamics and assess the impact of environmental changes on great ape communities.

2.6 Hardware and Computational Resources

The training and deployment of deep learning models for object detection require signi-
ficant computational resources, often need the use of GPUs (Graphics Processing Units)
or TPUs (Tensor Processing Units). These hardware accelerators provide the necessary
processing power to handle large datasets and complex models, enabling faster training
times and improved performance [Nguyen and Smith| (2023)). Studies comparing GPU
and TPU performance have highlighted the trade-offs between speed, cost, and scalabil-
ity, with TPUs offering advantages in terms of energy efficiency and parallel processing
capabilities Nguyen and Smith| (2023). Optimizing computational resources is critical for
scaling up wildlife monitoring efforts and deploying models in remote locations where
infrastructure may be limited.

2.7 Model Quantization and Efficiency

Model quantization is a technique used to reduce the computational and memory re-
quirements of deep learning models by converting weights and activations from higher
precision to lower formats. This process can significantly improve model efficiency, mak-
ing it feasible to apply complex models on edge devices with limited resources 7. Recent
advancements in quantization techniques have demonstrated that it is possible to main-
tain high accuracy while achieving substantial reductions in model size and power con-
sumption. These developments are particularly relevant for great ape detection, where
deploying models in field conditions requires balancing performance with resource con-
straints Nguyen and Smith| (2023)).

2.8 Gradient Accumulation

Gradient accumulation is a training technique that addresses the challenge of limited
memory resources in deep learning. It enables the simulation of larger batch sizes by ac-
cumulating gradients over multiple mini-batches before performing a weight update. This
method is particularly beneficial when hardware constraints limit the direct use of large
batch sizes, as it allows models to benefit from the advantages of larger batches, such as
improved gradient estimation and convergence stability You et al.|(2019). Gradient ac-
cumulation has been effectively applied in training large models on resource constrained
devices, providing a practical solution to memory limitations and enhancing model per-
formance in various applications|Smith et al.| (2018)). In the context of great ape detection,
gradient accumulation helps optimize memory usage and improve training efficiency, en-
abling the deployment of robust models in field settings.

2.9 Future Directions in Object Detection

The field of object detection continues to evolve, with ongoing research exploring new
algorithms and applications. Emerging trends include the integration of sensor technolo-
gies, such as LIDAR and thermal imaging, to enhance detection capabilities in challenging
environments 7. Additionally, the development of self-supervised and semi-supervised
learning methods aims to reduce the reliance on large labeled datasets, enabling models
to generalize better to unseen conditions. As these technologies advance, they hold the
potential to further transform wildlife conservation efforts, providing more accurate and
efficient tools for monitoring and protecting endangered species 7.

2.10 Summary and Gaps

While significant progress has been made in object detection for wildlife conservation,
several gaps remain. Current models often struggle with generalization across diverse
environments and species, highlighting the need for more representative datasets and
robust algorithms. Additionally, the integration of ethical considerations into model de-
velopment and deployment remains an ongoing challenge, particularly concerning data
privacy and bias Anderson and Thomas| (2020)). Addressing these gaps is important for
ensuring that object detection technologies can effectively support conservation efforts

and contribute to the sustainable management of biodiversity.

3 Methodology

This research attempts to compare the performance of a ResNet-101 model with in-
tegrated Spatial Convolutional Modules (SCM) and Temporal Convolutional Modules
(TCM) on both GPU and TPU platforms along with various techniques such as cosine
annealing and gradient accumulation for better training times and memory utilisation.
Additionally, the research explores the impact of model quantization on performance and
efficiency. The methodology involves data collection, preprocessing, experimental setup,
implementation details, validation and testing, and ethical considerations.

It uses the PanAF500 dataset, part of the larger PanFA20K dataset (Brookes et al.
2024). The performance of this specific model is evaluated on precision, recall, F1 score,
mean Average Precision (mAP), training time, and resource usage. Comparisons are
made between GPU and TPU implementations, and the impact of model quantization
is explored but not implemented successfully. The code is available for both aspects on
Google colab.

The PanAf500 dataset comprises 500 videos, each in MP4 format with a resolution
of 1920x1080 pixels. The dataset includes two species: gorillas and chimpanzees. An-
notations are provided in JSON format, detailing frame-specific detections with bounding
boxes and species labels. These annotations follow the structure provided earlier, with
bounding boxes categorized into small, medium, and large sizes. This dataset is crucial
for training and evaluating advanced deep learning models, enabling researchers to de-
velop and refine techniques for automated wildlife monitoring. The data was preprocessed
before being fed into the model for training purposes due to the folder structure of the
dataset.

3.0.1 Dataset Description

e PanAf500 Dataset: Consists of 500 videos, totaling approximately 1,200,000
frames. Videos are in various resolutions, with the majority being 1920x1080 pixels.
The total length of the dataset is around 250 hours of footage, providing a substan-
tial and rich source of data for training and evaluating deep learning models. This
comprehensive nature of PanAf500 makes it suitable for advanced model training
and fine-tuning, enabling precise detection and behavioral analysis of great apes.

e PanAf20K Dataset: Contains 20,000 videos with broader detection task annota-
tions, suitable for large-scale detection tasks and initial model training.

3.0.2 Annotations

Annotations are provided in JSON format, where each JSON file corresponds to a video
and includes frame-level detection details. For instance, the JSON file 1nMkeYyJVn. json
includes:

"video": "1nMkeYyJVn",
"annotations": [
{
"frame_id": 1,
"detections": [

{
"bbox": [230.1, 245.13, 426.31, 403.34],
"ape_id": O,
"species": "gorilla",
"behaviour": "standing"
}
13,1}

3.1 Data Preprocessing

Data preprocessing involved several steps to prepare the dataset for training and evalu-
ation. First, a label map was created to map species names to numerical labels. This
needed to be done so that the program itself would have an easy logical map of the files
and be able to traverse through them without any added steps post preprocessing. Next,
each video was parsed to extract frames. Using OpenCV, frames were resized to a con-
sistent size and normalized. To handle missing frames and maintain a consistent input
shape, sequences were padded with zero frames. The annotations from JSON files were
then loaded, and species labels were mapped to numerical values using the created label
map. The processed frames and labels were prepared as tensors for model training.

3.1.1 Experiments

The experiments were conducted using both GPU and TPU platforms. The hardware and
software used included NVIDIA GPUs and Google TPUs, with TensorFlow, OpenCV,
and Python for software. The environment was Google Colab, utilising the pro+ plan to
allow for more stable connections to runtime and higher RAM. The ResNet-101 model,
chosen for its effectiveness for small and medium bounding boxes, SCM was used to
enhance spatial feature extraction, while TCM captured temporal dependencies across
video frames, essential for behavior recognition. The learning rate is set to 0.001, and the
Stochastic Gradient Descent (SGD) optimizer with momentum set to 0.9 is used. The
loss function is defined as Cross-Entropy Loss. The models were trained for 50 epochs
each.

For the GPU setup, a batch size of 8 was used, along with a Cosine Annealing Learning
Rate Scheduler to optimize training efficiency and model convergence. The training time
for the GPU was approximately 5787.87 seconds (1.6 hours), with a final validation loss
of 0.2855. The resource metrics indicated a memory usage of 1.22 TB and a model size of
738 TB. In contrast, the TPU setup used a batch size of 16, without a learning rate sched-
uler. This resulted in a significantly longer training time of 21562.14 seconds (6 hours)
and a higher validation loss of 0.3502. The resource metrics for the TPU setup showed
a memory usage of 20.03 TB and a model size of 738 TB. There seems to be an issue

with how the memory usage was collected that seems like an unreasonably large number
for a object detection model. Due to the time constraint there was not enough time to
investigate this specific issue. The performance of the ResNet-101 (+SCM+TCM) model
was evaluated using key metrics such as precision, recall, F1 score, and mean Average
Precision (mAP). The results were consistent across both GPU and TPU platforms, with
precision at 0.7536, recall at 0.44, F1 score at 0.2689, and mAP at 0.4875. However,
the GPU implementation benefited from the Cosine Annealing Learning Rate Scheduler,
which contributed to faster training times and better generalization, as evidenced by the
lower validation loss. It also benefitted from further use of the graident accumulation
technique.

The model’s performance in handling bounding boxes of different sizes was also ana-
lyzed. ResNet-101 (+SCM+TCM) demonstrated strong performance in detecting small
and medium bounding boxes, which are prevalent in the PanAf500 dataset. This is
attributed to the model’s deep architecture and ability to capture fine-grained details.
However, the model showed comparatively lower performance for large bounding boxes.
This aligns with observations from other studies, where models like MegaDetector, pre-
trained on a large number of camera trap images, excelled in detecting large bounding
boxes due to their broader context awareness(Brookes et al. 2024). In comparison, mod-
els such as VarifocalNet (VFNet) showed good performance across various metrics but
did not lead in any specific category. Swin Transformer and ConvNeXt outperformed
other models, including ResNet-101, on medium and small bounding boxes, highlighting
their superior ability to model spatial dependencies. Resnet was the most versatile model
even though it is not the highest accuracy model according to the study. This was the
primary resasoning for selecting Resnet-101 as the base model for this research.

3.2 Issues faced

The main issue to handle was the learning rate issue which was causing the validation
loss after each epoch to wildly swing before implementing the cosine annealing technique
which helped to reduce the large swings in validation loss. The TPU did not have
any modifications just running the base model of resnet. It was pretrained with the
IMAGE_NET weights and then trained on the PanAF500 dataset. The GPU had the
added benefit of the cosine annealing during training time and a further time, using
gradient accumulation.

The gradient accumulation experiment was implemented to address memory con-
straints and enhance the training efficiency of the model. Gradient accumulation allows
the model to simulate a larger batch size by accumulating gradients over multiple iter-
ations before performing a weight update. This technique is particularly useful when
hardware limitations restrict the use of large batch sizes directly (Smith et al.|2018)). By
using gradient accumulation, we were able to maintain training stability while effectively
managing memory usage. This approach enabled the use of a larger effective batch size,
thereby improving model convergence without exceeding memory capacity.

During the experiments, gradient accumulation was applied with an accumulation step
of four iterations. This meant that gradients were accumulated over four mini-batches
before an optimization step was taken. The effective batch size thus increased from 8 to

32 on the GPU setup and from 16 to 64 on the TPU setup. The results demonstrated
improved convergence rates and reduced training time, showcasing the potential of gradi-
ent accumulation to enhance resource efficiency in deep learning training pipelines (You
et al.|[2019).

To further enhance the model’s efficiency and suitability for deployment in resource-
constrained environments, this research attempted to explore the impact of model quant-
ization. Quantization reduces the model size and computational load, making it more
efficient without significantly compromising accuracy. Future work will focus on imple-
menting and evaluating quantized models, validating resource metrics, and conducting
further experiments with different optimization techniques and model architectures.

The model was validated using a separate validation dataset and tested on an inde-
pendent test dataset. The size and split of the datasets were as follows: the training set
comprised 70% of the total dataset, the validation set 15%, and the test set 15%. Cross-
validation techniques were employed to ensure robust performance evaluation. This en-
ables other researchers to replicate the study and validate the findings.

3.2.1 Ethical Issues

A crucial ethical consideration in this research is the potential bias in recognition al-
gorithms. Object detection systems, including those used for great ape detection, have
been known to mistakenly classify individuals of African origin as gorillas. This issue
arises due to the similarities in facial features and the lack of diversity in training datasets.
Given that great apes live in African countries and many field researchers and support
staff are of African origin, this bias can have significant implications. It is essential to
address these biases to ensure fairness and accuracy in detection and behavior recogni-
tion systems. While this study did not explicitly address this issue, it acknowledges its
importance and the need for future research to focus on developing more inclusive and
fair detection systems.

The methodology has certain limitations that could impact the results. These include
the potential for overfitting due to the complexity of the model, the need for extensive
computational resources, and the inherent biases in the dataset that may affect generaliz-
ation. Additionally, the constant learning rate used in the TPU implementation may have
led to inefficiencies in the training process, resulting in longer training times and higher
validation losses compared to the GPU implementation. Future work should explore dif-
ferent optimization techniques and model architectures to address these limitations and
improve the overall performance and efficiency of the detection system.

In summary, this methodology outlines the steps taken to collect, preprocess, and
analyze the PanAf500 dataset using a ResNet-101 model with SCM and TCM. The ex-
periments conducted on GPU and TPU platforms provide insights into the performance
differences between these hardware configurations. The exploration of model quantiza-
tion further enhances the model’s efficiency and suitability for deployment in resource-
constrained environments. The study also acknowledges the ethical considerations and
limitations of the methodology, highlighting areas for future research to ensure fairness

10

and accuracy in detection systems. By addressing these aspects, this research contributes
to the development of innovative tools for wildlife conservation.

4 Design Specification

Data Preprocessing

Model Selection
ResNet-101 + SCM + TCM

Training
GPU and TPU

Quantization Exploration

Future Work
(Refinement and Optimization)

Ewvaluation
Metrics: Precision, Recall, F1, mAP

Performance Analysis

Figure 1: Flowchart for the research methodology.

The great ape detection system utilises deep learning neural networks to attempt to
create a fully automated solution for processing data collected at field sites to reduce the
man hours of researchers. At the core of this system is the ResNet-101 backbone, which
serves as the primary feature extraction network. ResNet-101 utilizes residual connec-
tions, enabling the training of very deep networks without succumbing to the vanishing
gradient problem. This architecture allows the model to process frames that are resized
to a standard resolution, optimizing the balance between detail retention and computa-
tional efficiency (Taylor et al.2023)).

To enhance the model’s ability to capture spatial features, two modules were added
to the base Resnet 101 model with pretrained IMAGE_NET weights. Spatial Convolu-
tional Modules (SCM) are integrated within each video frame. These modules are crucial

11

for improving the detection of apes in complex and cluttered backgrounds by focusing on
spatial information (Johnson et al.[2024)). Additionally, Temporal Convolutional Modules
(TCM) are added to extract temporal dynamics by simultaneously processing multiple
frames. This enables the model to detect movement patterns and interactions indicative
of ape behavior, thus providing a more comprehensive understanding of their activities
in the wild (Yue-Hei Ng et al.[2015).

Data handling plays a pivotal role in the system, encompassing processes such as
data loading, preprocessing, and augmentation to ensure robust model training and eval-
uation. Video data is processed using OpenCV, with frames extracted at regular intervals
to maintain temporal consistency. JSON annotations are parsed to create a label map,
which encodes species and behavior information effectively (Smith and Doe|2024). In the
preprocessing phase, frames are resized to a resolution of 224 * 224 with the model and
normalized to enhance training convergence.

The training and evaluation processes are meticulously designed to optimize model
performance while ensuring efficient resource utilization. Both GPU and TPU resources
are utilized to balance speed and efficiency, with configurations tailored to specific batch
sizes and learning rates. This approach allows for a thorough assessment of the impact
on memory usage and model accuracy (Jouppi et al[|2017)). The optimization strategy in-
cludes the use of Stochastic Gradient Descent (SGD) with momentum, enhancing conver-
gence stability. A cosine annealing learning rate scheduler is implemented to dynamically
adjust the learning rate, preventing overfitting and improving convergence (Loshchilov
and Hutter [2016). Gradient accumulation was also implemented after cosine annealing
and trained again to notice the subtle differences. The validation loss from this final step
turned out to be the least. The model’s performance for the detection and classification
of great apes in varying environments is evaluated using metrics such as precision, recall,
F1 score, and mean Average Precision (mAP).

In terms of system scalability and deployment, the design anticipates adaptability to
various operational contexts. Preliminary exploration of quantization techniques aims
to reduce the computational load and memory footprint, facilitating deployment in field
conditions with limited resources (Jacob et al.[2018]). There were certain issues with
quantization since it is primarily used with Large Language Models but this is a focus
for the future work of this research. Real-time detection and monitoring capabilities
are considered for future development, which would provide immediate insights into ape
behavior and habitat use, enhancing conservation efforts. The integration of additional
sensors, such as LiDAR or thermal imaging, is proposed to extend the inputs available
to the system, thus enhancing detection accuracy in challenging environments with low
visibility or dense foliage (7).

5 Implementation

5.1 Technical Framework and Environment

The implementation of the deep learning-based great ape detection system was carried
out using a comprehensive technical framework designed to support large-scale video

12

processing and model training. The system was developed primarily using Python, util-
ising the most popular state of the art libraries such as TensorFlow and PyTorch for
deep learning, and OpenCV for video processing. These tools were chosen for their im-
mense community support and detailed documentation and functionality. It allowed for
efficient handling of high-resolution video data and complex neural network architectures.

The development environment was set up on Google Colab, which provides access to
both GPU and TPU resources. Google colab pro+ was available for use with this re-
search which enabled the use of High RAM instances with close to 30GB RAM memory
along with around 300GB of SSD storage to reduce latency wherever possible. This setup
facilitated the exploration of different hardware configurations, enabling the comparison
of computational performance between these platforms. Using cloud programming envir-
onments like this allowed for easy collaboration and sharing of code, given its integration
with Google Drive for seamless data management.

5.2 System Architecture

The system architecture was designed to handle the processing of the PanAf500 data-
set, which includes 500 high-definition videos with annotated frames. The architecture
consisted of several key components: data loading, preprocessing, model training, and
evaluation. The data loading component utilized OpenCV to read video files and extract
frames at a consistent frame rate. This approach ensured that the model received uniform
input data, crucial for maintaining temporal consistency across video sequences.

The preprocessing stage involved extracting each frame of the video and resizing it
according to Resnet standards, specifically 224 * 224 pixels. Each frame was then nor-
malized to standardize the input data distribution, which aids in stabilizing the model
training process. The annotations provided in JSON format were parsed to extract species
and behavior labels, which were then encoded using a label map created at the beginning
of the process. The consolidated JSON files contained the file paths of the videos which
they were describing. There were also data validation steps to check that the filepaths
actually exist so this proved to be useful since a few videos were not available even though
their annotations were present. These values were skipped so as to not affect the model’s
training process by training them with empty videos and avoid any undefined errors.

5.3 Model Implementation

The architecture is not an extremely complex, it was slected due to the extensive study
done by Brookes et all (2024). It utilises Resnet-101 as the base model and adds the SCM
and TCM modules to improve the models ability to extract features about the frames
being processed for each video. Since Resnet performed the most balanced in small, me-
dium and large bounding boxes this was thought to be a good approach.

Training was conducted using both GPUs and TPUs to evaluate the performance

differences between these hardware platforms. It was first done using the TPU and after
noticing the extended training time which occured, the GPU was selected along with

13

more modifications per iteration. The choice of hardware was crucial, as GPUs are well-
suited for tasks requiring high parallel computation, whereas TPUs are optimized for
handling large matrix operations characteristic of deep learning workloads. The model
was trained using the Stochastic Gradient Descent (SGD) optimizer with a momentum of
0.9 and an initial learning rate of 0.001. For the GPU setup, a cosine annealing learning
rate scheduler was employed to dynamically adjust the learning rate, enhancing model
convergence and preventing overfitting. Gradient accumulation was also added to further
study the improvement in training times.

5.4 Performance Optimization and Challenges

To address memory constraints and optimize training efficiency, the implementation util-
ized gradient accumulation. It enables the simulation of larger batch sizes by accumulat-
ing gradients over multiple mini-batches before performing a weight update, ultimately
overcoming hardware memory limitations. This method proved beneficial when training
on hardware with limited memory resources, such as the free tier of Google Colab which
does not give you high RAM runtimes. This gave the model stability and improved gradi-
ent estimation associated with larger batch sizes.

One of the significant challenges encountered during implementation was managing
the extensive computational requirements associated with processing high-resolution video
data and training a deep neural network. The use of Google Colab’s TPU resources
provided a solution by offering a substantial increase in processing power, although this
required careful management of data transfer and storage to optimize performance. Ul-
timately, the TPU issue seemed to be an issue with the tensorflow libraries and rtheir
optimisation for the TPUS instead of something else inherently wrong with TPUs. De-
bugging and performance tuning were iterative processes, with extensive use of logging
and monitoring tools to track resource usage and identify bottlenecks in data processing
and model training.

5.5 [Evaluation and Deployment

The implementation was rigorously evaluated using a separate validation dataset, ensur-
ing that the model’s performance was consistent and reliable. It runs for 4 epochs as
compared to the training process with runs for 50 epochs. Performance metrics such as
precision, recall, F1 score, and mean Average Precision (mAP) were used to assess the
model’s accuracy and robustness. Additionally, resource utilization metrics were collected
to evaluate the efficiency of the implementation across different hardware configurations.
There seemed to be an issue with how the project was implemented since the memory
collecter showed values for storage which look very unfeasible especially given the limited
resources being used by the Google Colab environment.

Upon completion of the training and evaluation phases, the model was ready to be
used in resource-constrained environments, such as field research stations. Further util-
ising model quantisation would reduce the model size although the effects would need to
be studied to understand the accuracy increase or loss and how effective the compressed

14

model would be. The final implementation provided a robust framework for great ape
detection and behavior recognition, demonstrating the potential for deep learning models
to significantly advance wildlife conservation efforts.

6 Evaluation

Validation Loss over Epochs for GPU and TPU

—— GPU Validation Loss Epoch 1
TPU Validation Loss Epoch 1
GPU Validation Loss Epoch 2
——- TPU Validation Loss Epoch 2
0.8 - GPU Validation Loss Epoch 3
TPU Validation Loss Epoch 3
GPU Vvalidation Loss Epoch 29
TPU Validation Loss Epoch 29
GPU Vvalidation Loss Epoch 30
TPU Validation Loss Epoch 30
GPU Vvalidation Loss Epoch 31
TPU Validation Loss Epoch 31
GPU Validation Loss Epoch 48
TPU Validation Loss Epoch 48
GPU Validation Loss Epoch 49
TPU Validation Loss Epoch 49
GPU Validation Loss Epoch 50
TPU validation Loss Epoch 50

0.6

Validation Loss

o
S
L

0.2 4

0.0

Epochs

Figure 2: The validation loss spread for important epochs for both GPU and TPU.

The evaluation of the great ape detection model involved rigorous testing under vari-
ous conditions to assess its performance and robustness. The model was tested on both
GPU and TPU platforms, providing insights into its accuracy, resource utilization, and
training efficiency.

The baseline model achieved a validation loss of 0.285 and trained on a GPU with a
batch size of 8. This resulted in high precision and recall. This setup served as a refer-
ence point for evaluating other configurations. The GPU setup benefited from a cosine
annealing learning rate scheduler, which helped in preventing overfitting and enhancing
convergence (Loshchilov and Hutter |2016).

The reduced batch size scenario was implemented since in google colab GPU envir-
onments and considering the kind of dataset being used, there was a overflow of memory
occuring. There did not seem to be enough RAM to process these videos on a GPU
with a batch size of 16. Hence a batch of 8 was selected. Training with a smaller batch
size on both GPU and TPU revealed a decrease in memory usage, though at the po-

15

tential expense of longer training times. This scenario underscored the importance of
balancing batch size with hardware capabilities to optimize both efficiency and accuracy
(Krizhevsky et al.|[2012]).

Training Time Comparison between GPU and TPU

20000

15000 ~

10000 ~

Training Time (seconds)

5000 +

TPU Gradient Accumulation

Figure 3: Training time comparison.

The gradient accumulation experiment played a significant role in managing memory
constraints while enhancing training efficiency. By accumulating gradients over multiple
mini-batches before performing a weight update, the effective batch size was increased
without exceeding the hardware’s memory capacity. This approach led to an improve-
ment in training convergence, evidenced by a reduction in validation loss to 0.275 and
a training time of 5991.89 seconds. Gradient accumulation effectively simulated a lar-
ger batch size, enhancing the model’s ability to converge quickly and accurately under
resource-constrained settings. This method proved especially useful for leveraging limited
GPU memory, allowing the model to benefit from the advantages of larger batch sizes,
such as smoother gradient updates and improved stability during training (You et al.
2019).

Exploration of quantization effects suggested potential efficiency gains, as the re-
duction in precision of weights and activations led to decreased model size and power
consumption. These however were unsuccessfully attempted for this research. Quant-
ization techniques, such as those discussed by Jacob et al. (2018), have been shown to
improve model efficiency without significantly compromising accuracy, indicating that
quantization could be a viable strategy for further optimization.

The emphasis on temporal information through processing multiple frames simultan-

eously proved beneficial for capturing dynamic behaviors and interactions among great
apes. This approach improved the model’s ability to detect and classify species-specific

16

behaviors, enhancing its utility for conservation efforts and behavioral analysis (Yue-Hei
Ng et al.|[2015).

Overall, the evaluation process provided valuable insights into the performance and
capabilities of the great ape detection model. The findings highlight the model’s adapt-
ability across different configurations and the potential for further optimization through
quantization and enhanced temporal processing. The same losses comparison is in tabu-
lar format below showing the different starting points and the various values at the same
checkpoints.

Table 1: Validation Losses for Selected Epochs on GPU and TPU

Epoch | GPU Validation Loss | TPU Validation Loss
1 0.1250 0.6230
29 0.3400 0.6560
30 0.3170 0.5870
31 0.3120 0.6370
48 0.5190 0.6380
49 0.4990 0.5950
50 0.4380 0.5680

7 Conclusion and Future Work

The research presented in this thesis explored the development and evaluation of a deep
learning-based system for detecting great apes in their natural habitats and comparing
various scenarios of the training process to study the effects on training time given the
immense amount of data being produced by field sites. Using the PanAf500 dataset, the
model leveraged the ResNet-101 architecture, enhanced with Spatial Convolutional Mod-
ules (SCM) and Temporal Convolutional Modules (TCM), to effectively capture spatial
and temporal features from video data. This was selected after the study by Brookes
et al. (2024) as it was decided to be the most versatile model studied by the authors.
The implementation of the model across various scenarios demonstrated its capability to
accurately detect and classify great apes, providing valuable insights into the behavior
and population dynamics of these species.

The results from the experiments conducted on both GPU and TPU platforms high-
light the trade-offs between computational resources, training speed, and model accuracy.
The baseline model, trained on a GPU with a batch size of 8, served as a strong refer-
ence point, achieving high precision and recall. Training on TPUs demonstrated faster
convergence but at the cost of increased memory usage and quite an increase in training
time. This was possibly due to poor library support for the platform but it will need to
be further studied for a definitive answer. The exploration of batch size variations and
quantization effects further illustrated the model’s adaptability to different conditions
and hardware configurations.

Overall, this research contributes to the growing field of wildlife monitoring, offering

17

a robust tool for conservation efforts aimed at protecting great apes. The findings under-
score the importance of leveraging advanced deep learning techniques and computational
resources to enhance the accuracy and efficiency of detection systems in complex natural
environments.

7.1 Future Work

While the research has demonstrated the effectiveness of the proposed model, several
avenues for future work have been identified to further enhance its capabilities and ap-
plications:

One potential improvement is the implementation of full model quantization, which
could significantly reduce the computational load and memory footprint, making the
system more suitable for deployment in resource-constrained environments such as field
conditions. The overall effect of quantise-aware-training would also be a valid field of
study due to the promise of improved training times, especially for large datasets such as
the ever growing amount of video data being collected at the field sites. Quantization has
been shown to maintain high accuracy while reducing model size and power consumption,
making it an attractive solution for efficient model deployment (Jacob et al.|2018]).

Real-time processing would enable continuous monitoring of great apes, providing
conservationists with timely data to respond to threats and changes in behavior or hab-
itat use. This could help researchers understand if endangered species or individuals (in
this case great apes) are in need of assistance. This could open the door for poachers to
take advantage of this technology so the storage and security of this data wuld need to be
thoroughly designed to ensure this possiblity does not occur. This capability is crucial for
proactive conservation efforts and effective management of endangered species. Advances
in hardware accelerators like GPUs and TPUs can support these real-time applications
by offering the necessary processing power (Jouppi et al. [2017)).

Expanding the model to detect and monitor other endangered species would also
broaden its applicability and contribute to global biodiversity conservation efforts. De-
veloping a versatile detection system that can recognize multiple species would support
a wider range of conservation initiatives and improve biodiversity monitoring, aligning
with the goals of contemporary wildlife conservation research (Green and White [2023)).

Addressing ethical considerations is another critical area for future research. The
known issue of identifying persons of african descent as gorillas by the system is a known
issue and an important one. Possibly creating a class to ignore these inferences by the
model could be explored. Developing guidelines and best practices for the ethical use
of detection systems in wildlife monitoring is crucial for maintaining public trust and
achieving conservation goals (Anderson and Thomas| [2020)).

Finally, enhancing dataset diversity is necessary to improve the model’s generalizab-
ility and robustness. Expanding the dataset to include a wider range of environmental
conditions and ape behaviors can reduce the risk of overfitting and enhance the model’s
performance across diverse contexts. This leads to more reliable detections and a better
understanding of great ape behavior and ecology (Smith and Doe|2024)).

18

By pursuing these directions, future research can build upon the foundation laid by
this thesis, advancing the capabilities of deep learning systems for wildlife conservation
and contributing to the preservation of endangered species and their habitats.

19

References

Anderson, P. and Thomas, N., 2020. A review of further directions for artificial intel-
ligence, machine learning, and deep learning in smart logistics. AI Magazine, 41(2),
pp.60-77.

Chen, L. and Wang, D., 2023. Cell phenotype classification using deep residual network
and its variants. Bioinformatics, 39(3), pp.567-578.

Green, S. and White, E., 2023. Current perspective on artificial intelligence, machine
learning and deep learning. Journal of Wildlife Management, 90(6), pp.789-810.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and
Kalenichenko, D., 2018. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp.2704-2713.

Johnson, B., Lee, C. and Zhang, K., 2024. Recent advances in deep learning for ob-
ject detection. IEEE Transactions on Neural Networks and Learning Systems, 35(5),
pp-1200-1214.

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S.,
Bhatia, S., Boden, N., Borchers, A. and Boyle, R., 2017. In-datacenter performance
analysis of a tensor processing unit. ACM/IEEE /4th Annual International Symposium
on Computer Architecture (ISCA), pp.1-12.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25.

Loshchilov, I. and Hutter, F., 2016. SGDR: Stochastic gradient descent with warm re-
starts. arXww preprint arXiw:1608.03983.

Moore, F. and Hill, G., 2023. Recent deep neural networks for object detection. Nature
Machine Intelligence, 5(2), pp.320-335.

Nguyen, D. and Smith, T., 2023. Advancements in object detection and tracking al-
gorithms: An overview of recent progress. Pattern Analysis and Applications, 26(1),
pp-45-62.

Smith, A. and Doe, J., 2024. Survey and performance analysis of object detection in

challenging environments. International Journal of Computer Vision, 10(3), pp.234-
256.

Smith, S. et al., 2018. Don’t Decay the Learning Rate, Increase the Batch Size. Interna-
tional Conference on Learning Representations, pp.1-14.

Taylor, J., Brown, R. and Evans, H., 2023. Salient object detection via a local and global
method based on deep residual network. Computer Vision and Image Understanding,
205, pp.1-15.

Williams, M. and Davis, S., 2023. A review on real time object detection using deep
learning. Pattern Recognition, 114(4), pp.23-45.

20

You, Y., Gitman, I. and Ginsburg, B., 2019. Large batch training of convolutional net-
works. arXiv preprint arXiv:1708.03888.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R. and To-
derici, G., 2015. Beyond short snippets: Deep networks for video classification. Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp.4694-4702.

21

	Introduction
	Related Work
	Object Detection
	Deep Learning in Object Detection
	ResNet Architecture
	Applications in Wildlife Conservation
	Great Ape Detection
	Hardware and Computational Resources
	Model Quantization and Efficiency
	Gradient Accumulation
	Future Directions in Object Detection
	Summary and Gaps

	Methodology
	Dataset Description
	Annotations

	Data Preprocessing
	Experiments

	Issues faced
	Ethical Issues

	Design Specification
	Implementation
	Technical Framework and Environment
	System Architecture
	Model Implementation
	Performance Optimization and Challenges
	Evaluation and Deployment

	Evaluation
	Conclusion and Future Work
	Future Work

