===

)
National
Collegeof

[reland

Configuration Manual for Advancing Brain
Tumor Detection: Hybrid Layered Model
for Enhanced MRI Imaging Analysis

MSc Research Project

Master of Science in Data Analytics

Arun Murugan Marimuthu
23125179

School of Computing
National College of Ireland

Supervisor: SM Raza Abidi

‘-
National College of Ireland \ National

MSc Project Submission Sheet Collegeof
c Project Submission Shee
Ireland
School of Computing
Student Arun Murugan Marimuthu
Name:
Student ID: x23125179
Programme: Master of Science in Data Analytics Programme:Master of Science

in Data Analytics

Module: Research Project
Supervisor: SM Raza Abidi

Submission
Due Date: 12-08-2024

Project Title: Advancing Brain Tumor Detection: Hybrid Layered Model for Enhanced
MRI Imaging Analysis.

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: @ ... Arun Murugan Marimuthu............cccciii,

Date: @ . 11-08-2024 ...

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual for Advancing Brain Tumor
Detection: Hybrid Layered Model for Enhanced
MRI Imaging Analysis

Arun Murugan Marimuthu
X23125179@student.ncirl.ie

1. Introduction

This configuration manual provides a detailed guide for setting up and executing the
implementation of the research project titled " Advancing Brain Tumor Detection: Hybrid
Layered Model for Enhanced MRI Imaging Analysis" The project aims to enhance the
accuracy and efficiency of brain tumor detection using a hybrid model that integrates
Convolutional Neural Networks (CNN) with Bidirectional Long Short-Term Memory (Bi-
LSTM) networks.

2. System Specification

To ensure the successful execution of the code, your system should meet the following
minimum specifications:

e Operating System: Windows 10 or higher, macOS 10.15 or higher, or a Linux
distribution (e.g., Ubuntu 20.04).

Processor: Intel Core i5 or equivalent AMD processor (Quad-Core or higher).
Memory: 16 GB RAM.

Storage: At least 100 GB free SSD space.

GPU: NVIDIA GPU with CUDA support (e.g., NVIDIA GeForce GTX 1060 or
higher) with at least 6 GB of VRAM.

e Python Version: Python 3.7 or higher.

3. Softwares Used

The following software and libraries are used in this project:

3.1 Programming Language
e Python: The primary programming language used for implementing the model and
processing data.

3.2 Python Libraries
e NumPy: For numerical operations.
Pandas: For data manipulation and analysis.
TensorFlow: For building and training the hybrid CNN + Bi-LSTM model.
Keras: A high-level API of TensorFlow used for easy model building.
OpenCV: For image processing tasks.
Matplotlib & Seaborn: For data visualisation.
Plotly: For interactive visualizations.

mailto:x23125179@student.ncirl.ie

RP AUG'24: Arun Murugan Marimuthu —X23125179

e Scikit-learn: For model evaluation metrics like confusion matrices.
e PIL (Pillow): For image enhancement and manipulation.

3.3 Development Environment
e Jupyter Notebook or Visual Studio Code: For running and editing the Python scripts.

3.4 Optional Tools
e Anaconda: For managing Python environments and dependencies.
e CUDA Toolkit: If using an NVIDIA GPU, ensure that CUDA and cuDNN are
installed to leverage GPU acceleration.

4. Dataset Source

The dataset used in this project is sourced from Figshare, specifically the "Brain Tumor MRI
Dataset™ provided by Masoud Nickparvar. This dataset contains MRI scans categorised into
different classes, such as tumor and non-tumor images.

e Dataset Link: Brain Tumor MRI Dataset
e Training Data Directory: "Training
e Testing Data Directory: "Testing’

Make sure to download the dataset from Figshare and place the extracted folders in the project
directory.

5. Execution of the Code Implementation
Follow these steps to execute the code implementation for the hybrid CNN + Bi-LSTM model:
Step 1: Setting Up the Environment

A. Install Anaconda (optional): If you prefer managing environments with Anaconda,

install it from [Anaconda’s official website] (https://www.anaconda.com/).

B. Create a New Environment:

conda create -n brain_tumor detection python=3.8

conda activate brain_ tumor_ detection

C. Install Required Libraries:

! pip install numpy pandas tensorflow keras opencv-python matplotlib seaborn plotly scikit-learn pillow

Python

Step 2: Preparing the Dataset
A. Download the dataset from the provided Figshare link.
B. Extract the dataset structure.

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427

RP AUG'24: Arun Murugan Marimuthu —X23125179

Step 3: Running the Code
A. Open Jupyter Notebook or VS Code in the project directory.
B. Run the Code:
e Start by running the data preparation section to load and preprocess the images.

e Explore the Dataset

Define paths for training and testing data

training_data_directory = 'Training’

training_dataset_path = pathlib.Path(training_data_directory)
training_dataset_contents = os.listdir(training_dataset_path)
testing_data_directory = 'Testing’

testing_dataset_path = pathlib.Path(testing data_directory)
testing_dataset_contents = o0s.listdir(testing_dataset_path)

Python
Print contents of training dataset
print("Contents of Training Dataset:")
for item in training_dataset_contents:
print(f"\t- {item}”)
Print contents of testing dataset
print({"nContents of Testing Dataset:")
for item in testing dataset_contents:
print(f"\t- {item}”)
Python

Contents of Training Dataset:
- glioma
- meningioma
- notumor
- pituitary

Contents of Testing Dataset:
- glioma
- meningioma
- notumor
- pituitary

e Execute the model-building section to define the ResNet50V2 and Bi-LSTM

architecture.
Build the ResNet58V2 model
base_cnn_model = ResNet58W2(include_top=False, weights="imagenet', input_shape=input_shape, pooling='max')
Python
Constructing the full model
model = Sequential([
base_cnn_model,
Reshape((-1, 2848)), # Reshape output of CNN to (None, 1, 2843)
Bidirectional (LSTM(64, return_sequences=False)), # Bidirectional LSTM layer
BatchMormalization(axis=-1, momentum=8.99, epsilon=@.881),
Dense(256, kernel_regularizer=regularizers.12(1=8.816),
activity_regularizer=regularizers.11{8.886),
bias_regularizer=regularizers.l1(8.886),
activation="relu’),
Dropout(rate=6.4, seed=75),
Dense(num_class, activation="softmax’)
1)
Python

e Train the model by running the training section.

RP AUG'24: Arun Murugan Marimuthu —X23125179

Train the model

history = model.fit(x= train_gen

Epoch 1/1@

357/357 [

Epoch 2/18

357/357 [

Epoch 3/1@

357/357 [

Epoch 4/18@

357/357 [

Epoch 5/16

357/357 [

Epoch 6/18

357/357 [

Epoch 7/18

357/357 [

Epoch 8/1@

357/357 [

Epoch 9/1@

357/357 [

Epoch 18/16

357/357 [

, epochs = 18, verbose = 1, validation_data= valid_gen,

mms=mmmmmmmmmmmmmmmmommeo-eo-] - 3685
mmsmmmmmmmmmmmmmmmmmemmmeomeo] - 8215

e - vk

S — Y

e I F

- 819s
- 818s

e -
s=====oossooooooooooooooooooo] - 816s

=====s===s=s=====s====s========] - 817s

2s/step
2s/step
2s/step
2s/step
2s/step
2s/step
2s/step
2s/step
2s/step

2s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.2598

.ee31

.5967

.4181

.3181

L2784

L2482

.2281

.2884

L1695

accuracy:

accuracy:

accuracy.

accuracy:

accuracy.

accuracy.

accuracy:

accuracy.

accuracy:

accuracy:

.8326

L9312

.9443

.9519

. 9658

L9711

L9715

L9734

.9758

.9846

validation_steps =

val_loss:
val_less:
val_loss:
val_loss:
val_loss:
val_loss:
val_less:
val_loss:
val_loss:

val_loss:

Pythen

.3892 -

L7247 -

L4399 -

3854 -

L3226 -

.3879 -

. 2887 -

20

05

Loss (Lower Means Better)

—— raining_loss

—o— val_loss

Epochs

—e— iraining_accuracy

—e— val_accuracy

088

086

082

088

086

084

Accuracy (Higher Means Better)

4

Epochs

e Evaluate the model's performance and visualise the results.

RP AUG'24: Arun Murugan Marimuthu —X23125179

Evaluate the model

train_score = model.evaluate(train_gen, steps=16, verbose=1)
valid_score = model.evaluate(valid_gen, steps=16, verbose=1)
test_score = model.evaluate(test_gen, steps=16, verbose=1)

Format and print the evaluation results

print("\n" + "="%*5@)

print({"{:<28} {:<10} {:<18}".format("Dataset™, "Loss", "Accuracy”))

print("-"*5@)

print("{:<20} {:<18.4f} {:<10.4F}".format("Training”, train_score[8], train_score[1]))
print("{:<20} {:<10.4F} {:<10.4F}" . format("Validation”, valid_score[@], valid_score[1]))
print("{:<28} {:<18.4f} {:<18.4F}".format("Testing”, test_score[8], test_score[1]})
print("="*5@)

Pythcn

16/16 [==] - 9s 58Bms/step - loss: 8.1313 - accuracy: 8.9961

16/16 [==] - 9s 585ms/step - loss: ©.1785 - accuracy: 6.9844

16/16 [=== ==] - 9s 585ms/step - loss: ©.3973 - accuracy: 8.9823

Dataset Loss Accuracy

Training @.1313 @.9961

validation 8.17@85 &.9844

Testing 8.35973 8.0823

Step 4: Evaluating the Model
e After training, assess the model's accuracy using the validation and test datasets.
e Generate and review the confusion matrix and classification report for detailed
performance metrics.

Classification report and confusion matrix

y_true = test_gen.classes

y_pred = np.argmax(model.predict(test_gen), axis=-1)
class_names = list(test_gen.class_indices.keys(})

print("\nClassification Report:™)
print({classification_repert(y_true, y_pred, target_names=class_names))

Python

a2/82 [==============================] - S@s 583m5/5tep

Classification Report:

precision recall fl-score support

glioma .99 8.88 8.93 386
meningioma 8.98 .98 8.94 386
notumor 1.08 1.8@ 1.a8 4a5
pituitary 8.98 1.88 8.99 388
accuracy a.97 1311
macro avg 8.97 8.98 a.986 1311
weighted avg .97 8.97 .97 1311

RP AUG'24: Arun Murugan Marimuthu —X23125179

- 400

Confusion Matrix

- 350

glioma

- 300

- 250

meningioma

-200

True labels

notumor

- 150

- 100
pituitary

Predicted labels

Step 5: Making Predictions
e Use the provided functions to visualise the model's predictions on test images,
comparing actual and predicted labels.

RP AUG'24: Arun Murugan Marimuthu —X23125179

Plot actual vs predicted images
def plot_predictions(model, test_gen, num_images=18):
class_names = list(test_gen.class_indices.keys())
images, labels = next(test_gen)
predictions = model.predict{images)
plt.figure(figsize=(15, 15)})
for 1 in range(num_images):
plt.subplot(5, 5, i + 1)
Normalize the image before plotting
image = images[i] / 255
plt.imshow(image)
plt.axis("off")
actual_label = class_names[np.argmax(labels[i])]
predicted_label = class_names[np.argmax({predictions[i])]
color = "green’ if actual_label == predicted_label else 'red’
plt.title(f Actual: {actual_labell}\nPredicted: {predicted_label}’, color=color)
plt.tight_layout()
plt.show()

Plot actual vs predicted images
plot_predictions(model, test_gen)

Actual: glioma Actual: glioma Actual: glioma Actual: glioma Actual: glioma
Predicted: glioma Predicted: glioma Predicted: glioma Predicted: meningioma Predicted: glioma

Actual: glioma Actual: glioma Actual: glioma Actual: glioma Actual: glioma
Predicted: glioma

Predicted: glioma Predicted: glioma Predicted: glioma Predicted: glioma

A0

This configuration manual should guide you through the setup and execution of your research
project. If any issues arise during the process, ensure that all dependencies are correctly
installed, and that the dataset is properly organised.

References

Python:_https://www.python.org
Dataset Link: Brain Tumor MRI Dataset

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427

