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Redefining Public Safety: A Comparative Analysis of RT-DETR and YOLOv8 

- Unveiling the Future of Real-Time Handgun Detection 

                                         Name : Lakshmi Narasimha Kundeti 

                                         Student ID: x22244972@student.ncirl.ie  
 

 

Abstract 

This study raises a very fundamental challenge: the improvement of public safety by 

integrating advanced handgun detection systems. It concerns a comparative analysis 

between two leading technologies in object detection techniques, which are RT-DETR and 

YOLOv8. The research targets proving which model has better performance when 

considering accuracy, robustness, and adaptability concerning real-time handgun 

detection in public spaces. 

 

Models implemented using RT-DETR and YOLOv8 were tuned on a comprehensive 

dataset of 15,579 handgun images with heavy data augmentation applied. Results are 

measured in terms of mAP, precision, and recall for different classes. This was achieved 

through rigorous tuning of hyperparameters by running the experiment several times to 

squeeze out better performance from the model. 

The summary of key results shows that RT-DETR performed very marginally better when 

it came to peak performance on all metrics: mAP50-95, 0.728; precision, 0.940; recall, 

0.883; while YOLOv8 had an mAP50-95 of 0.7073, precision of 0.9010, and recall of 

0.8560. However, YOLOv8 proved to be steadier and more robust among different 

hyperparameter settings, hence it gives better adaptability to diverge operational 

conditions. 

This comparative analysis thus illustrates the contribution of effective and reliable AI-

driven security solutions and further provides insights to enhance academic research as 

well as practical applications of public safety and surveillance systems. 

 

1 Introduction 
The proliferation of gun violence into places of public exposure has become an expensive 

global concern that calls for innovative security measures to enhance public safety. Traditional 

security measures that usually characterize the contemporary time such as metal detectors and 

conventional surveillance systems are found deficient in the rapid detection and foiling of 

firearm-related incidents within dynamic and high-traffic environments at an airport, a mall, or 

an event (Qi et al., 2021). This research addresses this critical issue by performing a 

comparative analysis between the two state-of-the-art object detection technologies in real-

time handgun detection applications RT-DETR and YOLOv8. 

In this regard that recent enhancements in computer vision and deep learning open up new 

ways to improve these safeguarding measures. In one of their studies, T et al. (2022) and Alaqil 

et al. (2020) showed outstanding performances for handgun detection using deep learning 

models, much superior in efficacy compared with classical machine learning techniques. 

However, this lacks the current commendable comparison among state-of-the-art object 

detection models designed for real-time handset detection applications at public places. 
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The societal effects of gun violence are not limited to direct physical harm, but there is also 

psychological trauma and a general feeling of insecurity (Warsi et al., 2024). Other costs 

include medical expenses due to treatment, litigation costs, as well as a breakdown in public 

confidence. Therefore, these factors will naturally warrant an increase in pressure in the 

development of more effective and efficient ways of detecting handguns. 

It will address the following research question: Among a wide variety of cutting-edge 

technologies for object detection, how RT-DETR or YOLOv8 technology performs better in 

terms of accuracy, speed, robustness, and adaptability for real-time handgun detection in public 

spaces, and how their inherent architectural differences can be harnessed and leveraged to 

develop an effective and efficient security solution.? 

The primary objectives of this research are: 

1. Train both RT-DETR and YOLOv8 on a holistic dataset with handguns and implement 

them. 

2.  Evaluation and performance comparison of both models in terms of metrics like mAP, 

precision, recall, speed of inference. 

3. To assess the robustness and adaptability of each model through various testing 

scenarios. 

4. Architectural differences between RT-DETR and YOLOv8 for analyzing performance 

in the case of handgun detection. 

This methodology will consist of proper training for the two models according to a dataset 

containing around 15,579 annotated handgun images, after which rigorous evaluation and 

comparative analysis will ensue. The performance will be estimated related to relevant 

quantitative metrics, confusion matrix analysis, and interpretability studies using SHAP values. 

With respect to this methodology, recent work by Deng et al. (2022) shall be followed, with 

their system putting emphasis on interpretability for gun detection systems. 

This research will contribute significantly to the publication record within the scientific 

literature in several ways (Dextre et al., 2021). First, it provides a complete comparison 

between two state-of-the-art models of object detection applied within the critical application 

of handgun detection. Second, it investigates trade-offs between accuracy and speed, which is 

an important aspect in applications with real-time demands. Third, this paper also explores the 

adaptability of these models in different scenarios addressing one of the main challenges for 

real-world deployment (Ruiz-Santaquiteria et al., 2021). 

The findings of this study are expected to be very valuable both to the computer vision 

academic community and security solution developers in industry. This research could make 

public places a lot safer by saving lives and reducing socio-economic costs associated with gun 

violence if it can identify the best model for handgun detection in real-time applications. 

The structure of the report is as follows: Section 2 provides a general overview of the entirety 

of related work on handgun detection and object detectors in total. Section 3 describes the 

research methodology, detailing the process of dataset preparation, methods of 

implementation, and model evaluation. In Section 4, the necessary specification for the solution 

to be designed is explained, along with architectural considerations of RT-DETR and 

YOLOv8. Section 5 describes implementation at length, including the process of model 

training and optimization techniques. Section 6: it discusses the results with respect to 

performance metrics, comparative analysis, and interpretability studies. Finally, Section 7 
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concludes the study by restating some of the key findings and highlighting the implications and 

future directions of the research. 

The present research is based on ethical considerations whereby the data is protected and 

private during the process. Biasness in AI models is strictly considered, and risk mitigation 

measures are adopted in accordance with best practices of responsible AI development (Ali 

Shah et al., 2021). 

2 Related Work 

2.1  Evolution of Deep Learning in Handgun Detection 

Deep-learning-based handgun detection has been rapidly growing in the past years. T et 

al(2022). proposed YOLOv5-based object detectors for handgun detection in unconstrained 

environments, with better performances compared to classical machine learning techniques. 

This paper points out the potential of YOLO architectures for real-time detection scenarios 

critical to public safety applications. However, maybe being focused on one YOLO variant 

misses other promising architectures that call for a broader comparison. 

proposed an Automatic Gun Detection system using Faster R-CNN with different CNNs as 

feature extractors   Alaqil et al. (2020). Their study has shown that the best performance can 

be achieved by Inception-ResNetV2, while YOLOv2 gives both the shortest training and 

testing time. The results of this study provide very useful information about accuracy at the 

cost of speed and vice versa two critical parameters in real-time applications. Again, this study 

should have been carried out much more comprehensively by comparison with more state-of-

the-art recent models. 

Implementation of these methods in the real world introduces challenges. On the other hand, 

while very fast and therefore suitable for application in real-time, the accuracy of YOLOv5 

under different light conditions and partial occlusions should be further tested. Faster R-CNN 

comes at a cost of higher accuracy: it has higher computational demands that may restrict the 

scenarios of application due to constraints on resources.. 

2.2 Addressing Challenges in Small Handgun Detection 

Presented a hybrid model, RZUD, for the detection of small handguns in CCTV footage Warsi 

et al. (2024). This model outperformed many existing state-of-the-art algorithms that included 

YOLOv3 and YOLOv7. The current research has filled a very important gap in handgun 

detection literature because it is focused on the problem of small object detection usually 

overlooked by many other studies. However, this study was basically dataset-specific; hence 

its generalization across various scenarios becomes challenging in real-world applications. 

Built a large dataset of gun detection, including 51K annotated gun images and 51K cropped 

gun chip images Qi et al. (2021). They also proposed a gun detection system using smart IP 

cameras that deploy edge devices with cloud servers to reduce the occurrence of false positives. 

This architecture delivers an end-to-end solution, showing that improvement in accuracy of 

detection may be due to two primary aspects: high-quality datasets and edge-cloud 

architectures. The computational resources required for processing such vast data by this study 

within a huge dataset would be the key limitation, especially if applied in real-time 

applications. 
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2.3 Innovative Approaches in Handgun Detection Systems 

Enhanced handgun detection in CCTV by incorporating visual weapon appearance together 

with human pose information Ruiz-Santaquiteria et al. (2021). Their approach, HRC+P, 

performed better than other methods under different scenarios in a very consistent manner. 

This novelty opens the avenue for the use of contextual information toward better detection. 

However, processing both weapon appearance and human pose might further increase 

computational complexity, which could lead to real-time issues. 

Proposed an automatic weapon detection system using YOLOv5, moving beyond handguns 

and including long guns and knives Rehman and Fahad (2022). In the experiments, their system 

performed better both in CCTV and non-CCTV environments. This research signifies the 

importance of versatility in weapon detection systems. This study had to do a more critical 

comparison with other state-of-the-art models like RT-DETR. 

2.4 Advancements in Real-Time Detection and Model Interpretability 

Designed YOLOv5-based weapon detection that processed 33 frames per second with an 

accuracy of 98.56% against images from video surveillance Dextre et al. (2021). This work is 

a concrete proof that YOLOv5 can actually balance speed and accuracy for real-time 

applications. However, this research was limited to one specific hardware setup, which does 

not represent all possible deployment scenarios. 

 

Proposed a new zero-shot approach for gun and fire detection via semantic embedding, based 

on the pre-trained CLIP model Deng et al. (2022). Their approach outperformed traditional 

CNN and YOLO algorithms without requiring domain-specific fine-tuning. This research 

shows several avenues whereby one would have more adaptable and generalizable detection 

systems. This study is limited by probable generalizability versus task-specific performance of 

the model.The real-time performance demonstrated by Dextre et al. is particularly While very 

promising for large-scale surveillance systems, how this performance generalizes across 

different hardware configurations or varied environmental scenarios is yet to be established. 

Interesting in its own right, the zero-shot learning approach of Deng et al. provides a possible 

route to quickly adapt to new types of weapons or threats without needing much time devoted 

to training a feature of value in a changing security landscape. 

2.5 Transfer Learning and Model Comparisons in Handgun Detection 

similar project compared transfer learning techniques by employing YOLOv3tiny and 

YOLOv3 for detecting gun-related violence Mahajan and Jadhav (2022). In the process, 

YOLOv3tiny managed to pull out importance in the accuracy and F1 scores, particularly during 

active transfer learning. This research provides important insights into the performance of 

small models, but it also has weaknesses, like the use of older YOLO versions and being limited 

by current architectures, YOLOv8 and RT-DETR. 

Proposed SMART (Street-crimes Modelled Arms Recognition Technique) for the detection of 

arms in video surveillance and compared VGG, LeNet, and AlexNet  Ali Shah et al. (2021). 

Results proved that VGG is superior to the others in different evaluation metrics. This clearly 

reflects on the selection of a proper model in weapon detection tasks. However, this study could 

have been extended to at least include comparisons of more recent architectures. 
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transfer learning approach may be very beneficial, as Mahajan and Jadhav have proposed, for 

handgun detection models with minimal retraining to other environments or datasets. Only then 

would it be easy to deploy systems supporting this variety of settings quickly. The authors of 

Ali Shah et al. (2021).  provided the SMART framework, which gives an integrative model for 

weapon detection in street crime scenarios; however, its performance against the recent state-

of-the-art architectures such as RT-DETR or YOLOv8 remains open. 

2.6 Recent Developments and Future Directions 

Recent work by has investigated the application of attention mechanisms within object 

detection models for handgun detection with higher accuracy in cluttered environments Lim et 

al. (2023). Their proposal improved the baseline mean Average Precision by 5% compared to 

standard YOLOv5 models. This research can be used to showcase the ability of integrating 

advanced neural network structures in solving certain problems of handgun detection. 

Presented a new data augmentation method, especially developed for handgun detection, 

assuming shortages in dataset images of handguns Zhang et al. (2023). Their approach 

generates realistic synthetic data and has shown a 7% improvement in detection accuracy 

across models like YOLOv5 and Faster R-CNN. 

These recent developments point to promising directions of future research, such as the 

exploration of hybrid models that can put together the advantages of different architectures and 

more sophisticated techniques for data augmentation to improve model generalization.. 

2.7 Summary and Research Gap 

There has been enormous progress regarding handgun detection by deep learning techniques 

that can be shown in the literature review. Work has been done on rather conventional 

approaches, for example, based on CNN architectures, while more current and promising ones 

are based on YOLO variants or semantic embedding methods. A comparative study for real-

time handgun detection in public spaces pertaining to state-of-the-art object detection models 

especially RT-DETR and YOLOv8 remains missing. 

 

While existing work has contributed significant effort toward improving either detection 

accuracy or speed/adaptability, there is a relative lack of studies that comprehensively 

benchmark various state-of-the-art models with respect to these diverse characteristics. 

Moreover, only very few works have looked at both the accuracy-speed trade-offs most real-

time applications on the latest object detection architectures. 

 

 In this context, the current study aimed to fill these gaps by taking a stringent, comparative 

analysis between RT-DETR and YOLOv8 in regard to performance metrics for real-time 

handgun detection scenarios. This paper also aims to provide valuable insight into developing 

security solutions that are more effective and efficient to enhance public safety measures. 

During deployment, testing, and use of the developed models in real-life situations, several 

constraints will come in; this includes lighting condition changes, occlusion of the scene, and 

real-time processing on different hardware configurations. Second, this study is going to 
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explore possible applications of transfer learning and data augmentation techniques in order to 

improve the performance and adaptability of these models. 

At model deployment in testing or use within real-life situations, several constraints will arise, 

such as lighting changes, scene occlusion, and real-time processing on different hardware 

configurations. Second, the present study also seeks to investigate possible applications of 

transfer learning and data augmentation techniques toward enhancing this model in terms of 

performance and adaptability. 

 

3 Research Methodology 
The section below describes the elaborate research methodology to address the main research 

question: Which state-of-the-art object detection technology out of RT-DETR and YOLOv8 

achieves high performance in terms of accuracy, speed, robustness, and adaptability in a real-

time handgun detection system, which is deployable in public space? 

3.1 Data Collection and Preparation 

This study is based on a dataset of 15,579 images of handguns. The dataset was derived from 

the Roboflow platform, with images annotated in YOLOv8 format. The reason for using this 

dataset was V1, driven by the fact that its size and diversity are critical in developing robust 

handgun detection models. 

Data preprocessing steps included: 

1. Auto-orientation of pixel data (with EXIF-orientation stripping) 

2. Resizing to 640x640 pixels (Stretch) 

Data augmentation techniques were applied to create 3 versions of each source image: 

• 50% probability of horizontal flip 

• 50% probability of vertical flip 

• Equal probability of one of the following 90-degree rotations: none, clockwise, 

counterclockwise, upside-down 

• Random rotation of between -15 and +15 degrees 

• Random brightness adjustment of between -15 and +15 percent 

• Random exposure adjustment of between -15 and +15 percent 

• Random Gaussian blur of between 0 and 1 pixels 

• Salt and pepper noise applied to 1 percent of pixels 

These augmentation techniques have been introduced to evaluate the models on their capability 

of detecting handguns under different real-life conditions the 'robustness' and 'adaptability' 

aspects of the research question. 

The dataset the training set consisted of 14,121 images, while the validation set contained 900 

images. Care was taken to ensure that the distribution of handgun types and environmental 

conditions within the whole dataset are representative. 

3.2 Model Implementation 

Two state-of-the-art object detection models were implemented.: 

1. RT-DETR: Implemented with the help of the RT-DETR class from the Ultralytics 

library, 'rtdetr-l.pt' pre-trained weights. 

2. YOLOv8: Implemented by the YOLO class from the Ultralytics library, using 

'yolov8m.pt' pre-trained weights. 

These models are chosen due to state-of-the-art performance in object detection tasks and their 

potential toward real-time applications. RT-DETR represents a new approach by combing 

transformers with traditional CNN architectures, while YOLOv8 is the latest release of the 
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quite popular and well-established YOLO family. This would, therefore, provide a response to 

the research question by comparing two leading-edge technologies against each other on 

handgun detection. 

3.3 Training Procedure 

The training of the models makes use of Google Colab Pro+ with an NVIDIA A100 GPU and 

high-RAM runtime. That is so this hardware will train these complex models over this large 

dataset efficiently. 

Training parameters for both models: 

• Epochs: 25 

• Image size: 640x640 

• Batch size: 32 

• Optimizer: SGD (for RT-DETR), AdamW (default for YOLOv8) 

• Learning rate: 0.01 (initial for RT-DETR), auto-determined (for YOLOv8) 

• Momentum: 0.937 (for RT-DETR) 

• Weight decay: 0.0005 

These parameters were chosen in view of good deep learning practices and some preliminary 

experiments to maximize model performance. 

3.4 Comparative Analysis 

 Evaluated metrics are compared for RT-DETR and YOLOv8. The purpose of this comparison 

is to go straight to the root of the research question by establishing the strengths and weaknesses 

of each model real-time handgun detection. 

3.7 Data Cleaning and Quality Assurance 

To ensure data quality and integrity: 

1. Annotation verification: A random sample of 100 images was manually checked to 

verify the accuracy of bounding box annotations.. 

2. Duplicate removal: Using hash values, this research was able to detect and remove 

duplicate images in the dataset. 

3. Outlier detection: Flagged images with extreme aspect ratios or very small bounding 

boxes for manual review. 

These  steps were indispensable in maintaining the quality of the dataset, guaranteeing reliable 

model training and evaluation. 

 

4 Design Specification 
 
The development of a real-time handgun detection system using both the YOLOv8 and RT-DETR 

architectures calls for a better understanding of their underlying frameworks and requirements. This 

section underlines, with technical specifications and architectural designs, the two models: what 

they are made up of and how exactly they work. 

4.1 RT-DETR Architecture: 

RT-DETR is a real-time detection transformer that fuses transformer-based architecture and CNN 

for efficient object detection.: 

1. Backbone:  

• Utilizes a CNN-based backbone, typically ResNet, for initial feature extraction 

• Generates multi-scale feature maps from the last three stages (S3, S4, S5) of 

the backbone 



8 
 

 

• While Vision Transformers are suggested in literature, RT-DETR mainly 

focuses on CNN backbones for real-time performance. 

ViT (Vision Transformer) Explanation:  

• ViT is an architecture that applies transformer models to image classification 

• It basically fixed-size patches an image, linearly embeds each patch and 

processes them with a standard transformer encoder. 

• Though powerful, ViT is rather computationally heavy for tasks of object 

detection within real-time scenarios. 

2. Efficient Hybrid Encoder:  

• Processes multiscale features by decoupling intra-scale interaction and cross-

scale fusion 

• Intra-scale Feature Interaction (AIFI): Improves the representation of features 

in each scale with the help of self-attention mechanisms. 

• Cross-scale Feature Fusion Module (CCFM):This technique combines 

information across different scales in a very lightweight design. 

• This hybrid approach balances the efficiency of CNNs with the global context 

modeling of transformers 

3. IoU-aware Query Selection:  

• Selects a fixed number of image features to serve as initial object queries for 

the decoder. 

• Utilizes Intersection over Union (IoU) predictions to identify potential object 

locations 

• another method that improves the initialization of object queries and focuses 

more on the most relevant areas in the image. 

4. Decoder:  

• Employs multiple transformer decoder layers to iteratively further refine object 

queries 

• Each decoder layer uses cross-attention to relate queries to image features 

• Auxiliary prediction head is attached at each decoder layer, which provides 

intermediate supervision 

• The number of decoder layers can be adjusted to trade-off between accuracy 

and inference speed 

5. Prediction Heads:  

• Parallel heads for classification and box regression 

• Direct set prediction without anchor boxes or Non-Maximum Suppression 

(NMS) 

• This design simplifies the detection process and might potentially make the 

performance better for small objects 

6. Loss Function:  

• Bipartite matching loss for end-to-end training assign predictions to the ground 

truth objects uniquely 

• Focal loss for classification to deal with class imbalance. 

• L1 loss for bounding box regression to guarantee proper localization 

4.2 YOLOv8 Architecture: 

YOLOv8, while not a transformer-based model, incorporates several advanced features for 

efficient object detection: 

1. Backbone:  

• CSPDarknet: A modified Darknet with Cross-Stage Partial Network (CSP) 

connections 

• Integrated focus module for efficient feature extraction 
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• The backbone in YOLOv8 is optimized for fast and efficient processing of input 

images 

2. Neck:  

• Path Aggregation Network (PAN) for multi-scale feature fusion 

• Spatial Pyramid Pooling (SPP) for increased receptive field 

• The neck enhances the model's ability to detect objects at various scales by 

combining features from different levels of the backbone 

3. Head:  

• Decoupled detection heads for classification and bounding box regression 

• Anchor-free detection mechanism using grid cell predictions 

• This design simplifies the detection process and potentially improves 

performance on small objects 

4. Loss Function:  

• Combination of Binary Cross-Entropy (BCE) loss for classification 

• Complete IoU (CIoU) loss for bounding box regression, which considers 

overlap area, central point distance, and aspect ratio 

4.3 Framework and Hardware Requirements: 

 Both models are implemented in Ultralytics, a PyTorch framework offering a unified API for 

training, inference, and deployment. The hardware specs are customized to be high-performance 

computing: 

1. GPU Options:  

o NVIDIA A100 GPU with 40GB memory: Ideal for large-scale training and 

inference  

2. Software Environment:  

o CUDA 11.7 or later for optimal GPU utilization 

o PyTorch 1.7+ with CUDA support for deep learning framework 

o Ultralytics library for model implementation and management 

3. Data Pipeline:  

o Asynchronous data loading and preprocessing using PyTorch DataLoader 

o On-the-fly data augmentation pipeline for improved model generalization  

▪ Includes techniques like mosaic augmentation, random affine 

transformations, and adaptive image filling 

5 Implementation 

5.1 Model Development: 

5.1.1 YOLOv8: 

• Implemented using the YOLO class from Ultralytics library 

• Utilized 'yolov8m.pt' pre-trained weights as a starting point 

• Architecture: CSPDarknet backbone, PAN neck, and decoupled heads for classification 

and bounding box regression 

• Output: Fine-tuned YOLOv8 model optimized for handgun detection 

5.1.2 RT-DETR: 

• Implemented using the RTDETR class from Ultralytics library 

• Started with 'rtdetr-l.pt' pre-trained weights 

• Architecture: CNN backbone (ResNet), efficient hybrid encoder with AIFI and CCFM, 

IoU-aware query selection, and transformer decoder 

• Output: Fine-tuned RT-DETR model specialized for handgun detection 
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Both models produced weight files (.pt format) containing the learned parameters, optimized 

for the handgun detection task. 

5.1.3 Training hyperparameters 

• Training hyperparameters were extensively tuned, with the following ranges explored:  

o Epochs: 25 (fixed for all runs) 

o Batch size: 16, 32, 64 

o Image size: 512, 640, 768 

o Initial learning rate (lr0): 0.0000 to 0.0347 

o Learning rate factor (lrf): 0.0136 to 0.9365 

o Momentum: 0.6705 to 0.9794 

o Warm-up epochs: 1 to 5 

o Weight decay: 0.0000 to 0.0090 

• Conducted 11 training runs for each model using different combinations of 

hyperparameters. 

• Used PyTorch's learning rate scheduler for dynamic learning rate adjustment. 

Additional Outputs: 

• Hyperparameter tuning logs: Detailed performance metrics for each combination of 

parameters. 

• Comparative analysis:Visualization of model performance across different 

hyperparameter settings 

• Optimal configuration report: Documentation of the best-performing hyperparameters 

for each model 

5.1.4 Outputs: 

• Training logs: Containing epoch-wise loss values, accuracy metrics, and learning rate 

schedules 

• Checkpoints: Saved model states at regular intervals and best-performing epochs 

• Performance curves: Visualizations of training and validation metrics over time 

5.2 Evaluation Outputs: 

5.2.1 Quantitative Metrics: 

• mAP50-95, mAP50, mAP75: Measuring detection accuracy across different IoU 

thresholds 

o AP = ∑(Rn - Rn-1) * Pn 

o Where: Rn is the recall at the nth threshold Pn is the precision at the nth 

threshold 

o mAP = (1/N) * ∑AP 

o Where N is the number of classes or IoU thresholds. 

• Precision and Recall: Assessing the models' ability to correctly identify handguns 

• Precision: Precision = TP / (TP + FP);Where: TP = True Positives FP = False 

Positives 

• Recall = TP / (TP + FN);Where:TP = True Positives,FN = False Negatives 

• Inference Speed: Frames per second (FPS) on specified hardware 

5.2.2 Qualitative Outputs: 

• Sample predictions: Annotated images showing model detections on test data 
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5.3 SHAP Implementation for XAI: 

• Utilized SHAP (SHapley Additive exPlanations) library for model interpretability 

• Implemented for YOLOv8 model to provide pixel-level explanations of detections 

5.3.1 Outputs: 

• SHAP value maps: Heatmaps highlighting influential image regions for each detection 

• Feature importance plots: Aggregated SHAP values showing overall important features 

• SHAP summary plots: Visualizing the impact of different image features on model 

output 

5.4 Tools and Languages: 

• Primary language: Python 3.8 

• Deep learning: PyTorch 1.9, Ultralytics library 

• Data processing: NumPy, Pandas 

• Image processing: OpenCV, Pillow 

• Visualization: Matplotlib, Seaborn 

• XAI: SHAP library 

5.5 Final System Outputs: 

• Two optimized model weight files: YOLOv8 and RT-DETR, fine-tuned for handgun 

detection 

• Inference pipeline: Python scripts for real-time handgun detection using webcam or 

video input 

• Performance comparison report: Detailed analysis of YOLOv8 vs RT-DETR for 

handgun detection 

• Visualization toolkit: Scripts for generating detection visualizations and SHAP 

explanations 

• Deployment guide: Documentation on integrating the models into surveillance systems 

 

6 Evaluation 
 

This section is dedicated to a comprehensive analysis of the results and main findings from this 

comparative study on YOLOv8 and RT-DETR for real-time handgun detection. It basically 

addresses the following: "Which state-of-the-art object detection technology, either RT-DETR 

or YOLOv8, does better at performance concerning accuracy, speed, robustness, and flexibility 

in the detection of handguns in real-time in public spaces? 

6.1 Overview of Experimental Results 

The dataset used consisted of 15,579 handgun images, split into 14,121 training images and 

900 validation images. Specifically, images annotated in YOLOv8 format. Extensive data 

augmentation techniques were applied to improve model robustness and generalization.. 

Data Augmentation Techniques: 

• 50% probability of horizontal and vertical flips 

• Random rotations (-15 to +15 degrees) 

• Random brightness and exposure adjustments (-15% to +15%) 

• Random Gaussian blur (0 to 1 pixel) 

• Salt and pepper noise applied to 1% of pixels 

These augmentation techniques mimic various conditions that may happen in real life, therefore 

enhancing the capability of models in detecting handguns across different scenarios. 



12 
 

 

In the survey, there were detailed hyperparameter tunings and model evaluations of YOLOv8 

and RT-DETR models. Some of the crucial performance metrics include mean Average 

Precision, Box Precision, and Recall. (mAP), Box Precision, and Recall. 

Table 1: Best Performance Comparison of YOLOv8 and RT-DETR 

Model mAP50-95 mAP50 Box Precision Recall 

YOLOv8 0.7073 0.9251 0.9010 0.8560 

RT-DETR 0.728 0.930 0.940 0.883 

Results show that both models are very good at handgun detection. RT-DETR mostly 

outperforms YOLOv8 in almost every metric. 

6.2 Detailed Analysis of Model Performance 

6.2.1 Accuracy Analysis 

The results for YOLOv8 were consistent over all runs, ranging from mAP50-95: 0.5850 to 

0.7073. RT-DETR showed a higher peak performance mAP50-95 of 0.728, but the standard 

deviation was a lot larger, including runs that failed. 

 A higher mAP50-95 of RT-DETR against the baseline, that is, 0.728 against 0.7073, simply 

means that more accuracy is obtained overall at any IoU threshold. Very closely related is that 

it outperforms the standard at the 50% IoU threshold, with a slightly higher mAP50 of 0.930 

compared to 0.925. 

[Insert Box Plot of mAP50-95 and mAP50 distributions for both models] 

6.2.2 Precision and Recall Analysis 

RT-DETR had increased precision to 0.940 compared to 0.9010 for YOLOv8, with increased 

recall of 0.883 vs. 0.8560 for YOLOv8. It interprets to a system where RT-DETR has fewer 

false positives, missing handgun instances, and fewer false negatives in the course of detecting 

all handgun instances across the images.  

 

 

 

Figure 1 Scatter Plot of Precision vs Recall for all trials of both models 

6.2.3 Hyperparameter Sensitivity Analysis 

YOLOv8's best performance was achieved with: 

• Batch size: 32 

• Image size: 640 

• Learning rate (lr0): 3.461750550295348e-05 

• Learning rate factor (lrf): 0.10436567296541709 

• Momentum: 0.8728 

• Warm-up epochs: 5 
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• Weight decay: 0.0005 

RT-DETR's optimal performance was achieved with: 

• Batch size: 32 

• Image size: 640 

• Learning rate (lr0): 0.01 

• Learning rate factor (lrf): 0.01 

• Momentum: 0.937 

• Warm-up epochs: 3.0 

• Weight decay: 0.0005 
 

 

Figure 2 heatmap of hyperparameters 

The very low learning rate for YOLOv8's best performance suggests that it is the model that 

has undergone very subtle weight updates during training, while the optimal learning rate of 

RT-DETR is 0.01, which indicates major differences in how these two models are trained. 

This made RT-DETR more sensitive to changes in the hyperparameters, some of which 

resulted in failed trials. 

6.2.4 Performance Stability Analysis 

YOLOv8 was much more consistent across trials, never failing any of the attempts. On the 

other hand, RT-DETR was very variable and failed some of the trials despite its higher peak 

performance.  

Figure 3 mAP50-95 across the trials for YOLO and RT DETR 
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6.2.5  Interpretability Analysis 

To explain at a deeper level how YOLOv8 is making decisions, SHAP was summoned for 

visualization of parts where it is focused on detecting a handgun. These analyses provide 

valuable insights into what features drive model predictions. 

6.2.5.1 Case 1: Revolver Detection 
 

YOLOv8 detected the entire handgun. The SHAP overlay shows that the model has focused 

most intently upon key structural elements of the revolver image: 

Cylinder: Represented in dark blue, this component has a strong influence on the model's 

decisions. 

The barrel: Conceived in light blue color, this would indicate paramount importance. 

The Grip: Tipped with blue, especially at the edges.  

Trigger area: This is highlighted, indicating that the model is focused on this very important 

element. 

 

 

Figure 4 Case one 

These focus areas align with human intuition about identifying revolvers, suggesting that 

YOLOv8 has learned relevant and logical features for detection. 
 

6.2.5.2 Case 2: Semi-automatic Pistol Detection 

Again, in this case, YOLOv8 showed accurate detection for the semi-automatic pistol. SHAP 

overlay: 

• Slide: Emphasized strongly, especially along edges and textures. 

• The trigger area: represented in dark blue, signaling high importance. 

• The grip: Highlighted, especially the textured areas. 

Comparing cases 1 and 2, we clearly see that YOLOv8 has learned to focus on the key 

characteristics for different types of handguns. Such adaptability could be a signature of 

robust learning of different features of handguns and explain their high performance in 

various firearms. 
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Figure 5 Case -2 

 

6.2.5.3 Real-world Scenario Analysis: Person Holding a Handgun 

Evaluated the performance of YOLOv8 on an image with a person holding a handgun to 

assess how well it could work in more complex, real-world scenarios. 

 

This is an extremely dynamic scene; YOLOv8 detected a handgun with a human subject. The 

SHAP overlay provides important insights: 

 

Figure 6 Case -3 

• Focused Detection: The model has predominantly focused on the handgun itself, with 

most of the intensity dark blue on the weapon. 

• Contextual awareness: While the handgun is treated by the model as the most 

interesting object, it also crucially looks at the hands and pose of the person, which 

gives an idea about the context in which the weapon appears. 

• Background Distinction: This model clearly distinguishes the handgun from the 

background and the person, showing robustness in complicated visual scenes. 

The findings of this analysis suggest that YOLOv8 can maintain accurate detection in scenarios 

that are approaching real security situations. Especially worth noting for usage in public safety 

is its ability to focus on the handgun while knowing its immediate surroundings, like being 

carried by a person. 

6.3 Occlusion Handling Performance 
 

Comparison of the performance between RT-DETR and YOLOv8 for occluded handgun 

detection: This visual analysis justifies the robustness of both the models for partial occlusion 

gun detection in pragmatic applications. The top row shows the upper part occluded by the 
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holder's hand, while the middle row considers a more critical case where occlusion is heavy 

because of a physical fight, while subtle occlusion due to dress in the bottom row. RT-DETR, 

left-red boxes and YOLOv8, right-green boxes: Both detect the handguns of these three cases, 

though there are minor differences in the bounding box precision and confidence score. RT-

DETR has slightly tighter bounding boxes on the more occluded middle case, while YOLOv8 

shows marginally higher confidence on the subtle occlusion case of 0.91 versus 0.89. These 

results show the particular efficacy of the models for occlusion handling, a very important 

aspect of real-world security applications, and at the same time indicate the potential of reliable 

deployment in varied environments. 
 
 

 

Figure 7 handgun with occlusion 

 

6.4 Comparative analysis shap of the RT DETR and YOLO v8 
 

The SHAP visualizations of both YOLOv8 and RT-DETR reveal interesting insight into how 

the models process the visual features for handgun detection. Both models detect that a person 

in the frame is holding a handgun. However, SHAP overlays expose some apparent differences 

concerning respective focus areas and feature importance. 

The SHAP overlay for YOLOv8 focuses more centrally on the handgun itself and the 

immediately surrounding area of the hand holding it. This model seems to give a high 
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importance to the shape and outline of the gun, judging by the bright yellow green coloration 

in this region. The model also seems to consider, as moderately important, the person's face 

and upper body, represented by lighter blue areas in those locations. This is in contrast to the 

SHAP overlay from RT-DETR, which shows important features to be more diffused across the 

image. Though also forming a dense highlight over the area of the handgun, RT-DETR seems 

to rely heavily upon the entire body of the person, most on the face and torso, as evidenced by 

the broad areas of colored-in green. Also, RT-DETR seems to include more background 

context, such as the bridge structure and foliage, as can be seen by the variation of shades of 

blue and green across the image. This further corroborates the idea that RT-DETR takes a more 

holistic approach toward scene understanding in detecting a handgun, whereas YOLOv8 places 

greater emphasis on the immediate visual features of the weapon itself. 

 

 

Figure 8 Shap analysis of RT DETR 

 

Figure 9 Shap analysis of YOLO v8 

 
 

6.5  Comparative Analysis in the Context of Handgun Detection 

Higher recall of RT-DETR compared to YOLOv8(0.883Vs 0.856)would miss fewer potential 

threats, a critical factor in security applications. At the same time, more stable results in 

different trials could be evidence that YOLOv8 might be more reliable in various operational 

conditions. 

6.6  Robustness and Adaptability Assessment 

YOLOv8 transiently showed relatively stable performance for all hyperparameter ranges and 

reached the best performance, even with a quite low learning rate, meaning a very high 

adaptability to different training conditions. RT-DETR showed higher peak performance but 

was more sensitive to hyperparameters. This could mean that in very fine-tuned conditions, it 

performs well but might require more fine-tuning on a diverse environment. 
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6.7 Discussion 

6.7.1 1.6.1 Synthesis of Findings 

The experimental results indicate that both RT-DETR and YOLOv8 are capable of very 

effective handgun detection; the former has an edge in terms of absolute performance on all 

metrics. On the other hand, YOLOv8 was found to have more reliable performance and be 

more resistant to changes in hyperparameters. 

These findings partially address the research question: 

• Accuracy: RT-DETR shows marginally better accuracy across all metrics. 

• Robustness: YOLOv8 demonstrates greater stability across different hyperparameter 

configurations. 

• Adaptability: YOLOv8's consistent performance suggests better adaptability to varied 

conditions. 

• Speed: Inconclusive due to lack of specific inference speed data. 

6.7.2 Contextualizing Results with Previous Research 

High performance by both models confirms findings by T et al.(2022) and Alaqil et al.(2020) 

which proved that deep learning models can be used effectively to detect handguns. The current 

results improve on previous studies in object detection architecture. 

The stability of YOLOv8 across most varied hyperparameters agrees with the observed 

efficiency of YOLOv5, by Dextre et al.(2021), in real-time applications. Peak superiority of 

RT-DETR, on the other hand, might indicate some advantages of transformer-based 

architectures as discussed by Ruiz-Santaquiteria et al.(2021), in their work integrating extra 

information for better detection. 

6.7.3  Critical Evaluation of Experimental Design 

Strengths: 

• Comprehensive hyperparameter tuning for both models 

• Evaluation across multiple performance metrics 

• Large number of trials for each model, providing robust performance data 

• Diverse and extensive dataset with 15,579 handgun images 

• Comprehensive data augmentation techniques simulating various real-world conditions 

Limitations: 

• Lack of direct inference speed measurements 

• Absence of testing on edge cases or adversarial examples 

• Limited information on the distribution of handgun types and backgrounds in the 

dataset 

The experimental design gives insight into the performance models and sensitivity to 

hyperparameters. While the big dataset and several augmentation techniques improve the 

validity and generalization to real-world applications, possible speed measurements have not 

been given, which does not bode well when trying to provide full coverage for answering the 

research question in view of real-time performance. 

6.7.4 1.6.4 Suggested Improvements and Future Work 

 To address the limitations and further present the research question: 

1.  Run inference speed tests across different hardware configurations to understand real-

time capability. 

2. Check the performance of the model on a different test set, containing challenging edge 

cases, for more adaptability testing. 
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3. Implement Cross-Validation to test the robustness of results against different data splits. 

4. By considering ensemble methods that mix and match RT-DETR with YOLOv8, their 

respective strengths would be brought out. 

5. Investigate the possibilities of transfer learning to estimate how well it can adapt to 

similar detection tasks. 

6.  Conduct user studies in simulated settings of security environments to estimate 

practical efficacy. 

7. Analyze model performance on specific subsets of the data (e.g., different handgun 

types, various backgrounds) to assess versatility. 

 

These would provide a baseline comparison of RT-DETR and YOLOv8, which conveys 

meaningful information to the research community in academics as well as to industry circles 

in public safety and security. 

 

On the other hand, in peak performance, RT-DETR still outclasses YOLOv8. However, for 

real-world applications, it just simply can't compete with the consistency and robustness that's 

shown here by YOLOv8. Further emboldening these results is the large dataset and 

augmentation techniques applied in this study. The choice between these models will hence be 

based on the demands of the deployment scenario, balancing high accuracy against consistent 

performance and ease of implementation. Further research in improving what has been 

suggested will contribute a great deal to real-time handgun detection and object detection in 

general. 

 

7 Conclusion and Future Work 
 

This study has sought to answer the research question: "Which state-of-the-art object detection 

technology shows better performance in terms of accuracy, speed, robustness, and adaptability 

for real-time handgun detection in public spaces between RT-DETR and YOLOv8?" 

The primary objectives were to: 

1. Train both the RT-DETR and YOLOv8 models on a comprehensive dataset with regard 

to handguns. 

2.  Both models' performances can be compared with metrics such as mAP, precision, 

recall, and inference speed. 

3.  Test the robustness and adaptability of each model with different scenarios. 

4. RT-DETR and YOLOv8 Architecture Change: How different architectures impact 

handgun detection performance. 

The study successfully meets most of these objectives by providing insights into performance 

characteristics that are relevant to handgun detection for RT-DETR and YOLOv8. The findings 

include: 

1. Accuracy: RT-DETR demonstrated slightly superior performance across all metrics 

(mAP50-95: 0.728 vs 0.7073, Precision: 0.940 vs 0.9010, Recall: 0.883 vs 0.8560). 

2. Robustness:YOLOv8 managed to perform more consistently with different 

hyperparameters, RT-DETR could be peak performance but highly sensitive to changes 

in parameters. 
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3. Adaptability: The stability across settings of the YOLOv8 alludes to a better 

adaptability to diverse conditions, while the highest recall of the RT-DETR alludes to 

potential advantages in detecting all instances of handguns. 

4. Speed: The study did not fully explore or capture the speed of inference, and this area 

was left somewhat open. 

These results prove the efficiency of both models in handgun detection, each showing different 

strengths. RT-DETR peak performance seems superior for high-accuracy applications, while 

YOLOv8's consistency makes it perhaps better suited for diverse real-world deployments 

. 

Some of the major limitations of the study are it does not provide in-depth analysis on speed; 

all the tests performed were under limited conditions which were environmental. The research 

work was applied and only applied on one dataset, hence may really not represent other 

scenarios that exist in reality. 

Future Work: 

1. Real-time Performance Analysis: Thorough speed tests on varied hardware are to be 

made to analyze real-time capabilities, which are the most important and relevant in 

real practical deployment of security systems. 

2. Environmental Robustness Testing: Testing: This will involve overall model 

performance assessment in conditions involving, for example, low light, partial 

occlusions, and variability in camera view angles to represent more real-world 

situations in public space.. 

3. Multi-threat Detection: Extend the models to detect multiple security threats 

simultaneously, including handguns, knives, and suspicious packages, and make them 

more ample security solutions. 

4. Edge Computing Integration: Investigate the possibility of deploying these models over 

edge devices for having distributed, low-latency detection systems in large public 

spaces. 

5. Explainable AI for Security Applications:  Develop techniques related to handgun 

detection that will make it easier for security people to understand and trust the model's 

output. 

6. Transfer Learning for Rapid Adaptation:  I n this direction, the works will explore fine-

tuning models toward detecting new or region-specific weapon types with minimum 

additional data. 

7. Human-AI Collaborative Systems: Involves assessing systems that can integrate these 

AI models with human security persons, optimizing their strengths in providing service 

for public safety. 

8. Privacy-Preserving Detection Techniques: Study methods for handgun detection in a 

public place without revealing the identity of a person and alleviate ethical concerns in 

surveillance. 

9. Adversarial Testing and Defense: Design techniques that make these models resistant 

to possible adversarial attacks, ensuring reliability in critical security applications. 

10. Cross-modal Integration: Visual detection must be integrated with other sensing 

modalities, like sound and thermal imaging, to correctly obtain a more complete threat 

detection. 
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11. Comparative XAI Study: Present an itemized comparison of SHAP results between 

YOLOv8 and RT-DETR. Such may show, if any, intrinsic differences in the way these 

architectures process visual information to detect handguns; this could provide 

improvement for hybrid models. 

Future directions are thus dedicated to the relaxation of these study limitations and to 

applications SHARED underlying principles for real security challenges. By following these 

avenues, future research could significantly advance this emergent area of AI-driven public 

safety technologies, possibly leading to effective and reliable security solutions within any 

number of diverse public environments. 
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