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1 Introduction

The configuration manual
methodologies used in imp

uplift models are trained,
the data. Two-Model wit
learner with LGBM mode

2 System Spec

Configuration Manual

Prajwal Keshav Kongi
22205314

outlines the system specifications, environment setups, and
lementing uplift modeling to target potential customers in the
fashion e-commerce domain in Russia. The research was carried out on Jupyter Notebook
using Python. New packages and libraries for Uplift modeling were installed like scikit-
uplift. Data processing and Feature engineering are carried out in this project. Four
tested, and evaluated when there are multiple treatments in
h CatBoost, LGBM classifier, Class Transformation, and T-
Is are applied. This document provides detailed descriptions
and information on the tools and technologies used in developing uplift modeling.

ifications

About

Processor

Device ID
Product ID
System type

Copy

Edition
Version
Installed on
OS build

Experience

Device specifications

Device name

with Radeon Graphics

Installed RAM

64-based processor

Pen and touch

Rename this PC

Windows specifications

10 Home Single Language

51

Feature Experience Pack 1000.19060.1000.0

Figure 1 shows the details
used for this research.

Figure 1: System Specifications

about the Device Specifications and Windows specifications
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About Jupyter Notebook

Server Information:

You are using Jupyter notebook.

The version of the notebook server is: 6.3.0
The server is running on this version of Python:

Python 3.8.8 (default, Apr 13 2021, 15:08:@3) [NSC v.1916 64 bit (AHDSA)]

Current Kemel Information:

Python 3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AHDG4)]
Type ‘copyright’, ‘credits’ or 'license’ for more information
IPython 7.22.0 -- An enhanced Interactive Python. Type "?' for help.

Figure 2: Jupyter and Python Versions

Figure 2 shows the details about the Jupyter Notebook and Python versions used in
implementing this project.

3 Fashion E-Commerce Dataset

@ MICHAEL KECHINOV - UPDATED 8 MONTHS AGO - 35 New Notebook &, Download (362 MB) ' @

E-commerce multichannel direct messaging 2021-
2023

Email, web push, mobile push and SMS messages of a e-commerce company.

DataCard Code (5) Discussion (6)  Suggestions (0)

About Dataset :Josfx:ility )
About License

This dataset contains multi-channel messages of medium sized online store for 2 years. Community Data License Agree...
Channels: email, web push, mobile push, SMS. Expected update frequency

. ) Never
Campaign types: bulk, triggers, transactionzl.

Figure 3: Fashion E-Commerce Direct Messaging Data

Figure 3 shows the source of the E-commerce data used in the project which is derived
from Kaggle platform.

4 Dataset Preparation

In this section, data pre-processing is carried out for both message and campaign datasets.



Installing New Libraries
1 pip install pandas scikit-learn scikit-uplift xgboost
1 pip install --upgrade scikit-uplift
1 pip install catboost

1 !{sys.executable} -m pip install scikit-uplift dill lightgbm

Figure 4: Installation of New libraries and packages

In Figure 4, new libraries and packages are installed for this project for the imple-
mentation of uplift modeling.

Importing Libraries

1 import numpy as np
2 import pandas as pd

4  import matplotlib.pyplot as plt
5 import seaborn as sns

from pymongo import MongoClient
g import sqlalchemy as db

18 import sys

11 from sklearn.model selection import train_test_split
12 from sklift.models import TwoModels

13 from sklift.models import SoloModel

14 from sklift.models import ClassTransformation

15 from sklearn.ensemble import RandomForestClassifier
16 from catboost import CatBoostClassifier

17 from xghoost import XGBClassifier

18 from lightgbm import LGBMClassifier

28 from sklift.metrics import uplift_at k, uplift_auc_score, qini_auc_score
21 from sklift.viz import pleot_gini_curve

Figure 5: Libraries used in this project

Figure 5 shows the libraries used in this project.



# Converting string to int

wora e

df[ 'campaign_id'] = df['campaign_id'].astype('Int32")

# Function to convert 't or 'f' to boolean values (@ and 1)

def convert_to_bool(value):
if value == 't":
return True
else:
return False

W W g e

convert_to_bool_cols = ['is_opened’, 'is_clicked', 'is_unsubscribed', 'is_purchased']

12 df[convert_to_bool_cols] = df[convert_to_bool_cols].applymap(convert_to_bool)

# Converting date columns to datetime format

date_cols = ['date’, 'sent_at', 'opened_first_time at', 'opened_last_time_at', 'clicked_first_time_at', 'clicked_last_time_a
‘unsubscribed_at’, 'hard_bounced_at', 'soft_bounced at', ‘complained_at’, ‘blocked at’, ‘purchased_at’]

W o e

6 df[date_cols] = df[date_cols].apply(pd.to_datetime)

¢ df[date_cols].head(2)

Figure 6: Fixing Datatypes

In Figure 6, the features are converted to appropriate datatypes using apply, and
applymap functions.

# Replacing missing values with Made of each column

b pa

mode_cols = ['subject with personalization’, 'subject with deadline’, 'subject with emoji',
4 "subject with bonuses', 'subject with discount’, 'subject with saleout']

for column in mode_cols:

mode value = df3[column].mode()[B] # Getting the most frequent value
8 df3[column] = df3[column].fillna(mode_value)

# Filling subject_lLength feature with mean

[FVIN

df3["subject_length'] = df3[ subject_length'].fillna(df3[ 'subject_length'].mean())

5 df3["total_count'] = df3[ 'total_count'].fillna(df3[ total_count'].mean())

Figure 7: Handling Missing Values

The handling of missing values for both Numerical and Categorical variables is shown
in Figure 7.

# Taking only top 7 email_providers and renaming remaining email_providers with ‘others’

df['email provider'] = df['email provider'].apply(lambda x: x if x in ['mail.ru’, 'gmail.com’, 'yandex.ru', 'bk.ru’,
'list.ru’, "inbox.ru’, 'rambler.ru'] else 'others')

Figure 8: Grouping Email Providers

Figure 8 shows the apply function used with lambda to keep only the top 7 email
providers and group the remaining email providers as 'others’.

4



Pre-processing of Campaigns Data

df_campl = df_camp.copy()

# Dropping null values from total_count feature
df_campl = df_campl.dropna(subset=[ 'total_count'])

T N R VR

# Removing duplicates
7 df_campl = df_campl.drop_duplicates(subset=["id"])

9 # From ab_test column, we'll get to know which users were in treatment and control groups
10 treatment_campaign_ids = list(df campl[df_campl['ab test'] == True]['id'].unique())

12 # Dropping irrelevant columns
13 df_campl.drop(columns = ['topic’, 'started at", 'finished at’, 'ab_test®, 'hour limit',
14 'is test', 'position’], inplace=True, axis=1)

16 # Fixing datatypes
17 # Convert boolean columns to @ and 1

18
19 camp_binary cols = ['warmup mode', 'subject with personalization', 'subject with deadline’,
20 *subject_with emoji', 'subject with bonuses', 'subject with discount', 'subject with saleout']

22 df_campl[camp_binary cols] = df campl[camp_binary cols].apply(lambda x: x.astype(int))

24 # Merging Message and Campaigns Data
25 df3 = pd.merge(df3, df_campl, left_on='campaign_id', right_on='id', how='left')

Figure 9: Processing of Campaigns Data

Figure 9 outlines the key pre-processing steps undertaken for campaign data.

5 Feature Engineering

# Applying Log transformation for total count column

3 df_camp_log_transformed = df_campd.copy()
4 df_camp_log_transformed] 'total_count'] = np.loglp(df_camp_log_transformed] 'total count'])

# Function to clip outliers based on the 5th and 95th percentile for subject_Length

3 def cap_outliers(df, column):

4 lower_cap = df[column].quantile(@.es5)

5 upper_cap = df[column].quantile(e.95)

df[column] = df[column].clip(lower=lover_cap, upper=upper_cap)
return df

9 df_camp_capped = cap_outliers(df_campd, 'subject_length")

Figure 10: Treating Outliers

In Figure 10, functions to detect and treat outliers are shown. The methods used to treat
outliers of variables are Log Transformation and Clipping outliers using percentiles.



1 # Creating new column with the difference in seconds between message 'sent_at’ and ‘opened at’, 'clicked_at’, ‘purchased at’
3 df1['opened_seconds'] = (df1l['opened_first_time_at'] - df1['sent_at']).dt.total_seconds()

4 dfi['clicked seconds'] = (dfi['clicked first time_at'] - dfi['sent_at']).dt.total_seconds()
5 dfi['purchased_seconds'] = (dfl['purchased_at'] - dfi['sent_at']).dt.total seconds()

1 # Replacing NaN values in these columns with @
3 dfil['opened_seconds'].fillna(@, inplace=True)

4 dfi['clicked seconds'].fillna(@, inplace=True)
5 dfi['purchased_seconds'].fillna(®, inplace=True)

1 # Segregating the seconds column's data into 16 segments
3 num_bins = 18

df1['opened_recency'] = pd.cut(dfi[ opened_seconds'],
bins=num_bins, labels=list(range(num_bins-1, -1, -1)), include_lowest=True)

8 dfi['clicked_recency’] = pd.cut(dfi[ ' clicked_seconds'],
g bins=num_bins, labels=list(range(num_bins-1, -1, -1)), include_lowest=True)

1 dfi['purchased_recency'] = pd.cut(dfl['purchased_seconds'],
bins=num_bins, labels=list(range(num_bins-1, -1, -1)), include_lowest=True)

1 # Manually filling @ where message opened_at, clicked at and purchased at are null values

7 dfl.loc[df[ "opened_first_time_at'].isna(), 'opened_recency'] =
4 dfi.loc[df['clicked first_time at'].isna(), 'clicked recency']
5 dfl.loc[df[ purchased_at'].isna(), 'purchased recency'] = @

a
=9

Figure 11: Creating Recency Score

Figure 11 shows the steps taken in the creation of recency scores for 3 features ie,
message opened, clicked, and purchased.

1 # One-hot Encoding
3 df3.drop(columns = ['warmup_mode’, ‘platform’, "id', 'campaign_type', 'channel_y'], inplace=True, axis=1)

5 df4 = df3.copy()
6 df4 = pd.get_dummies(df4, columns = ['channel_x', 'message type', 'email_provider'], drop_first=True, dtype = int)

Figure 12: One-hot Encoding

One-hot encoding is implemented in Figure 12, to transform categorical features into
numerical features using the 'get_dummies’ function.

6 Modeling

In this research, four uplift models are trained, tested, and fine-tuned. The following
contains the codes of four uplift models implemented on the fashion e-commerce dataset.



6.1 Two Model with CatBoost

Uplift Modeling

1. Two Models Approach

from sklift.models import TwoModels

from xgboost import XGBClassifier

from sklift.metrics import uplift_at_k, gini_auc_score, uplift_auc_score
4 from sklearn.model_selection import GridSearchCV

# Two model - an uplifit model with CatBoost classifier

estimator_trmnt = CatBoostClassifier(silent=True, thread_count=2, random_state=42)
estimator_ctrl - CatBoostClassifier(silent-True, thread_count-2, random_state-42)

5 two_model = TwoModels(

7 estimator_trmnt = estimator_trmnt,
estimator_ctrl = estimater_ctrl,

9 method="ddr_control®

10 )
2 # Fit and Predict the model
two_model.fit(X_train, y_train, t_train)
uplift_two_model = two_model.predict(X_test)

# Evaluagtion

uplift_score = uplift at_k(y_test, uplift_two_model, t_test, strategy-‘overall’, k=9.3)
4 auuc = uplift_auc_score(y_test, uplift_two_model, t_test)
5 augc = gini_auc_score(y_test, uplift_two_model, t_test)

7 print(f'Two-Model Approach - Uplift score at 3é%: {uplift_score}')
print(f' Two-Model Approach - Area Under Uplift Curve (AUUC): {auuc}')
print(f'Two-Model Approach - Area Under Qini Curve (AUQC): {augc}')

Two-Model Approach - Uplift score at 3@%: @.8@15487564272344187
Two-Model Approach - Area Under Uplift Curve (AUUC): -©.8010886121763667507
Two-Model Approach - Area Under Qini Curve (AUQC): -8.8@14317959142938694

Figure 13: Two Model approach with CatBoost

Figure 13 shows the implementation of the Two-model approach using the CatBoost
classifier.

6.2 Class Transformation

2. Class Transformation

from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklift.metrics import uplift_at_k

4 from sklift.models import ClassTransformation

dfa['target'] - dfa['is_clicked']

X = df4.drop(columns=['campaign_id*, 'is_clicked’, ‘target'])
4y - dfa[ 'target']
5 treatment - df4['treatment’]

# Stratify split

stratify_cols - pd.concat([treatment, y], axis-1)

X_train, X_val, trmnt_train, trmnt_val, y_train, y_val = train_test_split(X,
treatment,

¥
3 stratify=stratify_cols,
test_size-0.3,
random_state=42

)

print(f"Train shape: {X_train.shape}")
print(f"validation shape: {X_val.shape}")

Train shape: (7eeeea, 26)
validation shape: (3e0ee0, 26)

‘mest_frequent')
2, thread_count=1)

imp_mode = SimpleImputer(missing_values=np.nan, strateg
estimator - CatBoostClassifier(verbose-180, random state-

# Class Transformation model
ct_model = ClassTransformation(estimator=estimator)

7 my_pipeline - Pipeline([('imputer', imp_mode), ('model’, ct_model)

# Fit & predict the uplift
my_pipeline - my_pipeline.fit(X-X_train, y-y_train, model _treatment—trmnt_train)
uplift_predictions - my_pipeline.predict(X_val)

uplift_3@ - uplift_at_k(y_val, uplift_predictions, trmnt_val, strategy='overall')

Figure 14: Class Transformation Model



In Figure 14, Class Transformation using the CatBoost Classifier is trained on the dataset
Zhao and Harinen| (2019). The pipeline is used in this code for smooth implementation.
The data is split using stratify split method where treatment and control groups are
equally distributed among the train and test datasets.

3. Two Model Approach with LGBM Classifier

1 X = dfd.drop(columns=["is_clicked'])
2y = dfa['is_clicked']
3 treatment = df4[ 'treatment']

5 # Stratify split

o stratify_coels = pd.concat([treatment, y], axis=1)

7 X_train, X val, trmnt_train, trmnt_val, y train, y val = train_test split(X,

8 treatment,
¥y
stratify=stratify_cols,
test size=6.3,

12 random_state=31)

3 print(f"Train shape: {X_train.shape}")

14 print(f"validation shape: {X_val.shape}")

Train shape: (7e@oee, 28)
validation shape: (300208, 28)

1 # Initialize the models with regularization
2 treatment_model = LGBMClassifier(
3 random_state=31,
4 n_estimators=10@,
5 learning_rate=8.85,
6 lambda_l1-1.8, # L1 regularization
7 lambda_12=1.8, # L2 regularization
min_split_gain-e.e1,
min_child weight=1,
subsample=6.8,
colsample bytree=8.8,
objective="binary')

14 control_model = LGBMClassifier(

5 random_state=31,

16 n_estimators=168,

17 learning_rate=0.85,

3 lambda_l1-1.8,
lambda_l2-1.8,
min_split gain=6.@1,
min_child weight=1,
subsample=8.3,
colsample_bytree=8.8,

24 objective="binary")

26 # Initialize the TwoModels approach
27 tm = TwoModels(estimator_trmnt=treatment_model, estimator_ctrl=control_model, method='vanilla')

29 # Fit and Predict
30 tm = tm.fit(X_train, y train, trmnt_train)
31 uplift_tm = tm.predict(X_val)

Figure 15: Two Model with LGBM

Figure 15 shows the code of Two model approach using LGBM Classifier. Regulariz-
ation techniques and fine-tuning of the models for both treatment and control groups is
carried out in this code.



4. T-Learner (Meta Learner) with LGBM Regressor

Treatment

1 # Treated Units
2 df_treated = df4[df4[ treatment’] == 1]

4 | # Feagtures
5 features_treated = df_treated.drop(columns=['campaign_id‘, 'is_clicked', 'treatment'], axis = 1)

7 # Target action
8 y_treated = df_treated.loc[:, ["is_clicked']]

Control

1 # Control Units
2 df_contrel = df4[df4['treatment’'] == 8]

4  # Features
5 features_control = df control.drop(columns=['campaign_id', 'is_clicked', 'treatment'], axis = 1)

7 # Target action
8 y_control = df_control.loc[:, ['is_clicked']]

1 # features for all the samples

features = dfd.drop(columns=['campaign_id’, 'is clicked', "treatment’], axis = 1)

1 # LGBM Regressior
optimized_lgbm - LGBMRegressor(
4 random_state=42,
n_estimators=5ee,
learning_rate=8.@5,

7 lambda_l1=1.8, # L1 regularization
8 lambda_12-1.8, # L2 regularization
g subsample=6.8, # Subsample to prevent overfitting

10 colsample_bytree=0.8, # Feature sampling
11 early_stopping_round=18 # Early stopping

1 # Fit and Predict
2 t_treated = optimized lgbm.fit(features_treated, y treated, eval set=[(features, df4['is_clicked'])])
t_control = optimized lgbm.fit(features_contrel, y_control, eval_set=[(features, df4[ is_clicked'])])

Figure 16: T-Learner with LGBM

In Figure 16, the code outlines the implementation of T-learner with LGBM on both
treatment and control groups. The model is fine-tuned with various methods to overcome
over-fitting.

7 Evaluation

In this research, three evaluation metrics are used to evaluate the uplift models. Uplift
Score at 30%, AUUC and AUQC scores.

1 # Evaluation

uplift_score = uplift_at_k(y_test, uplift two_model, t_test, strategy='overall', k=0.3)

4 auuc = uplift_auc_score(y_test, uplift_two_model, t_test)

5 auqc = gini_auc_score(y test, uplift two model, t test)

7 print(f'Two-Model Approach - Uplift score at 30%: {uplift score}")

8 print(f'Two-Model Approach - Area Under Uplift Curve (AUUC): {auuc}')
9 print(f'Two-Model Approach - Area Under Qini Curve (AUQC): {auqc})
10

11

12 # Plotting Uplift Score at 30%

13 plt.figure(figsize=(6, 4))

14 plt.bar('Uplift Score at 30%", uplift_score, color='skyblue')
15 plt.xlabel('Evaluation Metric')

16 plt.ylabel('Score")

17 plt.title('Two Models: Uplift Score at 30%')

18 plt.ylim(@, uplift_score + 0.05) # Adjust y-axis Limit

19 plt.grid(axis="y', linestyle='--", alpha=0.7)

20 plt.show()

Figure 17: Evaluation Metrics



Figure 17 shows the code for calculating the uplift score at 30%, AUUC, and AUQC
scores. Additionally, the uplift score is plotted using the matplotlib library.

# Plot the Qini curve

plt.figure(figsize=(8, 6))

plot gini_curve(y val, uplift tm, trmnt val, perfect=True)
plt.title('Qini Curve')

plt.xlabel('Number of Targets (Percentile)')
plt.ylabel('Cumulative Gain")

plt.grid(True)

plt. show()

Figure 18: Qini Curve

Figure 18 shows the code to plot the Qini curve using ’sklift.viz’ library and from
'plot_gini_curve’ package.
References
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