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Abstract 

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized 

by a range of motor and non-motor symptoms, significantly affecting patients' quality of 

life. This research employs predictive analytics and deep learning, with a focus on Long 

Short-Term Memory (LSTM) networks, to assess the severity of PD using a 

comprehensive multimodal dataset. The study combines motor and non-motor symptom 

data, along with genetic data from the Parkinson's Progression Markers Initiative 

(PPMI), for comprehensive assessment of PD severity detection. The proposed study 

captures the complex temporal patterns inherent in longitudinal medical data, with 

LSTM model achieving 91% accuracy in predicting disease severity. The study 

contributes to the healthcare domain by advancing the understanding of PD through a 

data-driven approach, highlighting how multimodal approach of integrating diverse 

modalities for precise severity detection can provide a holistic assessment of PD. The 

study also underscores the predictive capabilities of LSTM from PPMI data with R2 of 

0.88 and RMSE of 0.33. 

 
 

1 Introduction 
 

Parkinson's disease (PD), primarily affecting individuals over 60, is a 

neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the 

substantia nigra (Dumbhare and Gaukar, 2023). Protein accumulation, particularly alpha-

synuclein, contributes to neuronal damage. While PD diagnosis relies on clinical 

symptoms, early detection, and severity detections are crucial for effective management 

(Bednarz, et al., 2023). PD has a lasting impact on the brain and nerves (central nervous 

system). It gets worse over time. By the time doctors diagnose PD, people often have trouble 

moving around. This is because of tremors (shaking), slowness (bradykinesia), stiffness, and 

balance problems. These issues can make everyday activities like walking, talking, 

swallowing, and even simple tasks difficult. 

 

On top of these movement problems, PD can also affect thinking, mood, sleep, and 

digestion. These are called non-motor symptoms and can significantly worsen a person's 

quality of life. Doctors need to carefully manage these symptoms based on what each person 

experiences. Interestingly, some non-motor symptoms, like a decreased ability to smell 

(hyposmia) or acting out dreams during sleep (REM sleep-behavior disorder), can appear 

years before the movement problems. Other non-motor symptoms, like thinking difficulties, 
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tend to show up after the movement problems start, indicating the need to detect their 

severity for better treatments. Parkinson's Foundation estimates that nearly 1 million 

Americans currently have PD, with that number projected to reach 1.2 million by 2030 

(Parkinson's Foundation, 2024). While it can affect anyone, men are more susceptible 

(Lamba et al., 2021). Early detection is crucial because significant dopamine-producing cells 

may be lost before symptoms appear. Neuro-digital assessments offer promise for early 

diagnosis and gauging disease severity. Early diagnosis allows for better management of PD 

progression. Existing research primarily focuses on motor symptoms for early detection and 

non-motor symptoms for severity. This study aims to incorporate both types of symptoms, 

along with genetic data from the PPMI database to improve PD diagnosis and 

understanding, given the complex interplay of genetic and environmental (Cassotta et al., 

2022). The genetic and molecular underpinnings of PD have been uncovered through the 

application of ML models, analysing complex genetic and transcriptomic data (Balaji et al., 

2021). Several studies have employed ML for identifying PD biomarkers from genetic 

data, including the work of Shamir et al.(2017), Calligaris et al. (2015), and Dulski et 

al. (2022). 

 

The data utilized for this research is medical longitudinal data which comes with many 

issues such as missing data points, incomplete variable sets, unevenly spaced observations, 

and high-dimensional data, and requires careful consideration when processing. Longitudinal 

studies track the same individuals over time, making the data complex. Repeated 

measurements from the same person are related, and it's challenging to separate changes 

within individuals from differences between people (Couronne et al., 2019). Additionally, the 

measurement process is often subject to varying levels of uncertainty, making the data even 

more complex to model with traditional machine learning (ML) techniques. These 

characteristics differentiate longitudinal data from standard time series data and require 

specialized techniques for analysis such as convolutional neural networks (CNNs), deep 

neural networks (DNNs), and recurrent neural networks (RNNs). Therefore, this study 

employs a Long Short-Term Memory (LSTM), a recurrent neural network, to capture the 

evolving patterns within the selected PPMI dataset for accurately assessing PD severity. 

LSTM networks are particularly effective at capturing and processing information over 

extended periods (Yu et al., 2019). Various researchers have successfully utilized LSTM in 

longitudinal data in domains like natural language processing (NLP) (Mahadevaswamy and 

Swati, 2023), time series forecasting (Song et al., 2020), anomaly detection (Ergen and 

Kozat, 2019) and robotics and control systems (Bilal et al., 2022). 

1.1 Research Question 

 

The primary research question guiding this investigation is: “How well can deep 

learning techniques identify the severity of Parkinson's disease using neuro-digital 

assessment data for risk stratification?” 
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1.2 Research Objective and Contributions 

 

This research aims to develop a robust deep-learning framework for accurately 

assessing Parkinson's Disease (PD) severity. By integrating multimodal data encompassing 

motor, and non-motor symptoms, and genetic information, this study seeks to overcome the 

limitations of existing research that primarily rely on single data sources. The integration of 

neuro-digital assessment data will enable the identification of PD severity levels for effective 

risk stratification. This research will contribute to the field by advancing the understanding of 

PD progression through a comprehensive data-driven approach and by providing a novel 

methodology in disease severity detection for improved patient management. 

1.3 Project Report Outline / Organisation of the Report 

 

The report is structured as follows: Section 2 provides a critical analysis of existing 

research on Parkinson's Disease (PD). It examines key studies on PD, highlighting their 

strengths and weaknesses. By situating the current research within the broader academic 

context, this section establishes the need for the proposed study and outlines its potential 

contributions to the field. Section 3 outlines the research design and approach employed in 

the study. It details the data collection methods, research instruments, and sampling 

techniques utilized. Additionally, it provides a justification for the chosen methodology and 

its alignment with the research objectives. Section 4 provides a brief design specification of 

the developed model for the study, outlining a clear blueprint for the implementation phase. 

Section 5 covers detailed procedures taken in implementing the model. Section 6 presents the 

results of the study, assessing the performance of the proposed model. It includes the 

evaluation of the model’s effectiveness in achieving the research objectives. The results are 

analysed, interpreted, and discussed in relation to the research questions. Section 7 concludes 

by summarizing the study’s findings, highlighting key results and their implications. The 

limitations are also acknowledged and potential avenues for future research that can advance 

the field of study are outlined.  

 

2 Related Work 
 

Research on Parkinson’s disease has been done in the past and is still ongoing. As 

highlighted by Dumbhare and Gaukar (2023), a protein called alpha-synuclein plays a 

starring role in the drama of Parkinson's disease. This protein clumps together abnormally 

inside brain cells, particularly in an area called the substantia nigra, which is crucial for 

controlling body movements. This build-up damages the nerve cells and disrupts their 

production of dopamine, a chemical messenger essential for smooth movement. As a result, 

Parkinson's disease develops. Researchers from the National Institute of Neurological 

Disorders and Stroke (NINDS) recently studied that the ability to detect alpha-synuclein 

could help doctors monitor how much alpha-synuclein is building up over time and use this 
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information to gauge disease severity.1 Eventually, this would allow evaluation of the 

effectiveness of the treatments aimed at lowering alpha-synuclein. 

 

2.1 PD Biomarkers for Severity Detection and Progression 
 

Dinov et al. (2016) did a study using a PPMI dataset that combines brain scans, genetic 

information, patient evaluations, and background details. They built models to classify PD 

and found that factors like scores from movement assessments and age were consistently 

important for diagnosis. Brain imaging markers also showed promise, but the link wasn't as 

stable. They identified specific genetic variations and movement scores as strong predictors 

using more advanced analyses. AdaBoost outperformed the other models implemented such 

as Naïve baiyes, SVM, KNN and Decision Tree in different experiments. This study 

demonstrated the potential of using big data analytics, machine learning, and multimodal data 

to predict PD diagnosis. But also highlighting that more research is needed to validate and 

refine the most robust predictive models. 

 

Due to its complexity, PD has been diagnosed using different biomarkers as researchers 

are constantly trying to find better ways of early diagnosis. In their study, Erdaş and Sümer 

(2023) explored the use of neuroimaging and deep learning for PD detection and severity 

prediction. The study utilized 2D and 3D Convolutional Neural Network (CNN) on 

preprocessed magnetic resonance imaging (MRI) to detect PD achieving an accuracy of 

(0.9620) and R2 of (0.8372). Complementary work was done on voice data using a multi-task 

neural network and achieving 99.15% accuracy in classifying severe vs. non-severe 

Parkinson’s disease and predicting disease progression and MSE of 0.15 (García-Ordás et al., 

2024). A similar study using telemonitoring vocal data used a machine learning model 

namely the PCA approach for predicting the severity of PD attaining an R2 of 0.95 accuracy 

(Pechprasarn et al., 2023). These studies follow the concept of singular modality as opposed 

to the multimodal proposed in this paper. Sai Kumar (2023) utilized a CNN-LSTM network 

for classification and severity rating prediction based on gait analysis. The studies show 

promising results in early diagnosis of PD and progression monitoring but focus on either 

motor or non-motor symptoms. A full exploration of a combination of motor and non-motor 

symptoms could present a novel approach to the studies offering potential for improved 

patient care and management due to better severity detection. PD presents a wide spectrum of 

motor and non-motor symptoms as noted, impacting the patient’s quality of life significantly. 

The majority of the research focuses on utilizing voice analysis and deep learning techniques 

to predict disease severity.  

 

While existing research has demonstrated the potential of machine learning and deep 

learning in PD diagnosis and severity prediction, these studies primarily focus on single 

 
 

1 https://www.ninds.nih.gov/current-research/focus-disorders/parkinsons-disease-research/parkinsons-disease-challenges-

progress-and-promise  

 

https://www.ninds.nih.gov/current-research/focus-disorders/parkinsons-disease-research/parkinsons-disease-challenges-progress-and-promise
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modalities such as neuroimaging, voice analysis, or gait analysis as mentioned. While these 

approaches have shown promising results, they fall short of capturing the complex interplay 

between motor and non-motor symptoms and their impact on disease progression. By 

incorporating a multimodal approach that includes genetic data, this research aims to address 

this gap and provide a more comprehensive understanding of PD severity.  

2.2 Deep Learning on Longitudinal Patient Data in PD and Beyond 

 

The previous and current focus on PD is not only on severity and early detection. 

Researchers are actively developing algorithms to analyze the complexity of PD from 

patients’ longitudinal records. This is to accelerate the process of finding new drugs or 

repurposing the existing ones for Parkinson treatment, and to target the root cause of PD 

beyond movement symptoms. Iwaki et al, (2019) employed a meta-analysis of longitudinal 

genome-wide association studies (GWAS) data to investigate the genetic underpinning of PD 

progression by analyzing 4093 patients across 12 cohorts. The study provided valuable 

insights into the genetic heterogeneity of PD progression, paving the way for an improved 

understanding of disease mechanisms. Similarly, Severson et al, (2021) proposed a novel 

statistical model for PD progression, identifying distinct disease states and complex 

progression patterns. The incorporation of the medical effects in the model is a significant 

advancement, however the study’s reliance on a specific dataset and its potential limitations 

in capturing the full spectrum of PD heterogeneity warrants further investigation. While the 

identification of the disease state in this study is promising, it also indicates the need to 

further validate the predictive power of the clinical utility of the disease state. 

 

While working with longitudinal data, it is crucial to analyze the relationships and 

connections between elements within each patient's record sequence. This enables 

development of more powerful and informative representations of the data. The improved 

representations can then be used in the clustering stage to effectively group patients with 

similar characteristics. Recurrent Neural Networks (RNNs) are a powerful tool for capturing 

the underlying structure within sequential data. Their applications span various fields like 

speech recognition, text classification, video processing, and natural language processing 

(Tanveer et al., 2022). RNNs excel at capturing the temporal relationships between elements 

in a sequence. However, traditional RNNs face challenges like vanishing and exploding 

gradients. To address these limitations, researchers have proposed various RNN variants. 

Long Short-Term Memory (LSTM) networks are a popular example, known for their ability 

to handle long-term dependencies between events through a gated architecture. Recent 

studies in health informatics have shown promising results with LSTM applications. Rizvi et 

al. (2020) proposed deep learning techniques, specifically Deep Neural Networks (DNN) and 

Long Short-Term Memory (LSTM) networks, for predicting Parkinson's disease (PD) from 

voice samples. The authors compared the performance of their proposed models with 

conventional machine learning techniques on the Parkinson Speech Dataset (PSD). The 

results show that the proposed LSTM model achieved a maximum accuracy of 99.03%, 

outperforming the DNN model (97.12%) and all previous techniques applied to the PSD 

dataset. In their study, they highlighted that LSTM is highly effective for PD severity and 
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early detection due to its ability of handling longitudinal data well as opposed to traditional 

ML models. In another study related to LSTM on longitudinal data, Hssayeni et al. (2021) 

proposed a deep learning ensemble for continuous UPDRS-III estimation in Parkinson's 

disease (PD). Notably, the ensemble incorporates a Dual-Channel LSTM model trained on 

hand-crafted features. LSTMs are particularly well-suited for this task as they can effectively 

capture the sequential nature of movement data collected from wearable sensors during daily 

activities. The model was able to learn the temporal dependencies within movement 

patterns, which are crucial for differentiating the varying motor fluctuations experienced by 

PD patients. The high accuracy achieved by the ensemble, with LSTM playing a key 

role, highlighted the potential of this approach for continuous PD monitoring and improved 

disease management. The limitation of the study is the small dataset used from only 24 

patients which makes the model generalizability unclear, therefore further validation on a 

larger and more heterogeneous cohort is necessary. The proposed study utilizes a larger 

dataset from more cohorts so that the model’s ability to perform well on a more diverse 

population can be validated.  

 

In general, LSTM achieves the best average accuracy compared to traditional ML models 

and other deep learning techniques while dealing with longitudinal data. In the study, El-

Sayed (2023) proposed a novel CNN-LSTM model for PD classification using handwriting 

data. They reviewed various existing methods, including CNNs, machine learning, and RNNs 

with LSTMs. Particularly, LSTMs offer an advantage in capturing the sequential nature of 

handwriting data, crucial for identifying subtle motor control variations associated with PD. 

The proposed model leveraged both CNNs for feature extraction and LSTMs for temporal 

dependencies, which outperformed previous approaches in PD classification accuracy. This 

existing research demonstrates the potential of LSTM in capturing the complex dynamics of 

PD progression. However, these studies have limited ability to comprehensively assess the 

disease severity and identify early markers due to the utilization of either relatively small 

datasets or single modalities. The proposed study aims to address these limitations by 

leveraging the LSMT framework on multi-modal datasets. By exploring the intricate 

relationships between these data types over time, this study seeks to advance the state-of-the-

art in PD severity assessment and contribute to improved patient care and management. 

 

2.3 Multimodal Detection – A Study of Different Biomarkers 
 

The research work (Giri et al., 2022) presents a comprehensive approach for remote 

diagnosis of PD using a combination of motor movements, sketching, pen pressure, and vocal 

impairment features to develop a Composite Feature Score (CFS). The research used 

ensemble techniques on the datasets and highlighted that tremors and postural instability are 

the hallmarks of PD and patients’ handwriting and sketching skills are affected, with 

micrographia being an early indicator. The limitation of the research is that, even though the 

handwriting and sketching features provide useful information, they are affected by 

confounding factors and require professional evaluation. This makes them insufficient for 

accurate detection of PD on their own. In another work with multiple data modalities, Junaid 
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et al, (2023) proposed a multi-modal time-series framework for PD progression prediction 

with explainable AI (XAI) techniques, in which the light gradient boosting machines 

(LGBM) model achieved a 10-fold cross-validation accuracy of 94.89%. While the multi-

modal approach and explainability are strengths, the study lacks clinical translation pathways 

and relies on established algorithms. The approaches used, such as SVM, random forests, and 

gradient boosting, are well-established in the field of ML. Additionally, ethical considerations 

regarding AI in healthcare and the limitations of interpretability for non-experts remain 

unaddressed. The study could be improved by focusing on clinical validation, additional data 

sources, enhanced explainability for broader audiences, and thorough ethical considerations 

for responsible AI implementation in PD management. The study provided the pathway into 

the importance of using multiple modalities for improved accuracy over individual 

modalities.   

 

Building upon these studies, it is evident that a multi-modal approach is essential for 

accurate and robust PD diagnosis and progression prediction. Pahuja and Prasad (2022) did a 

study using CNN to diagnose PD by combining MRI, SPECT, and biological markers (CSF) 

data. The models achieved 93.33% accuracy using all features and 92.38% after feature 

reduction. While the model achieved impressive results, there are still limitations including 

small dataset size, potential overfitting, and complex interpretations. The study is one of the 

first to utilize deep learning on a heterogeneous dataset that combines neuroimaging and 

biological markers for PD classification integrating multimodal novelty. CNN has its 

limitations when it comes to temporal patterns in sequential data. When comparing CNNs 

and LSTMs for multimodal datasets in PD studies, it's crucial to consider the type of data and 

the nature of the analysis. CNNs are adept at extracting spatial features from neuroimaging 

data, making them suitable for identifying structural and functional brain abnormalities. 

However, they are limited in handling sequential data, such as time-series measurements 

from biological markers. LSTMs, in contrast, are designed to capture temporal dependencies, 

making them ideal for analyzing sequential data and longitudinal studies. This study proposes 

usage of LSTMs which can enhance the understanding of the progression and temporal 

patterns in multimodal data, offering a more comprehensive view of how different 

biomarkers evolve over time, which CNNs may not effectively capture. 

 

2.4 Conclusion 
 

The review on PD research highlights the development of diagnostic and prediction tools 

using machine learning and deep learning. Studies often rely on biomarkers like alpha-

synuclein, brain scans, voice signals and gait data for PD assessment. However, many studies 

focus on individual symptoms rather than combining different types, limiting the 

understanding of the disease's complexity. While machine learning and deep learning have 

shown significant progress in PD diagnosis and prediction, research often focuses on 

individual symptoms as stated. The review indicates the potential of multimodal approaches, 

especially when combined with LSTM models, to better capture the complex relationships 

between motor and non-motor symptoms, leading to more accurate PD severity detection and 
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improved patient care. This study provides a novel approach of utilizing multi-modal 

approach including genetic information for better PD assessment. 
 
 

3 Research Methodology 
 

The study adopts a data-driven approach, specifically following the principles of Knowledge 

Discovery in Databases (KDD). This iterative process emphasizes understanding the data (in 

this case, Parkinson's disease), defining research objectives, and applying suitable techniques 

for knowledge extraction. Longitudinal data from the Parkinson's Progressive Markers 

Initiative (PPMI) is selected for the study. This comprehensive resource provides a wealth of 

information on Parkinson's disease progression, including clinical assessments (doctor notes 

and test results), imaging data, and biological samples (blood, spinal fluid, and genetic 

information). Importantly, PPMI's repository is continuously updated as participants are 

followed over time, allowing for in-depth analysis of disease trajectory. Other steps in the 

methodology involve data pre-processing, standardization, transformation, and data mining. 

The specific steps involved in the research methodology are illustrated in Figure  1 and fully 

discussed in the following subsections. 

 

 

Figure  1: Project Design Specification 

3.1 Data Selection and Understanding 
 

The PPMI database contains over 200 datasets for studying PD progression. PPMI has 

enrolled healthy controls and Parkinson's patients, categorized further based on disease stage 

and genetics.  

 

Out of a collection of datasets in the repository, 21 were chosen for this study. These datasets 

encompass various aspects of the patients, including demographics (medical 

history, sex, age), motor symptoms (rigidity, tremor, gait), non-motor symptoms (sensory 
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assessments, neurobehavioral), clinical data, and genetic data. The datasets in Figure  2 were 

selected based on the proposed research on multimodal analysis that involves motor 

symptoms, non-motor symptoms and genetics data for PD severity detection study. 

 

 

Figure  2: PPMI Selected Datasets for Study 

To understand the data, a clinical PPMI data dictionary was utilized which is provided in the 

PPMI repository as shown in Table 1. It was essential in understanding the structure and 

contents of the datasets facilitating accurate data interpretation and integration. The 

breakdown of selected datasets was as follows: 

3.1.1 Dataset Description 

Table 1: Dataset Description 

MDS-UPDRS Motor Assessments Code 

MDS-UPDRS Part II: Patient Questionnaire 

on Motor Aspects of Experiences of Daily 

Living (M-EDL) 

Evaluates a patient’s self-reported motor 

experiences of daily living, such as speech, 

handwriting, hygiene, dressing, and walking 

MDS-UPDRS Part III: Motor Examination Focuses on a clinician's assessment of motor 

symptoms such as tremor, bradykinesia 

(slowness of movement), and rigidity. 

Gait Substudy: Gait Mobility Assessment 

and Measurement 

Measures gait-related parameters like step 

length, arm swing, and walking speed in PD 

patients. 

Participant Motor Function Questionnaire. A self-reported questionnaire where 

participants evaluate their own motor 

function in daily tasks. 

Neuro QoL: Lower Extremity Function 

(Mobility) - Short Form 

Measures mobility and lower extremity 

motor function, focusing on activities like 
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walking, running, and climbing stairs. 

Neuro QoL: Upper Extremity Function (Fine 

Motor, ADL) - Short Form 

Evaluates fine motor skills such as gripping, 

using utensils, or writing. 

Roche Smartphone App: Monitoring App v2 

data 

Collects continuous motor symptom data 

(e.g, tremor and bradykinesia) through 

smartphone-based sensors. 

Verily Study Watch: Ambulatory Derived 

Data, Step Count Derived Data, Sleep 

Metrics Derived Data 

Provides data on movement, daily step 

counts, and sleep quality using wearable 

sensors. 

MDS-UPDRS Part I: Non-Motor Aspects of 

Experiences of Daily Living (nM-EDL) 

Evaluates non-motor symptoms like 

cognitive impairment, mood changes, sleep 

issues, and autonomic dysfunction in PD 

patients. 

MDS-UPDRS Part I Patient Questionnaire: 

Non-Motor Aspects of Experiences of Daily 

Living (nM-EDL) 

Self-reported questionnaire assessing non-

motor experiences of daily living, focusing 

on sleep, cognitive function, mood, and other 

non-motor domains. 

Geriatric Depression Scale (Short Version) Assesses the presence and severity of 

depression in older adults, a common non-

motor symptom in PD. 

State-Trait Anxiety Inventory Measures anxiety levels, distinguishing 

between temporary and chronic anxiety in 

patients. 

Hopkins Verbal Learning Test - Revised Evaluates verbal memory and learning 

capabilities. 

Montreal Cognitive Assessment (MoCA) A screening tool for mild cognitive 

impairment and dementia. 

Trail Making A and B Assesses visual attention and task-switching 

capabilities. 

SCOPA-AUT (Autonomic) A scale for assessing autonomic dysfunction 

in PD, including issues related to 

gastrointestinal, urinary, cardiovascular, and 

sexual functions. 

Epworth Sleepiness Scale Measures daytime sleepiness, which is often 

related to sleep disorders in PD. 

REM Sleep Behavior Disorder Questionnaire Evaluates REM sleep disturbances, which are 

common in PD and linked to disease 

progression. 

Neuro QoL: Cognitive Function - Short Form Assesses the impact of PD on cognitive 

abilities, including memory, attention, and 

problem-solving. 

Neuro QoL: Communication - Short Form Evaluates communication abilities, including 

speech clarity and comprehension. 



 

11 
 

 

 

3.1.2 Motor Symptoms Datasets 

 

Table 2 shows motor symptoms in Parkinson's Disease which typically involve assessments 

of motor function and mobility.  

Table 2:  Motor Symptoms Datasets 

MDS-UPDRS Motor Assessments Code 

MDS-UPDRS Part II: Patient Questionnaire 

on Motor Aspects of Experiences of Daily 

Living (M-EDL) 

MDS_UPDRS_Part_II_PQ 

MDS-UPDRS Part III: Motor Examination MDS_UPDRS_Part_III 

Gait Substudy: Gait Mobility Assessment 

and Measurement 

Gait 

Participant Motor Function Questionnaire. Participant_Motor_Function_Questionnaire 

Neuro QoL: Lower Extremity Function 

(Mobility) - Short Form 

Neuro_QoL__Lower 

Neuro QoL: Upper Extremity Function (Fine 

Motor, ADL) - Short Form 

Neuro_QoL__Upper 

 

Digital Sensor Data Code 

Roche Smartphone App: Monitoring App v2 

data 

Roche 

Verily Study Watch: Ambulatory Derived 

Data, Step Count Derived Data, Sleep 

Metrics Derived Data 

 

 

3.1.3 Non-Motor Symptoms Datasets 

 

Non-motor symptoms in Parkinson's Disease include cognitive, neurobehavioral, autonomic, 

and sleep disorders as referenced in Table 3.  

Table 3:  Non-Motor Symptoms Datasets 

MDS-UPDRS Non-Motor Assessments: Code 

MDS-UPDRS Part I: Non-Motor Aspects of 

Experiences of Daily Living (nM-EDL) 

MDS_UPDRS_Part_I 

MDS-UPDRS Part I Patient Questionnaire: 

Non-Motor Aspects of Experiences of Daily 

Living (nM-EDL) 

MDS_UPDRS_Part_I_PQ 

Neurobehavioral and Neuropsychological 

Tests 

 

Geriatric Depression Scale (Short Version) GDS 

State-Trait Anxiety Inventory STAI 
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Hopkins Verbal Learning Test - Revised HVLT 

Montreal Cognitive Assessment (MoCA) MoCA 

Trail Making A and B TMAB 

Autonomic and Sleep Disorder Tests:  

SCOPA-AUT (Autonomic) SCOPA_AUT 

 Epworth Sleepiness Scale Epworth_Sleepiness_Scale 

REM Sleep Behavior Disorder Questionnaire REM 

Cognitive and Non-Motor Assessments  

Neuro QoL: Cognitive Function - Short Form Neuro_QoL_Lower 

Neuro QoL: Communication - Short Form Neuro_QoL_Upper 

 

3.1.4 Genetic Datasets 

 

Genetic data involve analyses of genetic material and testing results. The following datasets 

were selected: 

• Genetic Testing Results (Merge). 

• Genetic Testing Results (Online). 

• Family History of Parkinson's Disease: 1st Degree Relatives (Online). 

• Biospecimen Sample Analysis: 

• Current Biospecimen Analysis Results. 

• Project 181 Adaptive Immune Markers for Predicting Cognitive Decline in PD. 

• Research Biospecimens. 

 

When merging datasets, much of the genetic data was deemed unsuitable for the study and 

was therefore excluded. The Research Biospecimens dataset was the most significant one 

included. Additionally, datasets lacking Event_ID, such as TMAB and Roche, were also 

disregarded, as this feature was crucial for merging the datasets and representing different 

patient visits.  

3.2 Data Cleaning and Pre-processing 

 

There were some variables that were not necessarily required on the datasets and were 

removed when the datasets were merged. The data dictionary was used for filtering down the 

variables. The combined dataset had 41847 observations and 251 variables. Cleaned up the 

observations and variables by filtering visits by Event_ID and removing the ones with low 

counts (<80). The EVENT_ID (OL070) had mostly one record for most PATNO and 

therefore was taken out of the study even though its total count was the highest (12287). This 

filtering took the data to (29471, 199) 

 

The dataset had a lot of missing values which is a common issue in longitudinal data due to 

patients not having to attend some visits for the longitudinal data cohorts or dropouts, and 

this could be a major difficulty when building a model (Cascarano et al, 2023). The data is 
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collected from 2010 up to date. Missing values were calculated and a threshold of 20000 was 

set to remove features that had missing values more than the threshold.  The missing values 

of the remaining columns were handled using forward fill and backward fill. When 

longitudinal data are available before and after a missing value, the last observation carried 

forward (LOCF) method is recommended (Engels and Diehr, 2003). 

 

Researchers use rating scales to assess Parkinson's disease (PD) progression and severity. 

These scales in Table 4 assign scores to various aspects of a patient's condition, providing 

insights into their quality of life. Common scales include the Unified Parkinson's Disease 

Rating Scale (UPDRS) from the Movement Disorder Society, which focuses on non-motor 

symptoms. Additionally, the UPDRS can be used alongside the Hoehn and Yahr (HY) 

staging scale and the Schwab and England Activities of Daily Living (ADL) scale to create a 

comprehensive picture of the disease (Kanagaraj, Hema and Gupta, 2021). For the study, the 

selected target feature was ‘NHY’ in the dataset which is based on the severity scale of 0 to 5 

from Hoehn and Yahr scale (HY).  NHY 101 was also removed from the dataset as it did not 

provide any insights into the severity scale. 

Table 4: Hoehn and Yahr scale 

NHY 0 Asymptomatic. 

NHY 1 Unilateral movement only. 

NHY 101 Unable to Rate 

NHY 2 Bilateral involvement without impairment of balance. 

NHY 3 Mild to moderate involvement; some postural instability but physically 

independent; needs assistance to recover from pull test. 

NHY 4 Severe disability; still able to walk or stand unassisted. 

NHY 5 Wheelchair bound or bedridden unless aided. 

 

3.3 Data Transformation 

 

PPMI has baseline (BL) and follow-up visits (V#) to track participants' progress. Screening 

visits (SC) may happen before baseline. Unscheduled visits (U#) are also possible. The exact 

schedule of tests may vary by participant making the visits random. Therefore, the visits were 

sorted by count and the visits with less count were disregarded. During data pre-processing, 

standard scaler normalization was applied. This technique transforms the features to have a 

zero mean and unit variance making sure that overfitting of the model is minimized (Anisha 

and Arulanand, 2020).  

3.3.1 Label Encoding for Sequence Representation  

 

The patient visits numbers (EVENT_ID) were transformed into an integer by manually 

assigning an integer to each ID based on the Parkinson's Disease and PD Genetic Schedule of 

Activities (Years 0 - 13) provided on PPMI. The chronological order is important because the 

LSTM model learns from temporal patterns and dependencies from the ordered data.  
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3.4 Data Mining – Long Short-Term Memory (LSTM) 

 

LSTM networks are a type of Recurrent Neural Network (RNN) specifically designed to 

address the vanishing gradient problem. Unlike standard RNNs, LSTMs incorporate gating 

mechanisms that control information flow within the network. These gates allow LSTMs to 

learn and remember information over longer periods, enabling them to capture long-term 

dependencies in sequential data (Staudemeyer and Morris, 2019). 

 

LSTMs achieve this through memory cells that process both the current input and the 

information from the previous state. These cells can selectively retain or discard information 

from the past, ensuring that relevant data persists even over extended sequences (Maalej, 

Rejab and Nouira, 2023). This functionality makes LSTMs a powerful tool for various tasks 

involving sequential data, such as speech recognition, machine translation, and time series 

forecasting. Unlike standard RNNs that struggle with long-term dependencies, LSTMs utilize 

a cell state for long-term memory, complementing the hidden state's short-term storage. 

Figure  3 shows an architecture of LSTM model. 

 

 

Figure  3: LSTM Architecture 

 

At each step, LSTMs process the current input (x(t)), previous cell state (c(t-1)), and previous 

hidden state (h(t-1)). These are used by three gates to update the cell and hidden states: 

 

• Forget Gate (σ): Determines what information to discard from the cell state and 

previous hidden state (h(t-1)) using a sigmoid function (σ). Values close to 0 indicate 

discarding, while 1 indicates retaining information. This output is multiplied by the 

previous cell state (c(t-1)) to selectively forget. 

• Input Gate (σ): Decides how much of the current input and previous hidden state 

(h(t-1)) contributes to the new cell state (c(t)). The information is processed with 

sigmoid (σ) and combined with the previous cell state using element-wise addition. 
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• Output Gate (σ): Controls the information flow from the cell state (c(t)) to the 

hidden state (h(t)). It uses a sigmoid (σ) function to select relevant information from 

the cell state, which is then activated by a tanh function before becoming the new 

hidden state. 

 

4 Design Specification 
 

This section outlines an overview of how the proposed project was designed and carried out 

as shown in Figure  4. Majority of the time was spent in modelling the data to get the right 

dataset for the study. Careful selection of the data, pre-processing, filtering the data, and 

transformation of the features for LSTM model. 

 

4.1 Techniques and Framework Underlying the Implementation 
 

The primary focus of the literature review was on existing and utilized methods in the 

research field. Specifically, identifying the merits of an RNN method, namely LSTM, for 

longitudinal studies and comparing it with Gated Recurrent Units (GRUs) Networks. This 

comparative analysis aimed to thoroughly evaluate PD severity assessment prediction 

methods in order to identify patients requiring urgent medical attention for improved PD 

management. 

 

Figure  4: Simplified Proposed Architecture 
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5 Implementation 
 

In this stage, R studio was used to import the downloaded csv files of the PPMI dataset using 

R programming language. The tool was also utilised to analyse the data and merge different 

files creating the combined dataset that was imported into Google Colab to further pre-

processing and modeling using Python. The environment was selected as its a free tier of a 

cloud based Jupyter notebook environment equipped with powerful hardware, specifically 

GPUs and TPUs. These resources are essential for efficiently handling the project's 

computationally demanding tasks ensuring scalability and flexibility in model training and 

evaluation. 

 

5.1 Implementation of Long Short-Term Memory (LSTM) 
 

The processed and normalized data was split into training and testing using 80% and 20% 

respectively. The model in Figure  5 was built with two LSTM layers, and each was followed 

by a dropout to prevent overfitting. In the model architecture, the first layer had 64 units with 

L2 regularization. Additionally, the return sequence was enabled in this layer. The second 

layer had 32 units also with L2 regularization without returning a sequence.  The dropout 

layers for handling overfitting were 0.4 and early stopping to stop the model training when 

the validation loss does not improve for several epochs. Moreover, the dense output layer for 

the model was fully connected with SoftMax activation so that the model could classify the 

severity into perspective classes based on the input data (Abd El Aal, et al., 2021; Balaji, et 

al., 2021). To adjust the learning rate during training, the learning rate scheduler was 

implanted for when the validation loss reaches the state of little or no progress. 

 

 

Figure  5: Summary of LSTM Model 

5.2 Overfitting Reduction 
 

Generally neural networks are prone to overfitting, which is the case whereby the model 

performs well on training data but performs poorly on unseen data.  
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5.2.1 L2 Regularization 

 

Regularization is a technique used to mitigate the overfitting issue which occurs when the 

model becomes overly complex. This was implemented to penalize large weights for 

minimizing the generalization error of a classifier model (Vidya and Sasikumar, 2022). L2 

regularisation also adds weight decay effect to the model where the magnitudes of the 

weights progressively reduce during training. In the model, the ‘kernel_regularizer’ is set to 

`12(0.01). Due to the complexity of the data utilized for the study, this regularization controls 

the complexity of the model during training.  The regularization is as follows: 

 

                                          Lregularized(θ)=L(θ)+λi∑θi2        (1) 

 

Where L(θ) is the original loss function, θ represents the weights of the model. ∑iθi2 is the 

sum of the squared weights. λ is the regularization parameter and is (λ=0.01) as per the 

implementation. 

5.2.2 Batch Normalization 

 

This was implemented to add a batch normalization layers that stabilizes and speeds up 

training by ensuring that the inputs to each layer maintain a consistent distribution throughout 

the training. Batch normalization layers are added immediately after every LSTM layer. This 

normalizes the output of the LSTM layer before it passes through the activation function 

ensuring that the input to the subsequent layers maintain a stable distribution. Incorporation 

of batch normalization enhances the model’s ability to learn intricate temporal patterns from 

the high-dimensional sequencing data, ultimately improving the accuracy of PD severity 

prediction (Ahmed, Komeili and Park, 2022). 
 

6 Results and Evaluation 
 

Rigorous analysis of findings was carried out to inform the evaluation made. All the models 

were implemented on the scaled data over 100 epochs with a batch size of 32. Different 

experiments were carried out based on different techniques within recurrent neural networks 

and the following were the results. 

6.1 Experiment 1: Building LSTM without Dimensionality Reduction 
 
The best model in Figure  6 attained best accuracy of 91%. This was the best model after 

different iteration had been done on the model architecture to fine tune it for better 

performance. The model was evaluated using training and validation loss/accuracy plotted 

below. The training and validation loss of the model decreases rapidly initially, and this 

indicates that the model is effectively learning. The divergence between training and 

validation plots is not substantial indicating that the model is overcoming overfitting.  
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Figure  6: Model 1 Loss and Accuracy Plot 

 

The confusion matrix was created to detail the performance of every class. The performance 

also reflects the distribution of the imbalanced classes from the data whereby 1,2, and 3 were 

the majority, and 4 and 5 were the minority. The classes were not balanced so that the model 

can reflect the true distribution of the classes as shown in Figure  7. 

 

Figure  7: Classification Report 

 

The ROC Curves were implemented to provide insights into the model performance across 

all thresholds. The results are as below with the lowest being class 1 with 0.088 and highest 

being class 0 with 0.97. 
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Figure  8: ROC Curve 

6.2 Experiment 2: LSTM Model with Time Distributed Dense Layer 
 

The correlation matrix in data pre-processing stage indicated that some features are highly 

correlated, therefore an experiment for dimensionality reduction was implemented to observe 

if the model performance will improve as per Figure  9. This was carried out using time-

distributed dense layer within the LSTM model. The model had 90% accuracy, which was 

slightly lower than our best model detailed above. Time distributed layer applies the dense 

layer to every time step of the LSTM output, effectively reducing the number of features at 

each step while preserving the temporal structure of the sequence (Quan et al., 2023). 

 

 

Figure  9: Model 2 Accuracy and Loss Plot 

6.3 Experiment 3: LSTM with Autoencoder 
 

The built and trained autoencoder learned a compressed representation of the 

data. Subsequently, the trained autoencoder was used to transform both the training and test 
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data into compressed representations. This compressed representation served as the input for 

the LSTM model, which achieved an accuracy of 87%. 

 

 

Figure  10: Model 3 Accuracy and Loss Plot 

6.4 Experiment 4: GRU Network 
 

GRU model for classification task was implemented in the same way as LSTM model using 

the same layers, same factors for L2 regularization, early stopping and earning rates 

reduction.  

 

6.5 Experiment 5: Predictive Modelling 

The above experiments are classifications tasks focusing on how effective deep learning 

techniques can be utilised for PD severity detection. And the second phase of models were 

regression models for implementing predictive capabilities of the models based on past 

events for better PD management and predictive modelling for severity detection. Both 

LSTM and GRU model for comparison were built. The results showed to be predicting close 

values to the actual values in NHY, which is the severity scale for PD. 

 

 

 

Figure  11: LSTM Actual Vs Predicted Values 
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6.6 Discussion 
 

The study introduced a two-fold evaluation for predictive analytics and modelling of PD 

severity detection. The novel approach introduced is a multimodal study that combines 

motor, non-motor symptoms data and genetic data to build a deep learning model. The first 
fold focused on classification to evaluate how well the LSTM, in comparison to GRU can 

identify the severity of Parkinson's disease using PPMI data for risk stratification. The second 

fold looked at the predictive capabilities of this deep learning models by building regression 

models for both LSTM which is the primary deep learning technique of the study and was 
compared to GRU as well to support the recommendation of LSTM being the suitable 

technique for PD severity assessment.  

 
Different iterations of the models were carried out and it was observed that the efforts of 

dimensionality reduction and hyper parameter optimisation did not improve the final model 

best model.  Table 5  details all the experiments done on classification models for the first 

fold evaluation and Table 6 details all experiments done on the regression models for the 
predictive capabilities assessment.  

 

Table 5: Classification Models Results 

Model Accuracy Precision Recall F1-Score 

LSTM Best Model 91% 0.907 0.907 0.905 

LSTM with Time Distributed 

Dense Layer 

90% 0.898 0.901 0.899 

LSTM with Autoencoder 84% 0.818 0.837 0.823 

LSTM with Keras Classifier 

Optimization 

88% 0.878 0.879 0.878 

GRU 82% 0.818 0.837 0.825 

 

Table 6: Regression Models Results 

Model R2 MAE MSE RMSE 

LSTM 0.88 0.14 0.11 0.33 

GRU 0.85 0.17 0.16 0.40 
 

 

7 Conclusion and Future Work 
 

The research was done to study how well can deep learning techniques identify the severity 

of Parkinson's disease using neuro-digital assessment data for risk stratification. The 

objective of the study was to develop a robust deep learning framework for accurately 
assessing PD severity. The main contribution of the research is the proposal of multimodal 

approach for PD severity detection which is more effective than single modality approach 

from recent studies.  The study will enable better PD management by enabling healthcare 

providers to detect severity of PD effectively and predict the severity for future visits based 
on the past events. The severity assessment for PD is evaluated using LSTM model which 

yielded the best accuracy of 91%. 

 

In the future, an investigation into why the efforts of dimensionality reduction techniques and 
hyperparameter optimisation did not improve the model. Further fine tuning of GRU models 



 

22 
 

 

can also be conducted to advance its classification capabilities. More advanced architecture 

of the LSTM model can be explored by using memory augmented networks such as Neural 

Turing Machines (NTMs) and Differentiable Neural Computers (DNCs).  These architectures 
are complex and typically require custom implementations or specialized libraries. 
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