~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

YUG KATHIRIYA
Student ID: x2218789

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: YUG KATHIRIYA
Student ID: x22187839
Programme: Data Analytics
Year: 2023
Module: Msc Research Project
Supervisor: Jorge Basilio
Submission Due Date: 12/08/2024
Project Title: A comparative analysis of Deep Learning Models for Spatio-
Temporal Crime Prediction in Chicago
Word Count: XXX
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

YUG KATHIRIYA
x22187839

1 Introduction

In this configuration manual will explain all the necessary steps to replicate the process
of the research.

2 Integrating Environment

In this section will discuss what are the necessary requirements to perform the experi-
ments.

The entire project is done on Google Collab ensuring that while training the session
and RAM doesnt crash out.

Table 1: System Configuration

Category Details

IDE Google Colab
Programming Language | Python

RAM High RAM Environment
Disk Google Drive Storage

Table 2: Time Series Models

Category Details

Time Series Models | tensorflow.keras.models.Sequential

tensorflow.keras.layers.LSTM

tensorflow.keras.layers.Bidirectional

tensorflow.keras.layers.ConviD

tensorflow.keras.layers.MaxPoolinglD

tensorflow.keras.layers.Dense

tensorflow.keras.layers. Input

Custom Attention Layer using tensorflow.keras.layers.Layer

Table 3: Scikit-Learn
Category | Details

Scikit-Learn | sklearn.metrics.mean squared _error

sklearn.metrics.mean_absolute_error

sklearn.metrics.r2_score
sklearn.preprocessing.StandardScaler
sklearn.metrics.silhouette_score
sklearn.metrics.davies_bouldin_score

sklearn.metrics.calinski_harabasz_score

Table 4: Hotspot cluster
Category Details
Map Generation | folium.Map
folium.Marker
folium.plugins.MarkerCluster
folium.Icon

3 Data Collection and Pre-processing

e First mount the google drive to collab and upload the dataset

t pandas as pd
numpy as np
matplotlib.pyplot as plt
google.colab im drive
drive.mount(", e')

5% Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content

[] df = pd.read csv("/content/d

Figure 1: Mounting google drive to collab

e After the mount is completed load the dataset which is in csv format downloaded
from Chicago data portal.(Crimes 2001 to Present - Chicago Data Portal).

e Load the dataset into a dataframe.

e After the dataset is loaded , convert the Date into Datetime, then extract date com-
ponents using .dt accessor on Date columns the Year,Month,Day, Hour,Minute, Weekday
extracting them and storing it into separate columns.

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2/data_preview

case
i e Block IUCR Type

Description Arrest Domestic ...

Primary Location Updated | .iitude Longitude Location Month Day
Description on

PARKING LOT 11/04/2023
- 0000X E / GARAGE Ao (41.871834768,
13204489 JG416325 8THST THEFT OVER $500 (NON 03:40:18 41.871835 -87.626151 _87.62615082)

RESIDENTIAL) PM
067XX S otHEr | ASSMERE 09142023
12592454 JF113025 MORGAN o ECTROM RESIDENCE 034159 41771782 87649437

15:55:00 ST MEANS PM

(41.771782439,
-87.649436929)

2022- 072XX S SEX SEXUAL 09/14/2023
12785595 JF346553 08-05 UNIVERSITY OFFENSE EXPLOITATION APARTMENT 03:41:59 41.763338 -87.597001
21:00:00 AVE OF ACHILD PM

(41.763337967,
-87.597001131)

(2022 U 0SDO0W) SEX AGGCRI\I(/IA\LE\E O f2023 (41985875279,
12808281 JF373517 08-14 ARDMORE RESIDENCE 03:41:50 41985675 -B7.766404 (1" :
o OFFENSE SEXUAL -87.766403857)

14:0000 AVE i PM

2- RECKLESS 09/14/2023
072XX S WEAPONS .41 (41.76261474,
12888104 JF469015 - May st 477 VioLATION DIS%RE/;IZE STREET 03.41}._"5'3 41762615 -87.652840 -87.652840463)

3 FIRST 09/19/2022
000XX E o (41.711753121,
2445888 26601 JF132803 -03 0110 HOMICIDE DEGREE .. 2022 03:41:05 41.711753 -87.621374 87.621374343)

O MURDER PM

Figure 2: Dataset

4 Data Exploration

4.1 Filtering data into 3 periods

The dataset was filtered from year 2018 to 2024. According to 3 periods crime counts
are counted of the periods determing which day was the highest crime and lowest crime

crime_day stats(df):

day counts = df["l y'].value counts().sort index()
highest day = day counts.idxmax()

lowest day = day counts.idxmin()

return highest day, lowest day, day counts

pre covid stats = crime day stats(pre covid df)
during covid stats = crime day stats(during covid df)
post covid stats = crime day stats(post covid df)

pre covid stats, during covid stats, post covid stats

Figure 3: Crime Count

After the counts are defined , the plot function is made to plot the graphs
The Pre-Covid data is from 2018 to 2020, During-Covid from 2020-2022 and Post-
Covid from 2022-2024.

mport matplotlib.pyplot as plt

plot_weekday crime_counts(day counts, title, highest day, low
' ! 'Th "F

.bar(days, day_:
Jtitle(title)
.xlabel("
.ylabel ("
.xticks(rotat

.text(highest day, day_counts[highest day] + 1@, f'Highest: {day_counts[highest da
.text(lowest_day, day_counts[lowest day] + 1@, f' : {day_counts[lowest day]}’,
.show()

[1 plot weekday crime counts(pre covid stats[2], (d 2)", pre_covid stats[@], pre covid stats[1])

5.1

plot_weekday crime_counts(pre_covid_stats[2], 'Crime Counts b y (Pre-Cov)) ", pre_covid_stats[@], pre_covid stats[1])
lot kd. i it id_stat: ts | d_stat d_stat

Crime Counts by Weekday (Pre-Covid 2018-2020)

Number of Crimes

Y
2
&é
&

Day of the Week

Figure 5: Pre-Covid Graph

Model Training

Pre-Processing

Handling missing data by df.dropna().

Date as index in df.

Resample the data to monthly frequency, counting no of crime per month.
To handle the outliers , Winsorization is used in monthly crime counts.
Normalize the data usisng MinMax Scaler[f]

Creating the sequence of 12 months (X) and corresponding next month value as
Target(y).

Splitting the data into 80% training and testing as 20%.

4

df .dropna(inplace=

df.set_index('Date’, inplace=

monthly crime = df.resample('M').size()

monthly crime winsorized = winsorize(monthly crime, limits=[e.e5, @.@5])

scaler = MinMaxScaler()
monthly crime_scaled = scaler.fit_transform{monthly crime winsorized.reshape(-1, 1))

create sequences{data, seq length):

X

y
i in range(len(data) - seq_length):
X.append(data[i:i + seq_length])
y.append(data[i + seq_length])
'n np.array(X), np.array(y)

seq_length = 12
X, y = create sequences(monthly crime scaled, seq length)

split = int(@.8 * len(X))
X_train, X_tes X[:split], X[split:]
y_train, : y[:split], y[split:]

Figure 6: Model Training Pre-Process

5.2 Categorize Seasons

categorize_seasons(data)
summer*: [1, *Autumn’: []}

if date.month in [12, 1, 2]
seasons[‘Winter'].append((date, count))
[3, 4, 5]:
0 ing']-append((date, count))
elif date.month in [6, 7, 8]:
seasons['Summer '].append((date, count))
elif date.month in [9, 10, 11]:
seasons[’ n'].append((date, count))
return seasons

seasons_data = categorize_seasons(monthly_crime)

preprocess_season_data(season_data, seq_length):

dates, counts *season_data)
data_serie .Series(counts, index-dates)

data_scaled = scaler.fit_transform(data_series.values.reshape(-1, 1))

Xy =100
for i in range(len(data_scaled) - seq length):
X.append(data_scaled[i:i + seq length])
ppend(data_scaled[i + seq length])
return np.array(X), np.array(y), scaler

Figure 7: Categorize seasons

5.3 Model Definitions
e Importing necessary libraries from table
e Create a custom attention layer

e Three function defining the model create-attn,create-Istm and create-cnn-Istm and
include hyper parameters.

tensorflow as tf
tensorflow s.models im Sequential, Model
tensorflow s i LSTM, Bidirectional, ConvlD, MaxPoolinglD, Dense, Input, Dropout
mean_squared_error, mean_absolute_error, r2_score

init (self kwargs

_ £ >
super(Attention, self). init (**kwargs)

build(self, input_shape):

self.W = self.add weight(name="a ht', shape=(input_shape[-1], input_shape[-1]),
initializer=

self.b = self.add weight(name=
initializer=

super(Attention, self).build(input_sh

call(self, x):

e = tf.nn.tanh(tf.tensordot(x, self.W, axes=1) + self.b)
a = tf.nn.softmax(e, axis=1)

outpu a

return tf.reduce_sum(output, axis=1)

create_attn_bilstm_model(units_1, units_2, dropout_1, dropout_2):
eq_length, 1))
units=units_1, return_sequences=)) (inputs)
it 1)(x)
units=units_2, return_sequences=))(x)

, input_shape=(seq length, 1)))

create_cnn_lstm model(filters, units, dropout):
size=2, activation="relu’, input shape=(seq length, 1)))

mo d(LSTM(
model.. add (Dropout (rate=dr

Figure 9: Defining Models

5.4 Training and Evaluation

e Train function takes the model trains them on the training data,makes prediction
on the test data using trained model. Inverses scaling applied on predicted val-
ues. Calculates evaluate metrics between actual and predicted values. Return a
dictonary of the results[I0]

e Evaluation Loop: It iterates through seasons, for each season retrives the training
and testing data for the current seasons[I1] For each model type initializing best
score with high RMSE values to track best performance. Iterating over a set of
hyperparamters for current model type. Train-evaluate model: train model on
training data. Best score: compares the models rmse to current. If the models rmse
is better updates the best-score and stores it to corresponding hyperparamters.

train_evaluate model(model, X train, y train, X test, y test, scaler):
model.fit(X train, y train, epochs=50, batch_size=64, validation_s =0.2, verbose=1)

predictions = medel.predict(X_test)

y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
predictions_inverse = scaler.inverse transform(predictions)

rmse = np.sqrt(mean_squared error(y test inverse, predictions_inverse))
mae = mean_absolute error(y_test_inverse, predictions_inverse)
r2 = r2_score(y_test_inverse, predictions_inverse)

_inverse.shape[1] if len(predictions_inverse.shape) > 1 else 1
adjusted r2 =1 - (1 -r2) * (n-1) / (n-p - 1)

return {"RMSE": rmse, "MAE': mae, 'R2': r2, ‘A ted R2": adjusted r2}

results =
models = ['ATTN-BILSTM', 'LSTM', 'CNN-LSTM']

for season in season datasets:
season_datasets[season][
season_datasets[season][
eason_datasets[season][’
eason_datasets[season][’

odel type == A
for params in attn bil s:
te_attn_bilstm model(

tm_params:

te_lstm model (**params)

n_evaluate model(model, X train, y_train, X test, y test, scaler)
re['RMSE"]:

- best_score

tm_model (**params)
score = train_evaluate model(model, X_train, y train, X_test, y test, scaler)
if score[SE* best_score['RMSE"]:
best_score
best_params = params
results[season][model_type] = best_score

Figure 11: Evaluation Models

5.5 Plotting and Statistical Tests

e Defining function to create the graphs, six parameters were defined.Season,model-
type,x-test,y-test and scaler and months.Season for specific seasons(Summer, Winter,
Autumn, Spring) [12] Model-type: The type of model used(ATTN-BILSTM,LSTM,CNN-
LSTM) X-test: test data for model. Y-test: Actual crime count for test data.
Scaler: It is used for data pre-processing. Months: List of months names for
plotting. Tuned model: Trained models for specific season and the model type.
Predictions: Generates predictions for test data. Y-test inverse: Re-scales actual
crime count of original data. Predictions inverse: Re-scales predicted crime counts
to original scale.

e Statistical Test: After the evaluation the code iterates results which contains the
performance metrics for each model and seasons in summary dictonary. The ttest-
rel function from Scipy library is used[14] The t-statistic and p-value for each pair

7

plot_predictions(season, model_type, X_test, y test, scaler, mont
model = tuned models[season][model type]
predictions = model.predict(X_test)

y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
predictions_inverse = scaler.inverse transform(predictions)

len(y_test_inverse
i], 'o', color=colors(i), label=f'Act 0 i1}
i], 'x', color=colors(i), label= d - {months[i]}")

t.title(f'Crime Trend Pre n ({season} - {model type})')

.xlabel(
t.ylabel('n
labels=months, rotation=45)

type in tuned models[s
ictions 0 t, scaler, months)

Figure 12: Plotting

is printed.

season in results:

for model_type in results[season]:
summary[* '].append(model_type)
summary[* "].append(season)
summary["RMSE "].append{(results[season][model_type]["
summary["MAE'].append(results[season][model type][’
summary["R2"].append(results[season][model type]['R2'])
summary["Adj R2"].append(results|[season][model type]['

summary_df = pd.DataFrame(summary)
df_rmse = summary_df.pivot(index=

ttest bilstm_lstm = ttest rel(df rmse['ATTN-BILSTM'], df _rmse["LSTM'])
ttest _bilstm cnn_lstm = ttest rel(df rmse['ATTN-BILSTM'], df rmse['CNN-LSTM'])
ttest lstm cnn_lstm = ttest rel(df rmse['LsTM'], df_rmse['C S D

b TN-BILSTM and LSTM:')
{ttest bilstm lstm.statistic}, {ttest_bilstm lstm.pvalue

print(" t ATTN-
print(

print(”
rint

Figure 13: Statistical Test

6 HDBSCAN for Hotspot

6.1 Data Pre-processing

e First mount the drive ,load the data set, handle the missing values and drop them
off.

e For the clustering puprose only 6 columns were used Date,Year,Month, Primary
Type, Longitude and Latitude.

e Data was filtered from 2018 to 2024.

6.2 Model Implementation

e Install hdbscan and import, cluster size is 50 , fittting hdbscan on Latitude and
Longitude.

apply_hdbscan(data, min_cluster size=50):

data = data.dropna(subset=['Latitude ade* 1)

clusterer = hdbscan.HDBSCAN(min_cluster size=min cluster si

data["Cluster'] = clusterer.fit predict(data[[’Latitude’

return data

clustered data = apply hdbscan(df_filtered)

clustered data.head()

Figure 14: Model

6.3 Evaluating Clustering Performance

e The code calculates three common metrics to evaluate the quality of clustering
result: Silhouette Score, Davies-Bouldin Score and Callinski-Harabasz Score.

[1 from sklearn.metrics import silhouette score, davies bouldin_score, calinski_harabasz_score

sil score = silhouette score(X_sample, labels sample)
db_score = davies_bouldin_score(X_sample, labels_sample)
ch_score = calinski_harabasz_score(X_sample, labels sample)

print(
print(
print(f'c k: a dex: {ch_score}')

Figure 15: Evaluation Performance

6.4 Visualization

e Install and import folium, crime colors for mapping crime type to colors for better
visualization purposes.

e Take data , create folium maps, marker cluster to cluster for better performance.
For each crime creates a marker with location based on latitude and longitude .
Pop up information about crime type , year and month. Create-map create the
maps, save the maps, display the map in Collab environment through IFrame.

e The final result of how the map display with crime type , year and month|[17]

References

folium
folium.plugins import MarkercCluster

create_map(data):
m = folium.Map(location=[data['Latitude’].mean(), i .mean()], zoom start=10)
marker_cluster = MarkerCluster().add_to{m)
for _, row in data.iterrows():
crime_type = in |
color = crime_colors.get(crime type
folium.Marker(

{row['Pri
icon=folium.Icon(color=color
}.add_to(marker_cluster)
nom

me_map
crime_map.save(i

y the m in
IPython.display in IFrame
html*, width=8ee, height=600)

Figure 16: Map Generation

=
anuany puejusy
¢
S

7
snuanY §

N -
I = =]

Street ! \ - LAY " y
:;'Ily ,7 b 3 B fh East 93d Street
! i J NK‘*& @ 5
o g 1k} Eh - BN ___ChicagoD g
2 - === — =% o oo it e
i 3 = us 12 5 = p” TR Z) T i
4 us12 3 O A2 \
= us 20 95tk Street P t s 6 cime X : ’
o 7St | 2 ‘v.-,! BATTERY ;] :
[|
| / ; | ol | i
| | font: iripers §
| / ! { 4 5] i
f qestdsthBlace 157 3s | W)
I (K i § e 99th place 2
g 95th place. - A
.!u.u (7 4 z @ Ford Freeway"” Ga E
Iis) f 2 :
D\ e 3
i i 3 A
2 —
§ “washingilig 7 12 S
I Height! (] A : ’ \
1 // g \
. ; / /4
i Roseland | t'é
= t f
» { ;
Street West 107th Street -+ 12 (71 Street f f
3 g § TT
9 g 5 |
£ !
: : 5 ==
7 L £ / -
g z /
\ 6 |: g : r
7 Wiest 111th Street West 111th Street Wes 2 Street 3 fpth:“ ;H‘ Street s \
)

Figure 17: Neighbourhoods with clusters

10

	Introduction
	Integrating Environment
	Data Collection and Pre-processing
	Data Exploration
	Filtering data into 3 periods

	Model Training
	Pre-Processing
	Categorize Seasons
	Model Definitions
	Training and Evaluation
	Plotting and Statistical Tests

	HDBSCAN for Hotspot
	Data Pre-processing
	Model Implementation
	Evaluating Clustering Performance
	Visualization

