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1 Introduction

In this configuration manual will explain all the necessary steps to replicate the process
of the research.

2 Integrating Environment

In this section will discuss what are the necessary requirements to perform the experi-
ments.

The entire project is done on Google Collab ensuring that while training the session
and RAM doesnt crash out.

Table 1: System Configuration

Category Details

IDE Google Colab
Programming Language | Python

RAM High RAM Environment
Disk Google Drive Storage

Table 2: Time Series Models

Category Details

Time Series Models | tensorflow.keras.models.Sequential

tensorflow.keras.layers.LSTM

tensorflow.keras.layers.Bidirectional

tensorflow.keras.layers.ConviD

tensorflow.keras.layers.MaxPoolinglD

tensorflow.keras.layers.Dense

tensorflow.keras.layers. Input

Custom Attention Layer using tensorflow.keras.layers.Layer




Table 3: Scikit-Learn
Category | Details

Scikit-Learn | sklearn.metrics.mean squared _error

sklearn.metrics.mean_absolute_error

sklearn.metrics.r2_score
sklearn.preprocessing.StandardScaler
sklearn.metrics.silhouette_score
sklearn.metrics.davies_bouldin_score

sklearn.metrics.calinski_harabasz_score

Table 4: Hotspot cluster
Category Details
Map Generation | folium.Map
folium.Marker
folium.plugins.MarkerCluster
folium.Icon

3 Data Collection and Pre-processing

e First mount the google drive to collab and upload the dataset

t pandas as pd
numpy as np
matplotlib.pyplot as plt
google.colab im drive
drive.mount( ", e')

5% Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content

[ ] df = pd.read csv("/content/d

Figure 1: Mounting google drive to collab

e After the mount is completed load the dataset which is in csv format downloaded
from Chicago data portal.(Crimes 2001 to Present - Chicago Data Portal).

e Load the dataset into a dataframe.

e After the dataset is loaded , convert the Date into Datetime, then extract date com-
ponents using .dt accessor on Date columns the Year,Month,Day, Hour,Minute, Weekday
extracting them and storing it into separate columns.


https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2/data_preview
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Figure 2: Dataset

4 Data Exploration

4.1 Filtering data into 3 periods

The dataset was filtered from year 2018 to 2024. According to 3 periods crime counts
are counted of the periods determing which day was the highest crime and lowest crime

crime_day stats(df):

day counts = df[ "l y'].value counts().sort index()
highest day = day counts.idxmax()

lowest day = day counts.idxmin()

return highest day, lowest day, day counts

pre covid stats = crime day stats(pre covid df)
during covid stats = crime day stats(during covid df)
post covid stats = crime day stats(post covid df)

pre covid stats, during covid stats, post covid stats

Figure 3: Crime Count

After the counts are defined , the plot function is made to plot the graphs
The Pre-Covid data is from 2018 to 2020, During-Covid from 2020-2022 and Post-
Covid from 2022-2024.



mport matplotlib.pyplot as plt

plot_weekday crime_counts(day counts, title, highest day, low
' ! 'Th "F

.bar(days, day_:
Jtitle(title)
.xlabel("
.ylabel ("
.xticks(rotat

.text(highest day, day_counts[highest day] + 1@, f'Highest: {day_counts[highest da
.text(lowest_day, day_counts[lowest day] + 1@, f' : {day_counts[lowest day]}’,
.show()

[ 1 plot weekday crime counts(pre covid stats[2], ( d 2 )", pre_covid stats[@], pre covid stats[1])

5.1

plot_weekday crime_counts(pre_covid_stats[2], 'Crime Counts b y (Pre-Cov )) ", pre_covid_stats[@], pre_covid stats[1])
lot kd. i it id_stat: ts | d_stat d_stat

Crime Counts by Weekday (Pre-Covid 2018-2020)

Number of Crimes

Y
2
&é
&

Day of the Week

Figure 5: Pre-Covid Graph

Model Training

Pre-Processing

Handling missing data by df.dropna().

Date as index in df.

Resample the data to monthly frequency, counting no of crime per month.
To handle the outliers , Winsorization is used in monthly crime counts.
Normalize the data usisng MinMax Scaler[f]

Creating the sequence of 12 months (X) and corresponding next month value as
Target(y).

Splitting the data into 80% training and testing as 20%.
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df .dropna(inplace=

df.set_index('Date’, inplace=

monthly crime = df.resample('M').size()

monthly crime winsorized = winsorize(monthly crime, limits=[e.e5, @.@5])

scaler = MinMaxScaler()
monthly crime_scaled = scaler.fit_transform{monthly crime winsorized.reshape(-1, 1))

create sequences{data, seq length):

X

y
i in range(len(data) - seq_length):
X.append(data[i:i + seq_length])
y.append(data[i + seq_length])
'n np.array(X), np.array(y)

seq_length = 12
X, y = create sequences(monthly crime scaled, seq length)

split = int(@.8 * len(X))
X_train, X_tes X[ :split], X[split:]
y_train, : y[:split], y[split:]

Figure 6: Model Training Pre-Process

5.2 Categorize Seasons

categorize_seasons(data)
summer*: [1, *Autumn’: []}

if date.month in [12, 1, 2]
seasons[ ‘Winter'].append((date, count))
[3, 4, 5]:
0 ing']-append((date, count))
elif date.month in [6, 7, 8]:
seasons[ 'Summer ' ].append((date, count))
elif date.month in [9, 10, 11]:
seasons[’ n'].append((date, count))
return seasons

seasons_data = categorize_seasons(monthly_crime)

preprocess_season_data(season_data, seq_length):

dates, counts *season_data)
data_serie .Series(counts, index-dates)

data_scaled = scaler.fit_transform(data_series.values.reshape(-1, 1))

Xy =100
for i in range(len(data_scaled) - seq length):
X.append(data_scaled[i:i + seq length])
ppend(data_scaled[i + seq length])
return np.array(X), np.array(y), scaler

Figure 7: Categorize seasons

5.3 Model Definitions
e Importing necessary libraries from table
e Create a custom attention layer

e Three function defining the model create-attn,create-Istm and create-cnn-Istm and
include hyper parameters.



tensorflow as tf
tensorflow s.models im Sequential, Model
tensorflow s i LSTM, Bidirectional, ConvlD, MaxPoolinglD, Dense, Input, Dropout
mean_squared_error, mean_absolute_error, r2_score

init  (self kwargs

_ £ >
super(Attention, self). init  (**kwargs)

build(self, input_shape):

self.W = self.add weight(name="a ht', shape=(input_shape[-1], input_shape[-1]),
initializer=

self.b = self.add weight(name=
initializer=

super(Attention, self).build(input_sh

call(self, x):

e = tf.nn.tanh(tf.tensordot(x, self.W, axes=1) + self.b)
a = tf.nn.softmax(e, axis=1)

outpu a

return tf.reduce_sum(output, axis=1)

create_attn_bilstm_model(units_1, units_2, dropout_1, dropout_2):
eq_length, 1))
units=units_1, return_sequences= )) (inputs)
it 1)(x)
units=units_2, return_sequences= ))(x)

, input_shape=(seq length, 1)))

create_cnn_lstm model(filters, units, dropout):
size=2, activation="relu’, input shape=(seq length, 1)))

mo d(LSTM(
model.. add (Dropout (rate=dr

Figure 9: Defining Models

5.4 Training and Evaluation

e Train function takes the model trains them on the training data,makes prediction
on the test data using trained model. Inverses scaling applied on predicted val-
ues. Calculates evaluate metrics between actual and predicted values. Return a
dictonary of the results[I0]

e Evaluation Loop: It iterates through seasons, for each season retrives the training
and testing data for the current seasons[I1] For each model type initializing best
score with high RMSE values to track best performance. Iterating over a set of
hyperparamters for current model type. Train-evaluate model: train model on
training data. Best score: compares the models rmse to current. If the models rmse
is better updates the best-score and stores it to corresponding hyperparamters.



train_evaluate model(model, X train, y train, X test, y test, scaler):
model.fit(X train, y train, epochs=50, batch_size=64, validation_s =0.2, verbose=1)

predictions = medel.predict(X_test)

y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
predictions_inverse = scaler.inverse transform(predictions)

rmse = np.sqrt(mean_squared error(y test inverse, predictions_inverse))
mae = mean_absolute error(y_test_inverse, predictions_inverse)
r2 = r2_score(y_test_inverse, predictions_inverse)

_inverse.shape[1] if len(predictions_inverse.shape) > 1 else 1
adjusted r2 =1 - (1 -r2) * (n-1) / (n-p - 1)

return {"RMSE": rmse, "MAE': mae, 'R2': r2, ‘A ted R2": adjusted r2}

results =
models = ['ATTN-BILSTM', 'LSTM', 'CNN-LSTM']

for season in season datasets:
season_datasets[season][
season_datasets[season][
eason_datasets[season][’
eason_datasets[season][’

odel type == A
for params in attn bil s:
te_attn_bilstm model(

tm_params:

te_lstm model (**params)

n_evaluate model(model, X train, y_train, X test, y test, scaler)
re[ 'RMSE"]:

- best_score

tm_model (**params)
score = train_evaluate model(model, X_train, y train, X_test, y test, scaler)
if score[ SE* best_score[ 'RMSE" ]:
best_score
best_params = params
results[season][model_type] = best_score

Figure 11: Evaluation Models

5.5 Plotting and Statistical Tests

e Defining function to create the graphs, six parameters were defined.Season,model-
type,x-test,y-test and scaler and months.Season for specific seasons(Summer, Winter,
Autumn, Spring) [12] Model-type: The type of model used(ATTN-BILSTM,LSTM,CNN-
LSTM) X-test: test data for model. Y-test: Actual crime count for test data.
Scaler: It is used for data pre-processing. Months: List of months names for
plotting. Tuned model: Trained models for specific season and the model type.
Predictions: Generates predictions for test data. Y-test inverse: Re-scales actual
crime count of original data. Predictions inverse: Re-scales predicted crime counts
to original scale.

e Statistical Test: After the evaluation the code iterates results which contains the
performance metrics for each model and seasons in summary dictonary. The ttest-
rel function from Scipy library is used[14] The t-statistic and p-value for each pair
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plot_predictions(season, model_type, X_test, y test, scaler, mont
model = tuned models[season][model type]
predictions = model.predict(X_test)

y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
predictions_inverse = scaler.inverse transform(predictions)

len(y_test_inverse
i], 'o', color=colors(i), label=f'Act 0 i1}
i], 'x', color=colors(i), label= d - {months[i]}")

t.title(f'Crime Trend Pre n ({season} - {model type})')

.xlabel(
t.ylabel('n
labels=months, rotation=45)

type in tuned models[s
ictions 0 t, scaler, months)

Figure 12: Plotting

is printed.

season in results:

for model_type in results[season]:
summary[ * '].append(model_type)
summary[ * "].append(season)
summary[ "RMSE " ].append{(results[season][model_type]["
summary[ "MAE'].append(results[season][model type][’
summary[ "R2"].append(results[season][model type]['R2'])
summary[ "Adj R2"].append(results|[season][model type]['

summary_df = pd.DataFrame(summary)
df_rmse = summary_df.pivot(index=

ttest bilstm_lstm = ttest rel(df rmse[ 'ATTN-BILSTM'], df _rmse["LSTM'])
ttest _bilstm cnn_lstm = ttest rel(df rmse['ATTN-BILSTM'], df rmse[ 'CNN-LSTM'])
ttest lstm cnn_lstm = ttest rel(df rmse['LsTM'], df_rmse['C S D

b TN-BILSTM and LSTM:')
{ttest bilstm lstm.statistic}, {ttest_bilstm lstm.pvalue

print(" t ATTN-
print(

print(”
rint

Figure 13: Statistical Test

6 HDBSCAN for Hotspot

6.1 Data Pre-processing

e First mount the drive ,load the data set, handle the missing values and drop them
off.

e For the clustering puprose only 6 columns were used Date,Year,Month, Primary
Type, Longitude and Latitude.

e Data was filtered from 2018 to 2024.



6.2 Model Implementation

e Install hdbscan and import, cluster size is 50 , fittting hdbscan on Latitude and
Longitude.

apply_hdbscan(data, min_cluster size=50):

data = data.dropna(subset=['Latitude ade* 1)

clusterer = hdbscan.HDBSCAN(min_cluster size=min cluster si

data["Cluster'] = clusterer.fit predict(data[[’Latitude’

return data

clustered data = apply hdbscan(df_filtered)

clustered data.head()

Figure 14: Model

6.3 Evaluating Clustering Performance

e The code calculates three common metrics to evaluate the quality of clustering
result: Silhouette Score, Davies-Bouldin Score and Callinski-Harabasz Score.

[ 1 from sklearn.metrics import silhouette score, davies bouldin_score, calinski_harabasz_score

sil score = silhouette score(X_sample, labels sample)
db_score = davies_bouldin_score(X_sample, labels_sample)
ch_score = calinski_harabasz_score(X_sample, labels sample)

print(
print(
print(f'c k: a dex: {ch_score}')

Figure 15: Evaluation Performance

6.4 Visualization

e Install and import folium, crime colors for mapping crime type to colors for better
visualization purposes.

e Take data , create folium maps, marker cluster to cluster for better performance.
For each crime creates a marker with location based on latitude and longitude .
Pop up information about crime type , year and month. Create-map create the
maps, save the maps, display the map in Collab environment through IFrame.

e The final result of how the map display with crime type , year and month|[17]

References



folium
folium.plugins import MarkercCluster

create_map(data):
m = folium.Map(location=[data[ 'Latitude’].mean(), i .mean()], zoom start=10)
marker_cluster = MarkerCluster().add_to{m)
for _, row in data.iterrows():
crime_type = in |
color = crime_colors.get(crime type
folium.Marker(

{row[ 'Pri
icon=folium.Icon(color=color
}.add_to(marker_cluster)
nom

me_map
crime_map.save( i

y the m in
IPython.display in IFrame
html*, width=8ee, height=600)

Figure 16: Map Generation
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Figure 17: Neighbourhoods with clusters
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