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1 Introduction

The Configuration Manual is a complete guide to the reproduction of the research project
on “Uncertainty Analysis in Earthquake Prediction using Deep Learning for Improved
Risk Management.” This documentation is to provide detailed instructions on the con-
figuration of software and hardware, the libraries required, and important sections of the
code that must be followed for project reproduction. These guidelines can help researchers
replicate the procedures outlined in the study and future research on its results.

2 System Requirements

2.1 Hardware Configuration

Processor Dual-Core Intel Core i5
Speed 2.6 GHz
Ram Minimum 8GB

Table 1: System Specifications

2.2 Software Configuration

Programming Language Python V 3.7
Notebook Jupyter Notebook V 6.4.12
Platform TensorFlow V 2.16.1

Table 2: Software Specifications

3 The Data

The project was developed using Python in the Jupyter Notebook environment, using
the set of libraries (Figure 1)
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Figure 1: Libraries Table.
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Figure 2: Data Search Map.

3.1 Data Download

Data is collected for this project from an official website of the United States Geological
Survey: at USGS Earthquake Search website -link- .

This web page (Figure 2) gives us the option to customise the search area and dates of
historical data. For this project, data were downloaded from January 2004 to December
2023, collecting 102.228 observations.

3.2 Data Pre-processing

Data was cleaned and pre-processed for all the models, including selecting relevant
columns, dropping missing values, filtering, normalising data, as splitting into train,
validation and train, as well as converted to PyTorch tensors (Fig 3). Count of data
after pre-processing: 6850. Data was split 60/20/20, total entries for training set: 4110,
validation: 1370, testing: 1370.
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https://earthquake.usgs.gov/earthquakes/search/


Figure 3: Data Pre-processing.

4 Model Implementation

Four primary models were developed: Long Short-Term Memory (LSTM) network, Con-
volutional Neural Network (CNN), Temporal Convolutional Memory (TCM) and Hybrid
model of CNN/LSTM.

4.1 Bayesian LSTM Model

The below code defines a Bayesian LSTM Model with Monte Carlo Dropout (Figure 4).
The input data is passed through the LSTM, then the last output passes through the
dropout layer, which randomly drops some connections during training. Finally, data
passes through a fully connected layer to product predictions.

Code was researched at(link).
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https://github.com/pytorch/tutorials/blob/main/beginner_source/introyt/modelsyt_tutorial.py


Figure 4: Bayesian LSTM Model Definition

The function train and evaluate (Figure 5) and (Figure 6) begin by setting models
dimensions, initialising models guide, setting up optimiser and inference method. The
model is trained and validated, evaluated with Monte Carlo Dropout, predictions and
performance metrics are calculated.
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Figure 5: Train and Validate
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Figure 6: Bayesian LSTM Model Definition

4.2 Bayesian CNN Model

This section shows CNN Model (Figure 7) being defined, first Convolutional layer is being
initialised and probabilistic weights and biases are set. After data passes through first
Pooling Layer, second Convolutional Layer and second Pooling layer until reaches Fully
Connected Layer and Output Layer. Forward Method (Figure 8)specifies how the data
will be processed through the Neural Network Layer to generate the results.
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Figure 7: CNN Model Definition

Figure 8: CNN Forward Method

Training and validation (Figure 9) are performed by calculating input, hidden, and
output dimensions for the model, initialising model and guide, setting up the optimiser
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and creating the empty list to store training and validation losses, executing variations
and compute validation losses.

Figure 9: Train and Validate CNN Model

Function to evaluate the model during inference is established. Predictive sampling
is set up and predictions are generated, calculating means, standard deviation and per-
formance metrics (Figure 10).
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Figure 10: Evaluation of CNN Model

4.3 Bayesian TCN Model

Below code initialises TCN block with parameters for input, output channel, kernel size
and dropout rate (Figure 11). The Convolutional layer is set up and dropout layer
is initialised with ReLU function being defined and transforms the input to capture
temporal dependencies. The data travels through the TCN block, the rate of dilation
rises fast, allowing the network to gather information across multiple time scales. After
TCN block, the output passes through global mean pooling combining temporal features.
Then pooled tensor is sent through dropout layer and fully connected layer with ReLU
activation. The model samples ’sigma’ from a uniform distribution to produce forecast
uncertainty. Finally, the forward method outputs the mean predictions.

Code was researched at: (link).
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https://github.com/ritchieng/deep-learning-wizard/blob/master/docs/deep_learning/practical_pytorch/pytorch_recurrent_neuralnetwork.md


Figure 11: TCN Model

Train and evaluate process (Figure 12) begins with initialisation of specified input,
hidden, and output dimensions together with TCN blocks. Adam optimiser is configured,
and variational guide is employed for Bayesian inference with a specific learning rate,
During training model runs through set amount of iterations with drop out set to avoid
overfitting. Using the training data, variational inference is performed in each iteration,
updating models parameters as well as calculating the training loss. After training, losses
are plotted across iterations. Also, evaluation metrics are calculated.
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Figure 12: TCN Model Evaluation

4.4 Hybrid CNN/LSTM Model

The below code for a Hybrid Bayesian CNN and LSTM Model (Figure 13) shows data
passing through a series of Convolutional Layers to capture spacial and temporal depend-
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encies. The data undergoes a round of convolution, activation and pooling. This extracts
higher level features from the input to pass it to LSTM Layer, transforming to the shape
suitable for temporal dependencies where they are captured and into a hidden state which
is passed to a series of fully connected layers. in the fully connected layer, data is exposed
to dropout which sets some weights to zero randomly, to help with overfitting. Before the
output layer, another dropout layer is applied to improve the model. Finally, the model
reaches the output layer, where the mean of the predictions is calculated. The model
calculates uncertainty in predictions using samples of standard deviation from a uniform
distribution.

Code was researched at (link).
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https://github.com/seloufian/Deep-Learning-Computer-Vision/blob/master/eecs498-007/A4/pytorch_autograd_and_nn.py


Figure 13: Hybrid CNN/LSTM Model

The training and evaluation of Hybrid Bayesian CNN/LSTMModel (Figure 14) begins
by setting dimensions for the model’s input, hidden layer’s, LSTM hidden units and
dropout. To allow Bayesian learning, a variational inference guide is set up. The function
configures an optimiser and Stochastic Variational Inference to model parameters. The
training loop runs for 1000 iterations where the model is trained and losses are recorded,
also validation loss is calculated and losses are printed to monitor the losses. The model
is evaluated with performance metrics.

Code was researched at (link).
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https://forum.pyro.ai/t/how-to-get-validation-loss-in-svi/4037


Figure 14: Hybrid Model Evaluation
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