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Abstract

Predicting earthquake magnitude remains a challenging aspect of natural dis-
aster management. This study explores deep learning techniques to improve earth-
quake predictions, with a focus on uncertainty in seismic forecasting. The experi-
ment includes Bayesian Long Short-Term Memory (LSTM), Bayesian Convolutional
Neural Networks (CNN), Bayesian Temporal Convolutional Networks (TCN), and
a Hybrid Bayesian CNN/LSTM model integrated with the Monte Carlo Dropout
Method to enhance the reliability of the predictions by effectively quantifying un-
certainty. All models underwent a training process of 1000 epochs. The Adam
optimizer and Stochastic Variational Inference (SVI) were used to adjust para-
meters and control uncertainty, improving the learning process. The models were
evaluated using various metrics such as Standard Deviation, Uncertainty Estimate,
MAE, RMSE and R2 to assess their accuracy and uncertainty. The results indic-
ated that the Bayesian LSTM model was the most effective, delivering the precise
forecast while maintaining well-calculated uncertainty, with the lowest Mean Ab-
solute Error (MAE) of 0.0322 and Root Mean Squared Error (RMSE) of 0.0453
and an R-squared score of 0.9903 indicating that it accounted for nearly all the
variability in data. Also, the hybrid Bayesian CNN/LSTM model performed well,
showing a good balance between accuracy and uncertainty. This research highlights
the importance of deep learning methods and their potential in helping to manage
the risk of natural disasters, saving lives, and reducing economic losses caused by
earthquakes.

1 Introduction

Every year, thousands of people are affected by earthquakes, tsunamis, and landslides
caused by the Earth’s crust movement. These natural disasters can strike without warn-
ing causing significant damage to buildings, roads, bridges, and landscapes as well as it
can lead to economic losses and displacement of hundreds of people. The danger and
unpredictability of these events make it very challenging for emergency services to plan
the response effectively and to allocate resources prioritising the most affected areas. Des-
pite advances in seismology, there is continuous uncertainty around predicting the time,
location, and magnitude of earthquakes. However, in recent years, the advancement of
technology and especially deep learning methods showed promise in improving forecast-
ing abilities. Deep learning models are able to analyse large amounts of data while using



historical data and transfer learning to see the patterns which traditional approaches
would miss. This research aims to explore the application of deep learning approaches in
earthquake magnitude prediction, focusing on its uncertainty to anticipate seismic events
and save lives and to prevent economic losses.

1.1 Background and Motivation

Earthquakes can trigger several catastrophic effects including the development of tsuna-
mis where massive waves are created by sudden displacement of water can flood coastal
areas, resulting in loss of life and damage to infrastructure. Moreover, tectonic plate
movement can cause a volcanic eruption and cause dangerous gas and magma to come
to the surface, necessitating the quick evacuation of the affected area. Other dangers
induced by earthquakes are landslides, collapse of structures, fires, and gas explosions
which further increase the destruction of populations and ecosystems.

Traditional methods for seismic forecasting and risk management depend on historical
data and physical models, which are valuable but can have significant limits regarding
data availability, speed, and precision McGuire (1995). In recent years, deep learning
techniques have become an attractive choice for further developments in seismology to
minimise the impact of earthquakes on people’s lives and infrastructure, as well as help
in disaster management. Deep learning as a type of Al achieved great results in sev-
eral sectors, including natural language processing and image identificationLeCun et al.
(2015). However, the application of deep learning, particularly for regulating and min-
imising uncertainty, is still an underexplored area as the unpredictability of earthquakes
makes them uniquely difficult to study.

This study aims to address the gap in the field of uncertainty analysis for earth-
quake magnitude prediction using Bayesian Neural Networks and Monte Carlo Dropout
Method applied to four deep learning models: Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN) and Hybrid
CNN/LSTM Model, which are particularly effective in earthquake magnitude predictions
due to their ability to handle complex, multidimensional data and capture complex pat-
terns. The model’s performances and metrics will be analysed and compared to determine
their effectiveness and suitability for different risk management objectives.

1.2 Research Questions

RQ: To what extent do deep learning techniques effectively quantify and reduce uncer-
tainty in earthquake magnitude prediction models, thus improving risk management and
preparation for disasters?

SQ 1: What advantages and limitations arise when using deep learning methods for
predicting earthquake magnitudes, and how can we address these issues?

SQ 2: What is the best method to address uncertainty in earthquake strength prediction?

1.3 Research Objectives and Contributions

The primary objective of this research is to improve risk management strategies by devel-
oping, evaluating and comparing deep learning models that provide good prediction ac-
curacy and reduce uncertainty. This experiment will identify the model’s advantages and



weaknesses as well as proposed methodologies to increase its effectiveness in real-world
scenarios, as well as address additional objectives such as evaluating the computational
efficiency of the model, analysing uncertainty calculations, and identifying key predictive
features.

The structure of this report will follow: Section 2: Review of the relevant literat-
ure on earthquake prediction using deep learning techniques to identify gaps in current
knowledge. Section 3: Methodology and the research procedure. Section 4: Design Spe-
cification. Section 5: Implementation and evaluation discussing findings, advantages, and
limitations of the models. Section 6: Conclusion of the technical report and feature work.

No | Objectives Description

1 | Improve Risk Management | Develop, evaluate, and compare deep learn-
Strategies ing models.

2 | Evaluate Model Perform- | Assess and compare the performance of deep
ance and Accuracy learning models.

3 | Analyse Uncertainty | Examine and implement techniques for
Quantification Techniques | quantifying uncertainty in deep learning

models.

4 | Assess Computational Ef- | Analyse the computational resources needed

ficiency and Scalability for training and deploying the models.

Table 1: Objectives

2 Literature Review on Uncertainty Analysis in Seis-
mology

This section is dedicated to Uncertainty analysis and machine learning approaches in
earthquake predictions. It follows the evolution of earthquake prediction methods from
first probabilistic methods to machine learning integration and finally deep learning mod-
els. Over the years, the dynamic advancement of machine learning has drastically trans-
formed the vision of earthquake magnitude assessment and risk management associated
with it. Traditionally, earthquake predictions heavily relied on expert judgements and
statistical models, often resulting in limitations in accuracy and reliability. However,
the introduction of new and advanced computational techniques as well as the arrival of
machine learning methods shifted these approaches toward more data-driven ones.

2.1 Evolution of Uncertainty Analysis Using Deep Learning

The evolution of deep learning (Figure 1) of methods for uncertainty calculation in
earthquake prediction has progressed from classical statistical methods to more com-
plex deep learning techniques. The Bayesian Neural Networks (BNNs) were introduced
by [Neal (2012). They created a foundation which incorporates the Bayesian concept
into Neuron Network models, their method treated weights as distributions to provide
probabilistic predictions. Also, Breiman| (1996)demonstrated the Ensemble Method on
Bagging predictors, which showed the effectiveness of using multiple models to capture
uncertainty. The arrival of the Monte Carlo Dropout Method described in the work of



Gal and Ghahramani (2016]) transformed the field by providing a practical method to
estimate model uncertainty. Afterwards, improvements included the Deep Gaussian Pro-
cess (DGPs) presented in the work of |Damianou and Lawrence, (2013), which integrated
the flexibility of deep learning and Gaussian Process capabilities. In 2015 Blundell et al.
(2015)) further improved uncertainty estimation in Neural networks, introducing Bayesian
Deep Learning (BDL). The latest developments like Evidential Deep Learning by [Sensoy
et al| (2018)) and Uncertainty-aware Neural Networks of Kendall and Gal (2017)provide
a strong framework for implementing aleatoric and epistemic uncertainties throughout
deep learning models, improving seismic events analysis and dependability.

Key Years of Approaches in Deep Learning for Seismic Uncertainty Quantification
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Figure 1: Evolution of Uncertainty Analysis Graph.

2.2 An Investigation of Bayesian Neural Networks and Monte
Carlo Dropout Method.

In 1996 |Cramer et al.| (1996) used the approach of the Monte Carlo Dropout Method
to estimate uncertainties in seismic hazards for three counties in California, using dif-
ferent parameters’ recurrence rate, ground motion attenuation relations, and magnitude
frequency distribution. The study showed 95% confidence in uncertainty in shaking level.
This study demonstrated the importance of parameter variability when estimating seis-
mic hazards in highly populated areas. Also, the work of [Baker and Cornell (2008
focused on studying how different uncertainties affect predictions of damage caused by
earthquakes. Researchers introduced PEER framework, suggesting models for correla-
tions where there were no empirical data, as well as including Monte Carlo simulation to
more restricting closed-form solutions. The method was computationally intensive and
did not produce desired results. The study focused on the uncertainty of the whole model
was conducted by Bradley| (2009), in performance-based assessment using Monte Carlo
simulations demonstrating how uncertainties can influence seismic hazard estimates. The
main advantage of this approach is its ability to include a wide range of epistemic un-
certainties in hazard models. The method is reliable on seismic assessment but resilient



to extensive data. In 2022 Wang et al. (2022) expanded the field of applying Bayesian
Convolutional Networks (BCNN) to predict seismic responses to address the uncertainty
in seismic events. Their BCNN model achieved NMSE for acceleration: 0.00192% NMSE
for displacement: 0.00505%, standard deviation for acceleration: 0.0117%, and Stand-
ard deviation for displacement: 0.0510%. The model performed very well with very low
NMSE values suggesting high accuracy. Authors came across many limitations of this
method like, challenges in maintaining efficiency handling large amounts of high-quality
data, as the model depends on it. The model was difficult to interpret, and it can be
difficult to identify biases in it. Lastly, implementing this model to real-time scenarios
can be challenging due to the time required for model training and interference. |Gal and
Ghahramani| (2016) presented the idea of estimating uncertainty in neural networks by
using dropout as a Bayesian approximation. Their method generates different network
configurations, which capture epistemic uncertainty. This method which takes uncer-
tainty into account has been used wildly in image classification but also has been adapted
to time series data and is often used in earthquake magnitude predictions by capturing
inherent uncertainties. However, the authors found this method computationally intens-
ive, as it needs multiple forward passes to estimate uncertainty. Temporal Convolutional
Networks (TCN) are particularly suitable for modelling sequential data, such as seismic
waveforms. Mousavi and Beroza (2019) used Bayesian TCN with Monte Carlo Dropout
to address inherent uncertainties in earthquake prediction. Their research showed that
despite the extensive computational resources, Bayesian technique significantly improved
the accuracy and reliability of the seismic forecast. Uncertainties of probabilistic seismic
hazards were examined by Farhadi and Mousavi (2016) by treating the parameters as
random variables rather than fixed values. This time the Monte Carlo simulation was
applied to hazard values like levels of risk of potential earthquake. The method proved
significant variations of outcomes in applying the method to “hazard” values, compared
to traditional methods like fault behaviours and earthquake magnitude. The research
found that depending on how the seismic waves decrease, the strength of the hazard
estimates can differ. While this method can lead to realistic outcomes, the introduction
of multiple uncertainties can lead to many outcomes, and it can be difficult to commu-
nicate it to the stakeholders. Also, this process requires continuous validation against
new information, especially in real-time situations. Bergen et al.| (2019) also presented
the use of the Bayesian CNN for processing seismic images, which captured uncertainties
in earthquake-prone regions. Their method improved hazard assessment but faced chal-
lenges in scaling with large datasets. Overall, in earthquake forecasting using time series
data, Bayesian LSTM showed big potential.

Further developing the Bayesian approach, a significant work by |Wang and Takada
(2009) presented a Bayesian updating framework for predicting seismic ground motion,
which improves accuracy by continuous integration and merging data specific to the site.
Their method involved linear and non-linear regression models and adjusting the current
attenuation (reduction) formula which resulted in the improved performance with met-
rics: Mean Squared Error (MSE) of 0.049, Root Mean Squared Error (RMSE) of 0.221,
and Mean Absolute Error (MAE) of 0.167. This approach improved local predictions but
relied greatly on data quality and involved great computational complexity. In another
study Moustra et al.| (2011)) investigated the application of Artificial Neural Networks
for earthquake prediction in Greece, they achieved 80.55% accuracy using time series
magnitude data, but only 58.02% for events bigger than 5.5 magnitude. When Seismic
Electric Signals (SES) were used, the accuracy improved significantly to 84.01% for mag-



nitude prediction and 92.96% for both magnitude and time delay prediction. [Yagi et al.
(2014)) used Bayesian modelling to analyse the Iquique earthquake sequence, which oc-
curred off the coast of Chile. Research provided accrued fault parameters estimation, like
the main shock slide, with 95% credibility. The model also provided strong probabilistic
predictions for aftershocks with 60 — 70% accuracy and proved to be effective in improv-
ing seismic hazard assessment thanks to the detailed fault parameters. The authors came
across the problems with data dependency and discovered that this model requires large
amounts of high-quality data, additionally, the model easily overfits due to complex and
noisy datasets.

In conclusion, the studies on Bayesian Neural Networks and the Monte Carlo Dropout
Method in seismic prediction on uncertainty show its high effectiveness in the improve-
ment of uncertainty estimation. Bayesian approaches demonstrate continuous increases
in performance through the integration and incorporation of prior data into new inform-
ation, making it an adaptable method suitable for a variety of seismic assessments. Also,
the Monte Carlo Dropout Method enhances prediction models, effectively improving mod-
els’ reliability across different seismic scenarios, making it a key instrument in accurate
risk assessment. While the methods significantly update accuracy in uncertainty, often
they require extensive computational resources and high-quality data.

3 Scientific Methodology and Data Pre-Processing

3.1 Introduction

Based on the literature review and research objectives, this chapter explains the method-
ology used to measure uncertainty in earthquake strength prediction using deep learning
models for improved risk management. The experiment will use data which is publicly
available, and the link is specified in the data collection section. To answer the research
questions, a process flow diagram is established as shown in Figure 2. The process in-
cludes several steps, including data collection, data pre-processing and transformation,
model architecture, model training procedure and evaluation metrics.

3.2 Research Procedure and Methodology

The project methodology integrated the Cross-Industry Standard Process for Data Min-
ing (CRISP-DM). The method incorporates the business element which is necessary to
understand the project objectives and provides a structured framework for planning,
executing, and managing the project.
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Figure 2: Earthquake Uncertainty Analysis Methodology.

4 Design Specification

This research project uses two-tier architecture to analyse earthquake predictions and its
uncertainty. The essential component of the project implementation is shown in Figure 3.
Tier 1 of the design consists of the stakeholder including the emergency respond team, aid
workers, seismologists, and emergency services, who will be provided with the outcome
of the experiment from the previous layer. The business analytics layer is a part of the
Tier 2, where the data is collected from The United States Geological Survey Website
and pre-processed using Python. Data is split and passed to be trained on the models.
Finally, the models are tested and evaluated.
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5 Implementation, Evaluation, and Results of Un-
certainty Analysis using Deep Learning

5.1 Introduction

In this section, the models used for analysing uncertainty will be described. The detailed
description of collecting and pre-processing data will be presented, as well as model
implementation, evaluation, and results. Different models will be compared, based on
performance metrics, to determine the most effective model for predicting seismic motion.

5.2 Equipment and Tools

The study uses several tools and software for the development of the models and analysis:

Software: Python, using Jupyter Notebook and Microsoft Excel to visually exam-
ine CSV files with data. PyTorch and Pyro libraries in Python were used for model
implementation, NumPy for numerical operations and Pandas for data manipulation,
Matplotlib for data visualisation, scikit-learn for statistical analysis and evaluation met-
rics. Hardware: In this study, a machine with minimum 2.6 GHz Dual-Core Intel Core
i5 or higher must be used to handle computational demands.



5.3 Data Collection and Pre-processing
5.3.1 Data Collection

The data for this experiment is sourced from the United States Geological Survey Website
and includes 102,228 observations collected over 20 years. The downloaded historical data
is in CSV format and focuses on the Alaskan region, known for its high seismic activity and
complex tectonic environment. Alaska is situated on the North American tectonic plate
but is influenced by the Pacific tectonic plate, which folds under it along the southern
coast, leading to significant tectonic and volcanic activity. According to |[Lanzano et al.
(2016)), it is essential to focus on data from one region as it guarantees consistency in
seismic and geological characteristics and it can improve the model’s accuracy. Since
seismic events vary between locations, a model trained on inconsistent data might not
function well. It is preferable to use local data, which can unlock patterns and tendencies
of the entire specific region. Data was stored on a local drive as CSV files.

5.3.2 Data Preprocessing

The first step in data pre-processing was to filter out all earthquakes below magnitude 4
on the Richter scale, as events below that threshold are not significant enough to be felt
by people or lead to infrastructure damage.

Real-world data is frequently noisy, inconsistent, and incomplete, this project required
a number of steps to prepare the data before training the models to ensure reliability,
and accuracy in the later phase. That included choosing only relevant columns, which
are: Latitude — a measure of north-south position of an earthquake epicentre. Longitude
— a measure of east-west position of the earthquake epicentre. Geospatial coordinates
are selected to provide precise location of the earthquake and how close it was to the
tectonic plate border and fault lines. Depth — is a variable to indicate how deep below
the earth surface the earthquake occurred. The effect on the surface and ground shaking
and how seismic wave travels is determined by depth; the shallower the depth, the more
ground shaking occurs, and seismic waves don’t travel far. Magnitude — is a variable
which measures the energy generated during an earthquake. This variable is measured,
and described, in the Richter scale. It is a critical measure to assess the potential impact
of the earthquake on people and infrastructure.

Another crucial step in data pre-processing is dropping missing values to handle in-
complete datasets. This approach helps to ensure that predictions made by deep learning
models are reliable and accurate. However, it is important to take into a count the effects
of this approach, as significant reduction in data can decrease predictive ability. While
this is an effective method, it should be used carefully and with consideration of data
characteristics.

https://earthquake.usgs.gov/earthquakes/search/

5.3.3 Data Transformation

One of the most important parts of data transformation is data normalisation, as this step
ensures that no particular characteristics dominates in the study because of its dimen-
sions. Data normalisation is essential for many reasons. Firstly, it places features with
diverse measures in equal position and the algorithm can handle them evenly. Secondly,
it allows quicker progress to the best solution, as it enhances performance of machine
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learning. Thirdly, by not allowing data features with greater ranges to influence the
learning process, it allows each characteristic to contribute equally to the final model and
reduces bias. Lastly, normalised data lead to better and more reliable model performance
by reducing variability and ensuring that the model performs effectively when applied to
unseen data. This performance is highlighted in work by (Garcia et al. (2015) where au-
thors offer a broad insight into these methods of data pre-processing. Ultimately, the
final dataset was created of a total of 6850 observations to train, validate and test deep
learning models (Figure 4).
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Figure 4: Earthquake Frequency Histogram.

Total number of data entries before pre-processing: 102282
Total entries in training set: 4110

Total entries in validation set: 1370

Total entries in testing set: 1370

Figure 5: Number of Observations after Pre-processing.

After completing data pre-processing, the data was divided into three subsets for
training, validation, and test in (Fig 5) using 60/20/20 technique as this approach helps
to create reliable and effective models. The training set is composed of 4110 entries. In
the training part, the model learns patterns and correlations between the target variable
(magnitude) and input variables (latitude, longitude, depth), assigning magnitude to it.

The next 20% of the data which is 1370 entries is used for validation. This practice
allows adjusting its settings and stops the model from memorising the training set. It
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increases its capacity to handle new data that has never been seen by assessing how well
it performs on validation during training. This way of splitting data not only ensures
that the model gets enough data to learn efficiently, but also keeps enough, sufficient data
to validate and test its results. Once the models been trained and validated, is tested
using last 20% of the data (1370 entries). This step gives an unbiased view of how well
the model performs and predict the earthquake magnitude using new data.

5.4 Model Development and Training

The approach taken for developing and training earthquake prediction models included
developing an array of specific models designed to detect and predict the strength of
seismic activity and uncertainty of its predictions. Four primary models were chosen:
Long Short-Term Memory (LSTM) network, Convolutional Neural Networks (CNN), the
Temporal Convolutional Networks (TCN), as well as Hybrid model of CNN/LSTM. All
the models were selected for their strengths in handling sequential data and their ability
to evaluate temporal dependencies. Each of these models will incorporate the Bayesian
Method and the Monte Carlo Dropout Method for calculation of uncertainty.

5.4.1 Bayesian Long Short-Term Memory Networks with Monte Carlo Dro-
pout Method

Long Short-Term memory networks are designed to address the challenges of traditional
RNN, especially the vanishing gradient issue, which makes it difficult to learn long term
dependencies in RNN models. LSTM networks are formed by interconnected memory
cells, where each one of them contains three gates: the input gate, the forget gate, and
the output gate. The purpose of these gate is to regulate the flow of information through
the memory cells, allowing the network to support long term information update (Figure
6).

e The “forget gate “decides which details from the previous memory cell should be
removed. This gate outputs a value between 0 and 1 for each number of the memory cell,
meaning that the forget gate decides how much of the previous information should be
discarded and how much should be kept. e The “input gate” decides which new details
should be stored in the memory cell. This part involves two phases: first, a sigmoid layer
decides which value to update and second, a ‘tanh’ layer creates an array of new potential
values, which might be included in the memory cell.

At this stage, the old memory cell is updated to the new memory. This process is
based on connecting together old and new candidates of memory cells, which are weighted
by the output of the “forget” and “input” gates|Yu et al. (2019).

e The “output gate” decides the output of the LSTM cell according to the updated
memory cell. The memory cell is passed through "tanh’ layer and multiplied by the output
of the sigmoid gate.

11
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Figure 6: LSTM Model.

In the experiment, the Bayesian LSTM model was created using ‘pnn.PyroModule’
which configures the LSTM layer with weights and biases using probabilistic program-
ming. This is acheived by using ‘pynn.PyroSample’ to add to these parameters. Also, the
model includes a fully connected layer with similar probabilistic weights and biases, plus
a dropout layer to prevent overfitting. The ‘forward’ definition passes input through the
LSTM and applies a dropout and outputs to the predicted mean and observation noise
represented by a sampled noise parameter. The ‘train and evaluate’ function configures
the model using ‘AutoNormal’ guide and the Adam Optimizer inside the Stochastic Vari-
ational Inference (SVI) framework, and uses ‘Trace_ELBOstop’ to minimize loss during
training. The model is trained over 1000 iterations, with training and validation losses
recorded and plotted. The test set is used to develop predictions using Pyro’s ‘predictive’
class, by calculating the mean and standard deviation of predictions. Also, the model
performance was evaluated using Mean Absolute Error (MAE), R-squared Score (R?),
Root Mean Squared Error (RMSE), Uncertainty Estimate (Standard Error), and Stand-
ard Deviation.

Model Training: The Bayesian Long Short-Term Memory (LSTM) model with Monte
Carlo Dropout was trained over 1000 epochs, demonstrating major improvements in loss
metrics, and achieving high evaluation scores. The training process showed a consist-
ent decline in both training and validation losses. Initially, the training loss started at
32218.44, with a validation loss of 24278.97 then dropped to 3619.52 at epoch 400. How-
ever, at Epoch 700 the training loss has decreased further to negative values of -588.86,
indicating overfitting or potential data inconsistency. The trend continued and at Epoch
900, the training loss was -2031.54 and the validation loss slightly negative at -8.19.

Model Evaluation: Over the course of the 1000 iteration the model showed consistent
improvement in performance with training loss decreasing and validation loss reduced
indicating strong learning ability (Fig 7). However, the training loss became negative
which can indicate slight possible overfitting, possibly indicating that the model picked
up noise instead of patterns. Additionally, plotting predictions vs true magnitudes of the

12



earthquake confirms the model’s accuracy with the points of predicted and true values
closely aligning with true values (Figure 8), which also could be due to overfitting. The
evaluation metrics (Table 2) show that the model performed very well. The low Un-
certainty Estimate and Standard deviation represent stable and dependable predictions
and the Mean Absolute Error and Root Mean Squared Error are small, indicating high
accuracy. The R2 Score shows that the model explains 99.03% of the variability in data.

Metrics Value
Uncertainty Estimate (Standard Error) 0.1452
Standard Deviation 0.0453
Mean Absolute Error (MAE) 0.0322
R-squared Score (R?) 0.9903
Root Mean Squared Error 0.0453

Table 2: Bayesian LSTM Performance Metrics

Training and Validation Loss over Iterations
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Figure 7: Bayesian LSTMT raining and Validation Loss over Iterations .
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Figure 8: Bayesian LSTM Predicted vs True Magnitudes of the Earthquake.

5.4.2 Bayesian Convolutional Neural Networks (CNN) with Monte Carlo
Dropout

Convolutional Neural Networks (CNNs) were designed to extract hierarchical patterns
from spatial data like images, but it was successfully modified and adapted to time data
series. The model captures complex patterns by applying convolutional filters that are
very effective in detecting features across various positions and dimensions. CNN is us-
ing pooling and sharing of parameters to achieve translation consistency and minimise
computational complexity. This allows users to manage big datasets and improve the
accuracy in different predictions. CNNs are built of several essential elements, includ-
ing, convolutional layer, pooling layers, and fully connected layers, each with a distinct
function (Figure 9).

e Convolutional Layer are the fundamental components of CNNs. They apply a series
of filters to the input data, transforming them and producing a feature map. In the time
series data, each filter slides over the data and learns spatial features to identify patterns.
This process helps CNN automatically detect significant trends and patterns. e Pooling
layers decrees the computational load and help control overfitting. For the time series,
data pooling operations are used to preserve the clearest features. e Fully Connected
Layers are positioned at the end of the network. They create the final output, taking
the filtered features from convolutional and pooling layers and transforming them into
outputs of classification and regression results.

CNNs models for time series data are very effective thanks to their ability to learn
complex temporal dependencies and spatial hierarchies without manual feature extraction
Zhao et al. (2017).

14
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In this project, a Bayesian CNN model was implemented using pnn.PyroModule by
incorporating probabilistic programming. Firstly, the input data passes through a series
of convolutional layers, each containing probabilistic weights and biases specified using
pnn.PyroSample, which assigns a normal distribution to these dimensions. After each
convolutional layer, a max pooling layer (pooll and pool2) is applied to decrease the
spatial dimensions of feature maps. For model regularization and to allow uncertainty
calculations during inference, a dropout is added after pooling layers to randomly de-
activate neurons. The flattened output from the convolutional layers is passed through
a fully connected layer (fc) with probabilistic weights, followed by a second dropout to
ensure model stability. The final layer, outputting data (fc_out), generates the predicted
mean of the data and the levels of noise across different data points, which are sampled
by the parameter sigma. At the end, the Monte Carlo Dropout is employed using the
predictive class with multiple samples to estimate the posterior distribution of the
estimates. The model was trained and evaluated using the train_and_evaluate func-
tion with Stochastic Variational Inference (SVI). This method monitors the learning and
validation process and is designed to combine stochastic optimization with variational
inference to handle large datasets. The model’s performance was evaluated using Mean
Absolute Error (MAE), R-squared Score (R?), and Root Mean Squared Error (RMSE).

Model Evaluation: The results of the model show that the Bayesian Convolutional
Neural Network (CNNs) with the Monte Carlo Dropout was trained over 1000 epochs
and shows reduction in training and validation losses, indicating some learning ability.
(Figure 10). Starting at a high loss initially of 29543.11 and validation loss of 21454.61.
By iteration 500 the training loss decreased further and reached 7 7354.12 with a valid-
ation loss of 4583. By iteration 900 the training loss further decreased to 4774.12, with
validation loss of 2899.73 showing improvement. Despite reductions observed over itera-
tions, the model’s ability to perform on unseen data remains low, as shown in evaluation
metrics (Table 3). The high MAE of 0.4008 and RMSE of 0.4910 indicate lack of preci-
sion in predictions. Furthermore, the negative R2 score means the model explains very
little of variability, indicating poor fit. Also, this score might suggest that the model cap-
tures underlying patterns of the data. There are significant discrepancies between true
and predicted magnitudes of the earthquake (Figure 11), meaning that the model is not
predicting outcomes accurately. The low Uncertainty Estimate of 0.6334 and Standard
Deviation of 0.0615 show stable but not accurate predictions.
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Metric Value
Uncertainty Estimate (Standard Error) 0.6334
Standard Deviation 0.0615
Mean Absolute Error 0.4008
Root Mean Squared Error 0.4910
R-squared Score -0.1423

Table 3: Performance Metrics

Training and Validation Loss over lterations

= Training Loss
35000 - —— Validation Loss

30000
25000 1
% 20000 -
3
15000 A

10000 ~

5000 4

0 200 400 600 800 1000
iteration

Figure 10: Bayesian CNN training and Validation Loss over Iterations.
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Figure 11: Bayesian CNN Predicted vs True Magnitudes of the Earthquake.

5.4.3 Bayesian Temporal Convolutional Networks (TCN)

Temporal Convolutional Networks are designed to handle sequence and time series data,
and they succeed at time series forecasting as they can model long-term dependencies
within data. The model (Figure 12) uses casual convolutions which guarantee the pre-
dictions at a specific moment depending on the information from the past and present,
as well as dilated convolutions which allow the network to cover wider timescale with
fewer layers. Bayesian method improves this design by adding the ability to estimate the
uncertainty in predictions. This method enables the model to learn a distribution of pos-
sible weights instead of fixed weights, which means that for each weight in the network,
there is a range of values that the model can choose from. Finally, this approach helps
to regulate the model by reducing the risk of overfitting.

The models process starts with an input layer where the data is fed to the network.
The data is processed by the convolutional layer which consist of casual convolutions to
make sure that the predictions are based on past and present information. It uses dilated
convolutions to capture long term dependencies using gaps in data points and helps
to increase model’s response (2021). The network then employs the Bayesian
inference to learn the distribution of weights which can vary, and during predictions the
model samples these weight multiple times, resulting in multiple predictions for each
timestamp. During the inference and training process, the Monte Carlo Dropout is
applied by performing multiple forward passes on the same input data with different
dropout sequences. These predictions are gathered to produce the final predicted value
and calculate uncertainty, which are displayed by the output layer.
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Figure 12: Simple TCN Model.

Model Training: The training process in the implemented model showed initial loss
16816.67 and improved over time, the loss decreases across iterations dropping to 1233.49
by iteration 900, Similarly the validation loss decreases from 8693.94 to 700.36 indicating
that model is learning well and also generalising well to unseen data (Figure 13).

Model Evaluation: Uncertainty estimate showed by standard error of 0.3371 suggest
a reasonable level of confidence in predictions. Also, the model’s performance metrics
display MAE of 0.1228 indicating low prediction error as well as R2 score of 0.8799
suggests that the model explains about 87.99% of variance in the data. The Root Mean
Squared Error (RMSE) of 0.1592 represents the average of predictions errors (Table 4).
The predicted earthquake magnitudes closely align with true magnitudes, showing the
model’s accuracy (Figure 14). Overall, the model is making accurate predictions with
good level of certainty.

Metrics Value
Uncertainty Estimate (Standard Error) 0.3371
Standard Deviation 0.0956
Mean Absolute Error (MAE) 0.1228
Root Mean Squared Error (RMSE) 0.8799
R-squared Score (R?) 0.1592

Table 4: Bayesian TCN Performance Metrics
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Figure 13: Bayesian TCN Training and Validation over Iterations.
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Figure 14: Bayesian TCN Predicted vs True Earthquakes Magnitudes.

5.4.4 Hybrid Bayesian CNN/LSTM Model

The hybrid Convolutional Neural Networks (CNNs) and the Long Short-Term Memory
(LSTM) networks model is very efficient in processing time series data. It uses a CNN
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layer to analyse each time step of data, capturing local patterns with convolutional filters.
After, max pooling layer is applied to reduce the size of these features, improving manage-
ment of data. When the spatial features are extracted, they are flattened to the format
that LSTM layers can process. The component of LSTM checks the sequence data, cap-
turing temporal dependencies and long-term patterns. Finally, these learnt features are
mapped to produce the final output using suitable activation functions for classification
and regression |Lin et al.| (2017)).
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X2
]
]
]
i —_— — — —_— ‘
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Input Data CNN Layer Pooling Flattened LSTM Layer Output

Figure 15: Hybrid CNN/LSTM Model.

Model Training: In the experiment the model starts with two convolutional layers,
the first one has 32 filters each with kernel size of 3 and uses probabilistic weights and
biases, that means each one of them is treated as a random variable following normal
distribution. After, the max pooling is applied to reduce the output size, which helps to
also reduce the data while it retains the important information. This operation is followed
with a second convolutional layer with 64 filters, also using probabilistic weights and bi-
ases for feature extraction. After another max pooling layer is applied to further reduce
the outputs dimensions. Following the convolutional layers process, data is reshaped to
fit the input format of LSTM Layer. Data is processed through LMST Layer, capturing
temporal dependencies using a number of hidden units to encode sequence information.
Following the LSTM Layer, the model uses a fully connected layer with probabilistic
weights and biases to map the output to hidden dimension. The Monte Carlo dropout
layer is applied for uncertainty calculation and the output layer (fully connected layer)
produces the final predictions based on probabilistic weights and biases. The model is
trained using stochastic variation interference (SVI) that approximates the final distribu-
tion of the model’s parameters. To minimise the loss function, Adam optimizer is used,
and the training loop updates the model’s parameters over 1000 iterations, calculating
validation loss to monitor performance of unseen data. Once trained, the model is eval-
uated using the Monte Carlo Dropout to estimate predictive uncertainty, using several
forward passes of Pyro’s predictive class sampling predictions. Finally, the key metrics
are produced. The training results of Hybrid Bayesian CNN/LSTM model show signi-
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ficant reduction in training and validation loss over 1000 iterations, pointing at effective
learning. The training loss decreases from 29690.43 to 3609.86 and the validation loss
drops from 21328.30 to 1696.30 illustrating model’s improved fit (Figure 16).

Model Evaluation: The Mean Absolute Error (MAE) 0.2130 indicates that predictions
are close to the true values (Figure 17), while the R2 score of 0.6093 suggests that
the model explains 60.93% of the variance in data. The RMSE of 0.2871 shows that
predictions shift slightly from true values on average. The Uncertainty Estimates with
standard error of 0.4331 and Standard Deviation of 0.0860 indicates a good level of
confidence in predictions. Overall, the model performs well, balancing accuracy and
uncertainty, but it has potential for future improvements (Table 5).

Metric Value
Uncertainty Estimate (SE) 0.4331
Standard Deviation 0.0860
Mean Absolute Error (MAE) 0.2130
R-squared Score (R?) 0.6093
Root Mean Squared Error (RMSE) 0.2871

Table 5: Hybrid CMM/LSTM Performance Metrics
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Figure 16: Hybrid Bayesian CNN/LSTM Training and Validation over Iterations.
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Figure 17: Hybrid Bayesian CNN/LSTM Predictions vs True Values with Uncertainty.

5.5 Conclusion

Based on evaluation metrics (Figure 18), the Bayesian LSTM model stands out as the
most effective, it has the lowest uncertainty estimate of 0.1452, and the lowest standard
deviation indicating confidence and consistency in its forecast. It has also achieved the
lowest Mean Absolute Error (MAE) of 0.0322 and lowest Root Mean Squared Error
(RMSE) of 0.0453, showing great predictive accuracy. Furthermore, it has an impressive
R-squared score of 0.9903 indicating that it accounts for almost all the variability in the
data. However, the Bayesian CNN model has the highest uncertainty estimate of 0.6334
and the largest MAE of 0.4008, suggesting lower degree of confidence and higher average
error in predictions. Additionally, its R2 score is negative (-0.1423), which suggests that
it is a poor fit. Bayesian TCN model shows the highest standard deviation of 0.095
and low R-squared score of 0.1592 indicating more prediction variability and limited
explanatory power. However, it performs better than CNN in terms of MAE and RMSE.
The Hybrid Bayesian CNN/LSTM model comes out as a top performer overall because
of its high accuracy and minimal uncertainty. Its balanced performance of uncertainty
estimate (0.4331) and low RMSE (0.2871) and MAE (0.2130) with solid R-squared score of
0.6093, indicates that the hybrid approach benefits from handling temporal dependencies
by LSTM model and the feature extraction abilities of CNNs. In summary, the Bayesian
LSTM model presents as the best overall performer due to its high accuracy and low
uncertainty and Hybrid approach offers a strong alternative.
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Uncertainty | Standard | Mean Absolute Root Mean R-squared
Model Estimate (SE) | Deviation | Error (MAE) | Squared Error Score (R2)
(RMSE)

Bayesian TCN 0.3371 0.0956 0.1228 0.8799 0.1592
Bayesian CNN 0.6334 0.0615 0.4008 0.4910 ).14
Bayesian LSTM 0.1452 0.0453 0.0322 0.0453 0.9903
Hybrid Bayesian 0.4331 0.0860 0.2130 0.2871 0.6093
CNN/LSTM

Figure 18: Evaluation Comparison Table.

6 Conclusion and Future Work

This research investigated the use of deep learning techniques for earthquake prediction,
focusing on calculating and reducing uncertainty with the goal of improving risk man-
agement which can be integrated into disaster emergency planning and early warning
system. This study aimed to achieve one of the several objectives by developing deep
learning models such as Bayesian Long Short-Term Memory (LSTM), Bayesian Convo-
lutional Neural Networks (CNN), Bayesian Temporal Convolutional Networks (TCN),
and a Hybrid Bayesian CNN/LSTM model. All the models were used with the Monte
Carlo Dropout Method to calculate uncertainty. Among these models, the Bayesian Long
Short-term Memory model outperformed the other models with the lowest Mean Absolute
Error (MAE) of 0.0322 and Root Mean Squared Error (RMSE) of 0.0453 and R-squared
score of 0.9903 indicating that it accounted for nearly all the variability in data. Also, the
hybrid Bayesian CNN/LSTM model performed well and showed good balance between
accuracy and uncertainty. The research identified that while the Bayesian models offer
improved uncertainty, they also require the significant computational resources. These
discoveries are consistent with the objectives of creating a model that decrease uncertainty
and increase forecast accuracy, identifying the most effective techniques for earthquake’s
magnitude prediction. Also, through the experiment it was established that greater com-
putational resources are needed to handle deep learning models and large amount of
data, which is essential for accurate predictions. The future work should address integ-
rating more diverse data like satellite images, sensor outputs, and real time data, also
creating different hybrid deep learning models has a great potential as demonstrated by
experiment. Finally, sharing results and integrating it with the early warning application
system can help with preparation for disaster and save lives. Further attention should
also be given to technical and regulatory compliance to guarantee correct implementation
of these technologies.
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