===

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Pranav Hagavane
Student ID: 22209484

School of Computing
National College of Ireland

Supervisor: Furgan Rustam

Student
Name:

Student ID:

Programme:

Module:

Lecturer:
Submission
Due Date:

Project Title:

Word Count:

‘——
\ National
College

[reland

National College of Ireland
MSc Project Submission Sheet
School of Computing

Pranav Hagavane

22209484

MSc in Data Analytics Year: 2024
MSc Research Project

Furgan Rustam

16/09/2024

Evaluating the Impact of Environmental Conditions on Heat Pump
Performance Using Machine Learning models

886 words Page Count: 8 pages

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project.

All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Pranav Hagavane

16/09/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Pranav Hagavane
22209484

1 Introduction

This document provides detailed information about the kind of configuration required to
perform the code. This document discusses both the software and hardware requirements to set
up the environment.

2 Environment

This section provides information about the software and hardware configuration required to
the execute the code.

2.1 Hardware Configuration
Hardware specification used to execute the project is displayed using Figure 1.

@ Device specifications

Device name LAPTOP-4258NVF3

Processor AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 210 GHz
Installed RAM 8.00 GB (5.92 GB usable)

Device ID 3DC178C7-CBEB-4DC3-BC19-6EEETEF31A12

Product ID 00327-35901-90802-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection ~ Advanced system settings

== Windows specifications

Edition Windows 11 Home Single Language

Version 23H2

Installed on 11-07-2023

OS build 22631.3880

Experience Windows Feature Experience Pack 1000.22700.1020.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1 Hardware Configuration

2.2 Software Requirements

Python programming language is used to perform the research project. This python code was
written using the jupyter notebook environment, which is interactive IDE to perform analysis
and modelling. This is performed on python version 3

Jupyter Research project Last Checkpoint: Last Friday at 12:50 AM (autosaved)

File Edit View Insert Cell Kernel Widgets Help

B + = @O B 4 % PR B C » Code v =

In [1]: import pandas as pd

from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.svm import SVR

from sklearn.neighbors import KNeighborsRegressor

from sklearn.multioutput import MultiOutputRegressor

from sklearn.metrics import mean_absolute error, mean_squared_error, r2_score
import matplotlib.pyplot as plt

import seaborn as sns

In [2]: data = pd.read csv("Ireland heat data.csv")

In [3]: data.tail()

Out[3]:
(3] utc_timestamp cet_cest_timestamp IE_COP_ASHP_floor I|E_COP_ASHP_radiator IE_COP_ASHP_water IE_COP_GSHP_fi|

2022-12- 2022-12-
26299 3475000:002 31T23:00:00+0100 Sl S 24 1

2022-12- 2023-01-

26300 31T23:00:00Z 01T00:00:00+0100

361 3.18 24 4

Figure 2 Jupyter Notebook Overview

3 Packages Required

Importing the necessary packages is the first step of the research, these packed can be
installed using the pip command. Initially some packages such pandas, numpy and matplotlib
are required to load the dataset and understand the data performing some operations which
may require numpy. Other libraries can be loaded at the later stage of the project.

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.svm import SVR

from sklearn.neighbors import KNeighborsRegressor

from sklearn.multioutput import MultiOutputRegressor

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import learning_ curve

Figure 3 Importing Libraries

4 Dataset Description

Two datasets are being used in this research project, one dataset contains information about
heat pumps! and other contains information about weather?. Both the datasets are merged
using excel based on a common column time stamp.

data.head()

utc_timestamp cet_cest_timestamp I|E_COP_ASHP_floor IE_COP_ASHP_radiator |E_COP_ASHP_water |E_COP_GSHP_floor

0 20%%?32}?8; 01701 :oo:%g%%}oog a2 330 244 502
1 20%?_.32{8;1 01T02.00%33%_10016 3.70 3.28 243 500
2 20%[2)_-32178; O1TO3'00%(()12+%_1001£5 3.68 325 242 4.97
3 20%037:35?8;) 01T04:OO:%(())2+%710016 3.62 3.18 240 4.87
4 2020-01-01 2020-01- 54 500 . -

04:00:00 01T05:00:00+0100

5 rows % 25 columns

Figure 4 Dataset Imported
5 Data Preparation

The data is being prepared by deleting all the null values and also performed feature selection
afterwards the data is being divided into train and test set to train model.

In [25]:
data = data.dropna()
Vo=
'IE_COP_ASHP_floor', 'IE_COP_ASHP_radiator', 'IE_COP_ASHP water’',
'IE_COP_GSHP_floor', 'IE_COP_GSHP_radiator', 'IE_COP_GSHP water',
"IE COP WSHP floor', 'IE COP WSHP radiator’, 'IE COP WSHP water®

.

]

X = data.drop(columns=Y + ['utc_timestamp', 'cet cest timestamp'])

corr_matrix = X.corr().abs()

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool_))

correlation greater than 6.8
to_drop = [column for column in upper.columns if any(upper[column] > ©.8)]

X_selected = X.drop(columns=to_drop)
print(“Selected Features after correlation filtering:”, X_selected.columns)

Selected Features after correlation filtering: Index(['IE_heat_profile space COM', 'IE_heat_profile water COM",
'IE_heat_profile water_MFH', 't2m', 'prectotland (mm/h)"',
‘precsnoland (mm/h)‘, ‘snomas (kg/m)', ‘rhoa (kg/m)', 'swgdn (W/m)"',
‘cldtot'],
dtype="object")

Figure 5 Feature Selection

! https://data.open-power-system-data.org/when2heat/latest/
2 https://www.renewables.ninja/#/country

https://data.open-power-system-data.org/when2heat/latest/
https://www.renewables.ninja/%23/country

X train, X test, y train, y test = train test split(X selected, data[Y], test size=0.2, random state=42)

Figure 6 Train and test split

6 Model Preparation

There are six machine learning model and two deep learning models used in this research.
The six machine learning model are Random Forest, Gradient Boost, Decision Tree, KNN,
Support Vector Regression and Vector Regressor and the two deep learning model are LSTM
and MLP.

6.1 Random Forest

A Random Forest model was employed using 100 estimators, with a maximum depth of 10,
and minimum samples split and leaf values set to 5 and 2, respectively. K-Fold cross-
validation (with 4 splits) was performed to evaluate the performance, using negative mean
squared error (MSE).

from sklearn.model_selection import KFold, cross_val_score
import numpy as np
import time

K-Fold Cross validation setup
kfold = KFold(n_splits=4, shuffle=True, random state=42)

List to store computation times for each model
computation_times = []

model_rf = RandomForestRegressor(
n_estimators=100,
max_depth=10,
min_samples_split=5,
min_samples_leat=2,
random state=42,
n_jobs=-1 # Parallel processing

)

start_time = time.time()

cv_scores_rf = cross_val score(model_rf, X _train, y_train, cv=kfold, scoring='neg_mean_squared_error', n_jobs=-1)
end_time = time.time()

computation_times.append((Random Forest’, end time - start_time))

print(f'Random Forest Cross-Validation MSE Scores: {-cv_scores_rf}')

print(f'Mean MSE: {-np.mean(cv_scores rf)}")

print(f'computational Time: {end_time - start_time:.2f} seconds\n")

model rf.fit(X_train, y_train)

predictions = model rf.predict(X test)

Figure 7 Random Forest

6.2 Gradient Boosting

A Gradient Boosting Regressor was used and wrapped in a MultiOutputRegressor to handle
multi-output regression. The model was configured with 110 estimators, a learning rate of
0.05, and a maximum depth of 5, with additional hyperparameters for controlling split and
leaf size. K-Fold cross-validation (4 splits) was applied to evaluate the model, using negative
MSE, and the computation time was recorded. After evaluation, the model was fitted and
used to predict on the test set.

GB model = MultioOutputRegressor(GradientBoostingRegressor(
n_estimators=110,
learning_rate=8.05,
max_depth=5,
min samples split=1@,
min_samples_leaf=4,
random_state=42

))

start_time = time.time()

cv_scores gb = cross val score(GB model, X train, y train, cv=kfold, scoring='neg mean squared error’, n_jobs=-1)
end time = time.time()

computation_times.append(('Gradient Boosting', end_time - start_time))

print(f'Gradient Boosting Cross-validation MSE Scores: {-cv scores gb}')

print(f 'Mean MSE: {-np.mean(cv_scores_gb)}")

print(f'computational Time: {end_time - start_time:.2f} seconds\n')

GB model .fit(X train scaled, y train)

GB_predict = GB_model.predict(X_test)

Figure 8 Gradient Boosting

6.3 Decision Tree

A Decision Tree Regressor was configured with a maximum depth of 8, a minimum sample
split of 10, and a minimum sample leaf size of 5. K-Fold cross-validation with 4 splits was
performed to evaluate the model using negative mean squared error (MSE) as the performance
metric. After recording the computational time, the model was trained on the training set and
used to make predictions on the test set.

DT model = DecisionTreeRegressor(
max_depth=8,
min samples split=1@,
min_samples_leaf=5,
random_state=24

)

start time = time.time()
cv_scores_dt = cross_val_score(DT_model, X_train, y_train, cv=kfold, scoring='neg mean_squared_error', n_jobs=-1)

DT_meodel.fit(X_train, y train)
DT predict = DT model.predict(X test)
end time = time.time()

computation_times.append(('Decision Tree', end_time - start_time))

print(f 'Decision Tree Cross-validation MSE Scores: {-cv_scores_dt}")
print(f 'Mean MSE: {-np.mean(cv_scores_dt)}')
print(f Computational Time: {end_time - start_time:.2f} seconds\n")

Figure 9 Decision Tree

6.4 K — Nearest Neighbour (KNN)

The K-Nearest Neighbors (KNN) Regressor was implemented with 7 neighbors and a distance-
based weighting scheme. Cross-validation was performed using K-Fold to assess model

5

performance using negative mean squared error. The computation time was recorded, and the
model was trained on the training set before making predictions on the test set.

KNN_model = KneighborsRegressor(
n_neighbors=7,
weights="distance’,
algorithm="auto’,
leat_size=3e,
p=2

)

start time = time.time()
cv_scores_knn = cross_val_score(KNN_model, X _train, y_train, cv=kfold, scoring='neg_mean_squared_error', n_jobs=-1)

KNN_model.fit(X_train|, y_train)

KNN_predict = KNN_model.predict(X_test)

end_time = time.time()

computation_times.append(('KNN', end_time - start_time))
print(f'KNN Cross-validation MSE Scores: {-cv scores knn}')

print(f'Mean MSE: {-np.mean(cv_scores_knn)}")
print(f'Computational Time: {end_time - start_time:.2f} seconds\n')

Figure 10 KNN

6.5 Support Vector Regression (SVR)

A Support Vector Regressor (SVR) was employed using a radial basis function (RBF) kernel,
with a regularization parameter C=1.0, an epsilon value of 0.1, and the gamma parameter set
to 'scale’. The model was wrapped in a MultiOutputRegressor to handle multi-output regression
tasks. K-Fold cross-validation (4 splits) was conducted to evaluate performance.

SVM_model = MultioutputRegressor(SVR(
kernel="rbf",
C=1.8,
epsilon=6.1,
gamma="sclle"

))

start_time = time.time()
cv_scores_svr = cross_val_score(SVM model, X train, y train, cv=kfold, scoring='neg mean_squared _error', n_jobs=-1)

SvM_model.fit(X_train, y_train)

SVM_predict = SVM_model.predict(X_test)

end time = time.time()

computation times.append(('SVR', end time - start time))
print(f'SVR Cross-validation MSE Scores: {-cv_scores_svr}')

print{f'Mean MSE: {-np.mean(cv_scores_svr)}")
print(f'Computational Time: {end time - start_time:.2f} seconds\n')

Figure 11 SVR

6.6 Voting Regressor

A Voting Regressor was built by combining two base models Gradient Boosting Regressor
and a Support Vector Regressor (SVR). This ensemble approach aggregates the predictions
from both models to improve overall performance. The model was wrapped in a
MultiOutputRegressor to handle multi-output regression tasks. The Voting Regressor was
trained and evaluated using the test set using the evaluation metrics.

from sklearn.ensemble import votingRegressor

start time vr = time.time()
gb = GradientBoostingRegressor()
svr = SVR()

voting_regressor = VotingRegressor(estimators=[('gb"', gb), ('svr', svr)])

multi_voting regressor = MultiOutputRegressor(voting regressor)
multi voting regressor.fit(X train, y train)

y_pred_voting = multi voting regressor.predict(X_test)

end_time vr = time.time()
print(f"Computation Time of LSTM Model: {end time_vr - start_time_wvr:.2f} seconds")

mae = mean_absolute error(y_test, y_pred voting)
mse = mean_squared_error(y_test, vy _pred _voting)
r2 = r2_score(y test, y pred voting)

print(f"Voting Regressor - Mean Absolute Error: {mae}")
print(f"voting Regressor - Mean Squared Error: {mse}")
print(f"voting Regressor - R-squared: {r2}")

Figure 12 Voting Regressor

6.7 Long Short-Term Memory (LSTM)

An LSTM neural network was implemented for the time-series prediction task, consisting of
two LSTM layers with 100 and 50 units, respectively. A Dense layer with 32 units and ReLU
activation was added, followed by an output layer to predict the target variables. The model
was trained for 50 epochs with a batch size of 32, using the Adam optimizer and mean
squared error as the loss function. After training, predictions were made on the reshaped test
data, and key evaluation metrics such as MAE, MSE, and R? were calculated.

Reshape data

X train = np.array(X train)

X_test = np.array(X_test)

X_train_lstm = np.reshape(X_train, (X_train.shape[@], 1, X_train.shape[1]))
X test 1stm = np.reshape(X test, (X test.shape[@], 1, X test.shape[1]))

l1stm_model = Sequential()

1stm_model.add(LSTM(units=100, return_sequences=True, input_shape=(X_train_lstm.shape[1], X_train_lstm.shape[2])))
1stm_model.add(LSTM(units=50, return_sequences=False)) # Second LSTM Layer

1stm_model.add(Dense(units=32, activation='relu')) # Dense layer after LSTM Llayers

1stm model.add(Dense(units=y train.shape[1])) # Output Llayer

1stm_model.compile(optimizer="adam’, loss='mean_squared_error")

1stm model.fit(X train lstm, y train, epochs=50, batch size=32)

y pred 1stm = 1stm model.predict(X test lstm)

mae = mean_ absolute error(y test, y pred lstm)
mse = mean_squared error(y test, y pred lstm)
r2 = r2_score(y_test, y_pred_lstm)

print(f"LSTM - Mean Absolute Error: {mae}")
print(f"LSTM - Mean Squared Error: {mse}")
print(f"LSTM - R-squared: {r2}")

Figure 13 LSTM

6.8 Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron (MLP) model was constructed using a series of dense layers with
ReLU activation. The model architecture included layers with 256, 128, 64, and 32 units,
followed by an output layer corresponding to the target dimensions. The model was trained
for 50 epochs with a batch size of 32, using the Adam optimizer and mean squared error as
the loss function. After training, predictions were made on the test set.

from keras.models import Sequential
from keras.layers import Dense

start time mlp = time.time()

mlp model = Sequential()

mlp model.add(Dense(units=256, activation="relu', input dim=X train.shape[1]))
mlp model.add(Dense(units=128, activation="relu"))

mlp model.add(Dense(units=64, activation="relu'))

mlp model.add(Dense(units=32, activation="relu'))

mlp model.add(Dense(units=y train.shape[1]))

mlp model.compile(optimizer="adam', loss='mean squared error')

mlp model.fit(X train, y train, epochs=50, batch size=32)
y_pred_mlp = mlp_model.predict(X_ test)

end_time_nlp = time.time()
print(f"Computation Time of LSTM Model: {end time mlp - start time mlp:.2f} seconds™)

mae = mean_absolute error(y test, y pred mlp)
mse = mean_squared error(y test, y pred mlp)
r2 = r2_score(y test, y pred mlp)

print(f"MLP - Mean Absolute Error: {mae}")
print(f"MLP - Mean Squared Error: {mse}")
print(f"MLP - R-squared: {r2}")

Figure 14 MLP

