Enhancing the Accuracy of Abstractive and
Extractive Summarization of Patient
Discharge Reports Using Transter Models

Gaurav Gupta
x22212311@student.ncirl.ie
National College of Ireland

Abstract

The primary goal of this research will be to improve the efficacy
of text-summarizing patient discharge reports by applying extractive
and abstractive approaches. Therefore, to compare the results of the
modern transfer learning models like T5, DistilBART, PEGASUS,
BERTSum, and XLNet, and evaluate by using ROUGE and BLEU
scores.

System Requirements

e Operating System: Windows, Mac, or Linux.
e Processor : Intel Core i5 8th Gen

e RAM: At least 8GB (16GB preferred).

e Disk Space: Free space that is retrievable and easily accessible, and
this should be, at least, 5GB.

e Internet Connection: During downloading of pre-trained models and
datasets.

Software Requirements

e Python Version: Python 3.8 or higher.

e Jupyter Notebook or Google collab.

1



3 Installation Guide

3.1 Python Installation and Version
Install python and check its version and it should be higher than 3.8.

'python --version

3.2 Install Required Packages

To install necessary packages, use pip to download and install them. Example
command:

pip install torch transformers pandas nltk scikit-learn
sentence-transformers rouge-score

3.3 Install Required Libraries

Other related libraries can be installed using:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from wordcloud import WordCloud

import nltk

from collections import Counter

from nltk.tokenize import word_tokenize

import re

from nltk.corpus import stopwords

from transformers import PegasusForConditionalGeneration, PegasusTokenizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqlM

from transformers import LEDTokenizer, LEDForConditionalGeneration
import torch

from transformers import XLMetTokenizer, XLNetModel

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

from sentence_transformers import SentenceTransformer

from sklearn.manifold import TSNE

from rouge_score import rouge_scorer

from nltk.translate import bleu_score

import plotly.express as px

Figure 1: Import Essential Libraries

4 Data Preparation

4.1 Dataset Loading

The dataset, named notevents.csv, which should then be brought into Google
Colab or Jupyter Notebook. Figure 2 that will help you load the dataset and



possibly address errors at the same time: Specify the map of the interesting
columns for analysis, for instance ‘TEXT’ and ‘ROW ID’. Figure 3 shows
how the loaded dataset look like.

# Define the columns you want to read

columns_to_read = ["ROW_ID', 'SUBJECT_ID', "HADM_ID', 'CHARTDATE',
‘CHARTTIME', "STORETIME', "CATEGORY', 'DESCRIPTION",
'CGID', 'ISERROR','TEXT']

# Read the CSV file with specified columns and handle bad lines
data = pd.read_csv( NOTEEVENTS.csv.gz',
usecols=columns_to_read,
nrows=18@, # Read only the first 100 rows for quick inspection
compression="gzip’,
on_bad_lines="skip') # Skip lines with too many/few fields
print(data.head()) # Display the first few rows of the DataFrame
except pd.errors.ParserError as e
print("A parsing error occurred:", e)

Figure 2: Data Loading

data
ROW_ID SUBJECT ID HADM _ID CHARTDATE CHARTTIME STORETIME CATEGORY DESCRIPTION CGID ISERROR TEXT
0 174 22532 167853 2151-08-04 NaN NaN  Discharge summary Report  NaN NaN  Admission Date: [**2151-7-16"] Dischar.
1 175 13702 107527 2118-06-14 NaN NaN  Discharge summary Report  NaN NaN  Admission Date: [*“2118-6-2*"] Discharg.
2 176 13702 167118 2119-05-25 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [*2119-5-4"] D.
3 177 13702 196489 2124-08-18 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [2124-7-21*7]
4 178 26880 135453 2162-03-25 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [**2162-3-3"] D.
95 20 15472 148372 2176-12-02 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [**2178-11-15""]
% 21 15472 188190 2178-12-09 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [*2178-12-5""]
97 22 15472 104146 2179-02-08 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [**2179-2-1""] D.
98 23 15472 143651 2179-03-26 NaN NaN  Discharge summary Report  NaN NaN Admission Date: [*2179-3-21"]
99 24 15472 184486 2179-04-15 NaN NaN Discharge summary Report  NaN NaN Admission Date: [*2179-4-12*1]

100 rows x 11 columns

Figure 3: Dataset

4.2 Exploratory Data Analysis (EDA)

Show the head of the given dataset to get an idea of the data format. One
should always look for any instances of NA values and how they should
be dealt with when distributing. General probability characteristics of text
lengths’ distribution. Compose a word frequency diagram to show the most
used words. Generate frequency distribution of the words and the most
frequent words are identified.



print(data.head())

# Summary statistics for the 'TEXT® column
print("\nSummary Statistics for 'TEXT' column:"™)
print(data[ ‘'TEXT'].describe())

# Check for missing values in "TEXT'
missing_values = data[ 'TEXT'].isnull().sum()
print(f"\nMissing values in 'TEXT' column: {missing_values}")

# Distribution of text length

data[ 'TEXT_LENGTH'] = data[ "TEXT'].apply(len)
plt.figure(figsize=(12, 6))

sns.histplot(data[ 'TEXT_LENGTH'], bins=58, kde=True)
plt.title( 'Distribution of Text Length')
plt.xlabel('Text Length")

plt.ylabel('Frequency')

plt.show()

# Display a Word Cloud of the most frequent words
text_data = ' '.join(data['TEXT'].dropna()) .
wordcloud = WordCloud(width=808, height=408, background_color="white').generate(text_data)

plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')

plt.title( 'Word Cloud of the TEXT Column')
plt.show()

# The most common words and their counts
tokens = word_tokenize(text_data.lower())
common_words = Counter(tokens).most_common(2@)

print("\nMost Common Words:")
for word, count in common_words:

print(f"{word}: {count}")

Figure 4: Exploratory Data Analysis

4.3 Data Preprocessing

Pre-process the textual data using the suitable tokenizers. Stop words must
be eliminated to concentrate on the core language terms. Convert the given
text to a matrix that the models will use as input as in Figure 5.

# Handle missing values in "TEXT®
data[ "TEXT'] = data[ 'TEXT"].fillna('") # Fill missing text with an empty string

# Define a function for text preprocessing
def preprocess_text(text)
# Remove non-alphabetic characters
text — re.sub(r’[~a-zA-Z\s]', ', text)
# Convert to lowercase
text = text.lower()
# Tokenize
tokens = word_tokenize(text)
# Remove stopwords
stop_words - set(stopwords.words( english’))
tokens = [word for word in tokens if word not in stop_words]
# Recomsiruct Lext
return ° °.join(tokens)

# Apply text preprocessing
data[ ' PROCESSED_TEXT'] - data[ ' TEXT'].apply(preprocess_text)

# Display the first few rows of the transformed data

print("\nTransformed Data:")
print(data.head())

Figure 5: Data Preprocessing



admission date discharge date service addendum radiologic studies radiologic studies also included chest ct con
admission date discharge date date birth sex f service history present illness patient yearold female complex mec
admission date discharge date service icu history present iliness patient yearold female admitted mental status ¢
admission date discharge date service ccu addendum discharge medications enalapril po bid lasix po qd digoxin
admission date discharge date date birth sex f service addendum neurological patient mri eeg evaluate neurologi

admission date death date service medicinedoctor last name history present illness patient yearold male history ¢

Figure 6: Dataset after Pre-Processing

4.4 Data Preparation

In this step, we filter the dataset based on specific ROW IDs that were
randomly selected for analysis as we have to create their summaries manually
and is not possible to do for all the data points so we choose randomly 236
points. The following code snippet demonstrates how to filter the dataset
using these ROW IDs. Splitting the dataset into 80:20 ratio.

# Filter the DataFrame based on ROW_IDs

row_ids_to_filter = [
174, 245, 189, 209, 93, 185, 165, 523, 348, 712, 454, 524, 274, 278, 354, 355, 383, 421, 663, 928,
78@, 789, 858, 611, 1172, 1377, 1434, 1217, 1221, 1eee, 1182, 1682, 1819, 1829, 1618, 1541, 1280,
1294, 1923, 1942, 2203, 2334, 1751, 1773, 1794, 2149, 2155, 1986, 1999, 2454, 2461, 2488, 2232,
2233, 2345, 3083, 3604, 2937, 2656, 2685, 2781, 2894, 2533, 2534, 2535, 2568, 3311, 2739, 3142,
3711, 3717, 3722, 363e, 3633, 3340, 3416, 4129, 3759, 3858, 4236, 4387, 4562, 4451, 4488, 3923,
3934, 4853, 4873, 461e, 4566, 4717, 4882, 4808, 4939, 5383, 51e8, 4695, 5007, 5613, 5333, 5319,
5322, 5476, 5645, 561e, 9900, 9933, 7868, 786@, 8733, 9176, 9177, 8398, 8687, 13259, 7124, 1536,
11548, 18357, 1e364, 10911, 5846, 12278, 12518, 1@942, 6357, 7284, 6725, 12534, 13267, 13274, 7292,
7408, 74e¢, 13275, 11553, 11563, 18372, 18566, 5898, 10648, 18672, 11578, 6662, 11984, 108269, 5727,
6485, 7313, 12166, 10882, 108886, 18893, 6451, 7169, 10573, 13147, 6257, 6277, 10483, 5920, 5930,
1152@, 6656, 12198, 12191, 18384, 18943, 6461, 12452, 18949, 18951, 18952, 6289, 6296, 7228, 18579,
18581, 13268, 13216, 13225, 10452, 6802, 11527, 11529, 12284, 10322, 5818, 6698, 12223, 1&955, 10956,
6513, 12506, 6336, 6351, 7253, 9625, 9724, 9831, 6158, 8037, 7741, 8350, 8689, 7581, 9807, 9352,
8312, 75@3, 16855, 8598, 9764, 9863, 10260, 9780, 7822, 8358, 6930, 6950, 8346, 8383, 8825, 9438,
7559, 7567, 8662, 9209, 9234, 8217, 18673, 10€15, lee22, 8131, 9081, 8476, 60606

1

data = df[df['ROW_ID'].isin(row_ids_to_filter)]

Figure 7: Randomly selected Data ponits

5 Modelling

Most advanced transfer learning approaches were used for the summariza-
tion of patient discharge reports in this research. Specifications of the model
such as the PEGASUS model for producing the summaries of the text data
were integrated with error handling mechanisms for optimality. In the same



manner, Th was used for summarization the merits of which were always
preserved systematically for future use. The BERTSUM model, which is
acknowledged for its vibrant performance while solving extractive summa-
rization tasks, was also useful to implement proficient summary generation
on the text data. Moreover, DistilBART for generation of summary in a
smaller size and quicker was also applied. Finally, the same text data was
used with the XLNet model to know about its potential and its approach
towards handling and summarizing the given data and comparison was also
made between different models. The outputs of every model were then saved
and preprocessed for further analysis in terms of the standard performance
measures such as ROUGE and BLEU. Figure 8 shows the PEGASUS model
for the purpose of text summarization. It splits the input text into tokens,
applies a summary using the model, and then translate the summary back
into natural language. It manages exceptions and provides “No text avail-
able” if text preprocessing has failed.

model mname — "gecale/pegasus_seum!

- P 1 _from pretrained (model_mame)
model — £ 1a. tion. From A (model_name)

pET

Figure 8: Pegasus Function and Model

ABDOMINAL CT: Head CT showed no intracranial hemorrhage or mass effect. a chest CT confirmed cavitary

the patient is a 70-year-old female with a complex medical history. she was admitted after a cardiac arrest on |
the patient is an 84 year-old woman admitted with inflammatory bowel disease. she was admitted with a histor
the patient should have potassium followed in a couple of days and monitored closely and her potassium dose
the patient had an MRI and EEG to evaluate neurologic status. the MRI showed diffuse encephalopathy and tl
the patient is a 78-year-old male with a history of encephalitis, oral cancer. the patient had shortness of breath

Figure 9: Text After Applying Pegasus Model



6 Evaluation

6.1 ROUGE Score

The quality of the generated summaries is evaluated by the help of ROUGE
indices, comparing the summaries with the reference texts. ROUGE-N as-
sesses matching n-grams, for example, unigrams or bigrams of the generated
and reference summaries but at the n-th level, whereas ROUGE-L compares
the longest continuable match that will tell the coherence and fluency of
the summaries. These metrics involve coming up with precision, recall and
F'1 score, which gives a quantitative measure as to how the generated sum-
maries are able to capture important information from the reference sum-
maries. These scores are useful in the assessment of the various models for

summarization and for comparisons to be made.

# Function to calculate ROUGE scores
def calculate_ rouge (reference, hypothesis) :
sScores = rouge_ scorer.score (reference, hypothesis)
return {
'ROUGE-1': scores['rougel'].fmeasure,
"ROUGE-2': scores['rouge2'].fmeasure,
'ROUGE-L' : scores['rougel'].fmeasure
}

# Function to apply ROUGE score calculation
def apply_rouge_scores (row) :
return ecalculate_rouge (rowl 'Manual_ Summary'l, rowl['Pegasus_Summary']l)

# Calculate ROUGE scores row-—wise
combined QAf[ 'ROUGE'] = combined df.apply (apply_rouge_ scores, axis=1l)
# Calculate average ROUGE scores

avg_rouge = combined df[ ' ROUGE'] .apply (pd.Series) .mean() *a

print ("Average ROUGE Scores:")
print (avg _rouge)

Figure 10: ROUGE Score

Model ROUGE-1 ROUGE-2 ROUGE-L
XLNet 0.614 0.519 0.570
DistilBART 0.671 0.418 0.608
BERTSUM 0.599 0.267 0.497
T5 0.618 0.356 0.540
PEGASUS 0.608 0.169 0.495

Table 1: Average ROUGE Scores for Different Models



6.2 BLEU Score

The degree of the generality of the summaries is then assessed using the
BLEU (Bilingual Evaluation Understudy) scores whereby it calculates the
resemblance between the generated summaries and the reference summaries.
BLEU measures the number of matching n-grams (for example, unigrams,
bigrams) in the generated text in relation to reference summaries; it also
takes the problem of the precision and makes use of brevity penalty in the
cases of the short summaries. This metric comes up with a score that is
numerical in nature, hence showing the level of proximity of the generated
summaries with the reference summaries with regard to both content and
word choice.

# Function to apply BLEU score calculation
def apply bleu scores(row) :

return calculate bleu(row['Manual Summary']l, rowl['Pegasus_Summary']l)

# Calculate BLEU scores row-wise

combined Af[ 'BLEU'] = combined df.apply(apply bleu scores, axis=1)

# Calculate average BLEU score

avg_bkbleu = combined df['BLEU'] .mean() *b

print ("Average BLEU Score:")
print(avg_bleu)

Figure 11: BLEU Score

Model BLEU

XLNet 0.634
DistilBART  0.600
BERTSUM  0.606
T5 0.628
PEGASUS 0.621

Table 2: BLEU Scores for Different Models

6.3 Summary Length Distribution

It helps to check the distribution of the summary’s length and thus be certain
these correspond to minimum and maximum values prescribed.



# 1. Summary Length Distribution

combined_df_t5[ ‘Length’'] = combined_df_t5["T5_Summary’].apply(len)
plt.figure(figsize=(8, 6))

plt.hist(combined_df_t5[ ‘Length"'], bins=18, color='lightblue’)
plt.title( Summary Length Distribution for T5')

plt.xlabel( Summary Length®)

plt.ylabel('Frequency")

plt.show()
Figure 12: Summary Length Distribution
Summary Length Distribution for T5
5o |
a0 |
2
20
°ide 1% 200 2% 00 30 a0 430 %0

Figure 13: Histogram of T5 Model

6.4 Word Frequency Chart

Visualize word frequencies in generated summaries to understand the content
focus.

text_t5 = " ".Jjoin(combined df_ t5['T5_Summary'].tolist())
wordeloud t5 = WordCloud(width=800, height=400,
background color='white') .generate (text_ t5)

plt.figure (figsize=(10, 35))

plt.imshow (wordeloud t5, interpolation='bilinear')
plt.axis('cff')

plt.title('Word Frequency Visualization for T5')
rlt.show()

Figure 14: Word Frequency Chart



Word Frequency Visualization for T5

rightleftpdischa rged"“g S

S arge
.E piwnge l

transferred "°"  y '
5'?°§fe_“'d aym J MEDQUIST36 DE

I pe tension
found=-g"r" =1 1S tcd)ry
:;:"Id— a S t surge N a me sragtus polst.‘

mmmmmmm story P O §icease COUrS@-s" diabetes mellitus rehabilitation

remained

tte

Figure 15: Word Frequency Chart of TH

7 Execution of the Code

1. Download the Dataset

2. Unzip the Files into a Folder

3. Open the Python File in Google Colab or Jupyter Notebook
4. Change the Path to Refer to the Dataset Location

5. Run the Code

8 Conclusion

This project demonstrates that with the help of more enhanced NLP mod-
els, it is possible to enhance the quality and speed of the summery of the
reports on patients’ discharge. In this case, I want to present valuable insights
and methodologies for applying the text summing technologies in targeted
healthcare environments, thus, by developing advanced transfer models and
evaluating their performance in regard to the comprehensive metrics.

10



9 References

References

Hugging Face, 2024. Transformer Models Documentation. Available at:
https://huggingface.co/docs/transformers/.

Google Research, 2024. ROUGE Metrics. Available at: https://github.
com/google-research/google-research/tree/master/rouge.

NLTK, 2024. BLEU Score Explanation. Available at: https:
//www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_
score.sentence_bleu.

11


https://huggingface.co/docs/transformers/
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu
https://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu
https://www.nltk.org/api/nltk.translate.html#nltk.translate.bleu_score.sentence_bleu

	System Requirements
	Software Requirements
	Installation Guide
	Python Installation and Version
	Install Required Packages
	Install Required Libraries

	Data Preparation
	Dataset Loading
	Exploratory Data Analysis (EDA)
	Data Preprocessing
	Data Preparation

	Modelling
	Evaluation
	ROUGE Score
	BLEU Score
	Summary Length Distribution
	Word Frequency Chart

	Execution of the Code
	Conclusion
	References

