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1 Introduction

The goal of this document is to provide a step-by-step analysis of how the implementation was
carried out.

2 System Requirements

Operating System Windows 11 Home

Installed Memory 8.00 GB RAM

Processor Intel(R) Core(TM) i5-10300H CPU @
2.50GHz

Required memory for execution Google Colab (TPUv2, 334 GB RAM)

Table 1: System Requirements

Python programming language has been used and the entire code is executed on Google Colab.

3 Project Development

3.1 Setting up of Google Colab

[ 1 from google.colab import drive
drive.mount("'/content/drive")

3+ Mounted at /content/drive

Figure 1: Mounting drive

3.2 Upload original data on drive
The original dataset should be uploaded on drive.

3.3 Importing Libraries



1 PIL impor
t torch
t torch.nn as nn
ort torch.optim as optim
" torch.utils.data import Dataloader, Dataset
1 torchvision import transtorms
1 torchvision.utils import save image
t random

from skimage.metrics import structural similarity as compare_ssim
import numpy as np

PIL import Image, ImageOps

sklearn.model_selection in t train_test_split, GridSearchcv

sklearn.neighbors in t KNeighborsClassifier

sklearn.metrics import accuracy score, confusion matrix, classification report, recall score

sklearn.preprocessing import LabelEncoder

tensorflow.keras.applications t ResNet5e

tensorflow.keras.preprocessing image

‘tensorflow.keras.applications.resnetse import preprocess_input

tensorflow as tf

t gc

sklearn.metrics import accuracy score, confusion matrix, classification report, recall score, precision_score, cohen_kappa_score,fl score
from PIL import Image, ImageEnhance

Figure 2: Importing libraries

3.4 Generating images using Custom GAN

Custom GAN is inspired by SRGAN!?, due to its architecture to generate high resolution
images, similarly the Custom GAN architecture makes use of simple architecture to produce
images of good quality.

Part 1: L oading images and applying transformation
Before passing images to Generator, it is necessary to ensure that the images are
preprocessed.

dataset_path

transform =

):

e([parkinson_path, healthy_path]):
ath)
h.join(class_path, fname), label))

return len(self.samples)

__getitem_ (self, idx)

rm:

self.transform(image)

if 1bl == label

ataloader(c

dataset stomImageFolder(root-dataset _path, transform—transform)
batch_ =

Figure 3: Loading images and applying transformation for Custom GAN

L https://medium.com/analytics-vidhya/super-resolution-gan-srgan-5e10438aecOc
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Part 2: Defining Generator Architecture

The generator class consists of multiple convolutional layers with ReL U activations and batch
normalization to refine the image features. The output is an image with enhanced feature.

Generator(nn.Module):

__ipnit  (self):

super(Generator, self). init_ ()

self.model = nn.Sequential(
nn.Conv2d(3, 64, kernel size=9, padding=4),
nn.ReLU(inplace= ls
nn.Conv2d(64, 64, kernel size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace= Iz
nn.Conv2d(64, 3, kernel size=3, padding=1),

)

forward(self, x):
return self.model(x)

Figure 4: Generator

Part 3: Defining Discriminator Architecture

The dicriminator is used to distinguish between real and generated images

ator(nn.Mo
__init  (self):
super(Discriminator, self). init ()
self.model = nn.Sequential(
nn.Conv2d(3, 64, kernel size=3, padding=1),
nn.LeakyRelU(®.2, inplace= )
nn.Conv2d(64, 64, kernel size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyRelLU(©.2, inplace= )s
nn.Conv2d(64, 128, kernel size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyRelLU(®©.2, inplace= i
nn.Flatten()
nn.Linear
nn.Sigmoid()

)

forward(self, x):
return self.model (x)

Figure 5: Discriminator



Part 4: Training the model

optimizer G = optim.Adam(generator.parameters 0.0001, betas=(8.5, 8.999))
optimizer D = optim.Adam(discriminator.parameters(), 1r=0.0001, betas=(8.5, ©.999))

criterion_GAN = nn.BCELoss().to(device)
criterion_content = nn.l1loss().to(device)

results dir_parkinson =

results dir_healthy =
os.makedirs(results_dir_parkinson, exist o
os.makedirs(results_dir_healthy, exist_ok=

train_model(data_loader, results dir, num epochs=2@, initial 1r=8.8881, lr decay epoch=18):
optimizer G.param groups[@]['lr'] = initial 1r
r_D.param_groups[@]["1lr'] = initial 1lr

r epoch in range(num_epochs):
epoch > lr_decay epoch:

new 1r = initial 1r * (8.1 ** ((epoch - 1r_deca

optimizer D.param groups[@]['1r'] = new lr

i, (imgs, labels) in enumerate(data_loader):

imgs 1r = imgs.to(device)
labels = labels.to(device)

optimizer D.zero_grad()

gen_hr = generator(imgs_lr)
valid = torch.ones(imgs_lr.size( 1, i evice) * 0.9
fake = torch.zeros(imgs_lr.size(®), 1, device=device)

real loss i on_GAN(discriminator(imgs 1r), valid)
fake_loss i ion GAN(discriminator(gen hr.detach()), fake)

d_loss = (real_loss + fake_loss) / 2
d_loss.backward

optimizer D.step()

optimizer G.zero grad()

gen_hr = generator(imgs _1r)

g loss_content = criterion_content(gen_hr, imgs_1r)

alidity = discriminator(gen_hr)
g loss_GAN = criterion_GAN(fake_validity, valid)
loss = g loss_content + le-3 * g loss GAN
g _loss.backward()

optimizer G.step()

if i % 100
print(f"[ fepoch}/{num_epochs}] [Batch { {len(data_loader)}] [D 1 : {d loss.item

if epoch >= 18:
or k in range(imgs_lr.size(@)):
save_path = os.path.join(results_dir,
save_image(gen_hr[k] ave_path, normal

Figure 6: Training function in Custom GAN

Output



+ Training for Parkinson class...
[Epoch @/28
[Epoch @/28

] [Batch @/2e4] [D loss: 8.
] [Batch 188/284] [D loss: 8.:
[Epoch @/2@8] [Batch 2@8/284] [D lo
[Epoch 1/28] [Batch @/284] [D loss:
[Epoch 1/2@] [Batch 1@&/284] [D loss: 8.5476
[Fnoch 1/281 TRatch 2688/2841 ID loss: 8.223R1 IG loss: @,

Figure 7: Custom GAN Output

Part 5: Checking the total count of original and generated images

The ‘SRGANTRIALWORKSEED’ folder consists of Custom GAN saved images and
‘Dataset’ folder consists of original images.

if any(file.lower().endswith{ext) for ext in image extensi
count += 1
return count

ubdirect
dir_path = -J ir, subdirectory)
count = count_: in_di dir_path)

print ("I 1 {dir_path}: {count}")

print{f"T n both dir (total images}")

Number of images in /content/drive/MyDrive/Dataset/Parkinson: 1632

Number of images in /content/drive/My ataset/Healt 632

Number of images in /content/drive/My RGANTRIALWORKSEED/Parkinson: 16320
Number of images in /content/drive/MyDrive/SRGANTRIALWORKSEED/Healthy: 16328
Total images in both directories: 35984

Figure 8: Count of Custom GAN saved images and original images

Part 6: Calculating SSIM

The calculate_batch_ssim function calculates the SSIM score for each batch of real and
generated images by calling the calculate_ssim function to compute the SSIM score for
individual pairs of images within each batch and then averages these scores to provide an
overall SSIM score.



i in range(num_image
imgl = imagesl[i].permute(1l, 2, @).numpy()
img? = images2[i].permute(1l, 2, @).numpy()

im(imgl, img2, multichannel= » win_si in_size, channel axi.

a_range=data_range)

im_sum / num_images
m_avg

ange-data_range)

count
eturn total_:

real | istomImageFolder(base_real dir,
generated_parkin _dat CustomImageFolder(base_generated_dir,
real_healthy dat mImageFolder(base real dir, 'H :
generated_health CustomImageFolder(b.

(real_parkinson_dataset, batch_:
er(generated_parkinson_datas
)}

> num_workers=)

55im_parkinson = calculate_batch_ssim(real_parkinson_load generated_parkinson_loader, win_si
ssim_healthy = calculate_batch_ssim(real_healthy 1 , generated healthy loader, win_si , data_rang

print(
print(

Found directory: /content/drive/MyDrive/Dataset/Parkinson

Found directory: /content/drive/MyDrive/SRGANTRIALWORKSEED/Parkinson
Found directory: /content/drive/MyDrive/Dataset/Healthy

Found directory: /content/drive/MyDrive/SRGANTRIALWORKSEED/Healthy
SSIM for Parkinson class: ©.686148

SSIM for Healthy class: @.637629

Figure 10: SSIM output

Part 7: EDA of generated images and original images

load i

dir, subdirectory)

direc

rn images, image_paths

original_parkinson_images, original parkinson_paths y(base_real_di
original_ healthy ges, original | y_| load imag 1 dir,

gan_parkinson_images, gan_parkinson paths
gan_healthy images, gan_healthy path

original |

(random. e(gan_parkinson_images

(random. gan_healthy imag

Figure 11: Code for EDA of Custom GAN and original images
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Figure 12: EDA for Custom GAN and orriginal images

3.5 Creating GAN combined data

Here, all images from original dataset are collected and then remaining images are taken from
‘SRGANTRIALWORKSEED?’ folder which has the Custom GAN saved images, the total
images are restricted to 7000 images due to high computational requirements

base_real_dir =
base_generated_di
subdirectories =

dest_dir =

category images - {'Pa [1, ‘Hea
for subdirectory in subdirectories:

real_dir_path = os.path.join(base_real_dir, subdirectory)
real i get_images from_directory(real_dir_path)
category es[subdirectory].extend(real images)

generated_dir_path - os.path.join(base_generated_dir, subdirectory)
generated_ima| = get_images_from_directory(generated_dir_path)
category images[subdirectory].extend(generated images)

es_needed = 7000
ategory = total_images_needed // 2
items():

{images_per_category}. Only found {len(images)} i

selected images = {'Pa

for category in subdirectori
if category == ° i

real images = [img for img in category images[category] if base real dir in img]

selected_images[category] = real_images[:images_per_category]

remaining_space = images_per_category - len(selected images[category])

Figure 13: Creating GAN combined data (part 1)



if remainii pace > @:

generated_images = [img for img in categol a t f base_generated_dir in img]

selected_images[category].extend(genera images[ :remaining_spa

print(f" len(generated_images aining_space]))
elif category

real_im; = [img for img in category_ imag ategory] i real dir in img]
selected_images[category] = real_images[:images_per category]

remaining ce images_per_category elected_images[categ
if remaini

generated_images = [img for n category_ima [category] if be generated_dir in img]
selected_images[category].extend(generated_images[ :remaining_space])
print(f"U {len(generated_images[:remaining_space])} G

copy_images(selected_images, dest_dir)
print( total_images_needed] est_dir} under
Used 1868 GAN images for the Parkinson category.

Used 1868 GAN images for the Healthy category.
Copied 7000 images to /content/drive/MyDrive/SelectedImageFINAL under their respective folders.

Figure 14: Creating GAN combined data (part 2)

The ‘SelectedlmageFINAL’ folder contains the GAN combined data and is used further for
the research, for the modelling part.

3.6 Modelling

3.6.1 ResNet50 + KNN classifier

The images are preprocessed and then passed to ResNet50 for feature extraction and then
passed to KNN classifier for classification. The images are normalized and enhanced by
increasing the brightness

mage_path):
n(image_path)

image = image.

enhance e.Brightness(image)
nhance(1.2)

image_array = np.array(image) / 255.0

return image_array

.join(parent_dataset_folder, class_folder)
der_path) :

, filename)

Figure 15: Preprocessing



After preprocessing, the images are splitted into train and test in a ratio of 80:20.

preprocessed image = preprocess_image(image path)
preprocessed_images.append(preprocessed image)

labels.append(class_folder)

preprocessed_images = np.array(preprocessed_images)
labels = np.array(labels)

label_encoder = LabelEncoder()
encoded_labels = label encoder.fit_transform(labels)

X_train, X_test, y train, y test = train test split(preprocessed_images, encoded labels, test : —@.2, random_state=42)

del preprocessed_images, labels
gc.collect()

base_model = ResNet5@(weights="ima et’, include_top= » input_shape
feature_extractor = tf.keras.Model(inputs=base model.input, outputs=base

features = feature_extractor.predict(batch_images, batch_size-batch size)
features_flattened eatures.reshape(features.shape -1)
features list.append(features_flattened)

features_ful tack(features_list)

return features_full

X train features = extract features(X train)

Figure 16: ResNet50 for feature extraction

Grid search is set up for KNN classifier for parameters like, n_neighbors, weights and metrics.
The best parameter found is used for prediction of test set.

extract_features(X_:
extract_features(X_ test)

del X _train, X test
gc.collect()

knn = KNeighborsClassifier()

grid_search = GridSearchCV(knn, param grid, cv=5, n_jobs=-1, verbose=1)
grid_search.fit(X_train_features, y_train)

print(" F . ", grid_search.best_params_)

best_knn — grid_search.best_estimator_

y_test_pred_labels = best_knn.predict(X_test_features)

test_accuracy, e y_test_pred_labels)
print({“Man ura n at _accuracy_manual)

conf_matrixrk nfusion_matrix(y_test, y_test_pred_labels)
print("
print{conf_matrixrk)

Figure 17: ResNet50 with KNN classifier




3.6.2 InceptionV3 +KNN

The images are preprocessed and then passed to InceptionV3 for feature extraction and then
passed to KNN classifier for classification

» input_shape=(224,
, outputs=base_model.out

X_train_featur

X_test features

param_|

KNeighborsClassifier()

= GridSearchCV(knn, param_grid, cv=5, scoring="a , n_jobs=-1)

rch.fit(X_train_features, y_train)

params_
best_params)

KNeighborsCl, best_params)
fit(X_train_fe rain)

y_test_pred_labels = knn_best.predict(X_test_features)

Figure 18: InceptionV3 with KNN classifier

3.6.3 Inceptionv3

InceptionV3 is used and additional layers? are added and top 20 layers are unfrozen for fine
tuning. The model is trained for 10 epochs using Adam optimizer and loss function.

2 https://medium.com/@armielynobinguar/simple-implementation-of-inceptionv3-for-image-classification-
using-tensorflow-and-keras-6557feb9bf53
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batch_size = 16
ain_ds - tf.data.Dataset.from tensor_slices((X_train, y_train)).batch(batch prefetch(tf.data.AUTOTUNE)
test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_s: )l.prefetch(tf.data.AUTOTUNE)

", include top= » input shape=(224, 22

for layer in base_model.layers[-28:]:
layer.trainable =

model = models.Sequential([
base_model,
Pooling2D.
y -Dense(256, activation: lu®),
layers.Dropout s
layers.Dense(len(subdirectories), activation-

D

rs.Adam(learning

history

test_loss, test_accuracyinc
print( d

y_test pred = model.predict(test_ds)

print(conf_matrixinc)

Figure 19: InceptionV3

3.6.4 ResNet50
ResNet50 is used as a base model and few layers are added on top of the model.?

batch_size = 16
train_ds = tf.data.Dataset.from tensor slices((X train, y train)).batch(batch size).prefetch(tf.data.AUTOTUNE)
test_ds = tf.data.Dataset.from tensor_slices((X_test, y test)).batch(batch_size).prefetch(tf.data.AUTOTUNE)

base model = ResNet5e(weights="i ,» include top= » input_shap
base_model .trainable =

layer in base model.layers|-
layer.trainable =

model = models.Sequential([
base model,
layers.GlobalAveragePooling2D
layers.Dense(256, activation="relu'),
layers.Dropout(@.5),
layers.Dense(len(subdirectories), activation=

los
metrics=[":

history = model.fit(train_ds, epochs=10)

test_loss, test accuracyres = model.evaluate(test ds)
print(f" ! d (test_accuracyres}”)

y_test pred = model.predict(test_ds)

Figure 20: ResNet50

3 https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-
and-code-implementation-d8d8fa67e46f
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3.7 EDA (ACCURACY)

import matplotlib.pyplot as

metrics = [
values = [te

plt.figure(f
bars = plt.bar(metr c color=colors)

plt.show()

Figure 21: EDA of accuracy metric for all 4 models

Comparison of Different Specificity Metrics
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ResNetkKNN InceptionKNN Inceptionv3 Resnet50

Specificity Metrics

Figure 22: Accuracy graph for all 4 models

4 Replicating the base paper

(Kumar and Bansal, 2023) was chosen as the base paper, because the dataset used in this
paper is taken as the original dataset in the current research.
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t numpy np
t tensorflow :
MobileNetv2

rflow. keras.optimi
learn.preprocessing im
learn.model :
t os
random

np.random.seed(42)
tf.random.set_seed(4.
random.seed(42)

parent_dataset_folder =
target_size = (224, 224)

preprocess_image(image path):
image = tf.keras.preprocessing.image.load img(image path, target :

ras.preprocessing.image.img to_array(imag

class_folder in os.listdir{directory

class_folder_path = os.path.join(directory, class_folder)
if os.path.isdir

for filename in os.listdir(class folder path):

f filename.endswith(™.jpg" r filename.endswith("
image_path = os.path. n{class_folder_path, filename)
image = prepre mage (image_path)
images . append(image)
labels.append(class_folder)

urn np.array(images), np.array(labels)

load and preprocess_images(parent - folder)

label binarizer = LabelBinarizer()
labels_encoded = label_binarizer.fit_transform(labe

X_train, X_test, y train_encoded, y_test encoded - train_test_split(preprocessed_images, labels_encoded, i , random_state=42)
base model = MobileNetV2(weights="imagenet’, include top= . input_shape=(224, 224, 3))

base_model.output

AveragePooling2D(pool s

Flatten()(x)

= Dropout(@.5) (x)
redictions = Des . activatio

x
x
x
x = Dense(128, activation
x
p

model = Model (input -_model.input, outputs-predictions)
layer in base_model.layers:
layer.trainable
model. compile (optimizer—Adam(Lr=
model. sunmary ()
history = model.fit(X_train, y_train_encoded, batch_size=44, epochs=74, validation_data=(X_1 test_encoded))
del.evaluate(X_test, y_test encoded)

print(
print(

Downloading data
9406464/9406464
WARNING:absl: 1r" is deprecated in Keras optim
Model: "model”

Layer (type) Output Shape Param # Connected to

Figure 23: Base paper
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