
Configuration Manual for Sumbot
Anish Girish

MSc Data Analytics
X22208879@student.ncirl.ie

1 System Requirements
This whole project takes into the account three important steps,

RAM: 8GB DDR3

OS: Windows 11 pro

Processor: i5 9th generation

Technology Required: Python, Anaconda, Spyder, Streamlit

2 Code execution

Figure1.The code imports libraries and modules for text processing, machine learning, and
evaluation. It sets up tools for working with datasets, NLP models, tokenization, and metrics, and
installs necessary packages.

Figure2.This code defines functions for summarizing text using a sequence-to-sequence model:

1. `device`: Chooses between GPU or CPU based on availability.

2. `rouge`: Initializes ROUGE scoring for evaluating summaries.

3. `summarize(text, maxSummarylength)`: Summarizes input text using a pre-trained model and
tokenizer.

4. `split_text_into_pieces(text, max_tokens, overlapPercent)`: Splits long text into manageable pieces
for summarization.

5. `recursive_summarize(text, max_length, recursionLevel)`: Recursively summarizes text by splitting
and summarizing iteratively until the summary is concise.

Figure3.This code loads the BART model and tokenizer:

1. `model_name`: Specifies the pre-trained model, BART.

2. `tokenizer`: Loads the tokenizer for the BART model.

3. `model`: Loads the BART model and moves it to the appropriate device (GPU or CPU).

Figure4.This code evaluates the summarization model on a sample of WikiHow articles:

1. `wikihow`: Samples 2,000 articles from the WikiHow dataset.

2. `results`: Initializes an empty list to store ROUGE scores.

3. `for` loop: Iterates over random indices to process each article.

 - `article`: Cleans the article text by removing newlines.

 - `reference_summary`: Retrieves the reference summary.

 - `generated_summary`: Summarizes the article using `recursive_summarize`.

 - `rouge_scores`: Computes ROUGE scores for the generated summary vs. reference summary.

4. `print(results)`: Outputs the list of ROUGE scores for all sampled articles.

Figure5.This code saves the evaluation results to a JSON file:

1. `open`: Opens (or creates) a file at the specified path in write mode.

2. `json.dump`: Writes the `results` list (which contains ROUGE scores) to the file in JSON format with
indentation for readability.

3. `f`: The file object used for writing.

Figure6.This code initializes a model and tokenizer for text summarization:

1. `model_name`: Specifies the model identifier for the `facebook/bart-large-xsum` variant, which is
optimized for summarization tasks.

2. `AutoTokenizer.from_pretrained(model_name)`: Loads the tokenizer associated with the specified
model.

3. `AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)`: Loads the pre-trained
model and moves it to the specified device (GPU or CPU).

Figure7.This code evaluates a summarization model by generating summaries for 2000 random
articles from the WikiHow dataset and calculates their ROUGE scores to assess the summarization
quality.

Figure8.This code saves the summarization results to a JSON file and prints the file path where the
results are saved.

Figure9.This code samples 2,000 articles from the WikiHow dataset, generates summaries using the
`recursive_summarize` function, evaluates them with ROUGE scores against reference summaries,
and prints the results.

Figure10.This code reads a JSON file containing cleaned and filtered articles and loads it into a
variable called `train`.

Figure11.This code converts the lists `train` and `val` into `Dataset` objects from the `datasets`
library, creating `train_dataset` and `val_dataset`.

Figure12.This code tokenizes the `article` and `summary` fields of the datasets using the
`BartTokenizer`. It processes the `train_dataset` and `val_dataset` by truncating and padding them,
then prepares them for model input by mapping the tokenized data.

Figure13.This code sets up and runs a training loop for a sequence-to-sequence model. It defines
training parameters with `TrainingArguments`, initializes a `Trainer` with these arguments, and trains
the model using the provided `train_dataset` and `eval_dataset`.

Figure14.This code samples 2,000 articles from the WikiHow dataset, generates summaries using the
`recursive_summarize` function, and evaluates them with ROUGE scores. The results are collected
and printed.

Figure15.This code saves the evaluation results (ROUGE scores) to a JSON file at the specified path.
The results are stored with indentation for readability.

Figure16.This code does the following:

1. Mounts Google Drive: Makes the Google Drive accessible in Colab.

2. Imports NLTK: For natural language processing tasks, like tokenizing text.

3. Loads a Dataset: Uses the `datasets` library to load a dataset.

4. Requests Library: For making HTTP requests.

5. Zipfile Library: For handling ZIP files.

6. OS Library: For interacting with the operating system.

7. TQDM: For displaying progress bars.

Figure17.This code opens a login prompt for Hugging Face's Hub directly in the notebook, allowing
you to authenticate and access private datasets or models.

Figure18.This line of code saves the `dataset` object to the specified directory on Google Drive,
allowing you to persist the dataset for later use or sharing.

Figure19.These print statements display:

- The maximum and minimum word count of articles (`max_count` and `min_count`).

- The total word count of all articles (`total_count`).

- The maximum and minimum word count of summaries (`max_sum_count` and `min_sum_count`).

- The total word count of all summaries (`total_sum_count`).

Figure20.This code calculates and prints:

- Article Word Counts:

 - `max_count`: Maximum word count in an article.

 - `min_count`: Minimum word count in an article.

 - `total_count`: Total word count across all articles.

- Summary Word Counts:

 - `max_sum_count`: Maximum word count in a summary.

 - `min_sum_count`: Minimum word count in a summary.

 - `total_sum_count`: Total word count across all summaries.

Figure21.This function `clean_dataset`:

- Filters out data points from the dataset based on word count.

- Keeps only those data points where:

 - The document has at least 50 words.

 - The summary has at least 5 words.

- Returns the cleaned dataset split into train, test, and validation sets.

Figure22.This code:

- Computes and prints statistics for word counts in the 'test' split of the dataset.

- Calculates the maximum, minimum, and total word counts for both articles and summaries.

Figure23.This code:

- Loads a pickled `wikihow` dataset from a file located at `'/content/drive/MyDrive/dataset/
wikihow_preoccesd.pkl'` into memory using Python's `pickle` module.

3 Steps to Run and Execute the codes

Step 1: Login to the google drive which has the codes and data saved

Step 2: Execute the colab file

Step 3: Authenticate the access for the drive

	1 System Requirements
	2 Code execution
	3 Steps to Run and Execute the codes

