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1 Introduction

This configuration manual provides step-by-step instructions to replicate the project
(Deepfake Detection in AV1 Compressed Videos with EfficientNet and Stacked Bi-LSTM
Model). With the help of this manual, detailed instructions on setting up the envir-
onment, installation of required software, data collection and storage, pre-processing of
data, model training and evaluation, loading the trained model, and testing new videos
are covered. Follow each step carefully to ensure successful replication of the project.

2 Setting Google Colab Pro

This project requires high GPU power for processing videos and training the Efficient
and the 3-layered bidirectional LSTM models. For this purpose, a Google Colab Pro1

account is recommended, as it offers a tensor processing unit (TPU) with a 15GB GPU.
The following steps can be followed for setting the Google Colab environment:

• Login to the Google Colab account via Google account.

• Although this platform provides 3 hours of free TPU power for pre-processing the
videos, model training would be difficult to complete. It is suggested that paid
versions of Google Colab Pro be used, as it offers 100 units of computational power
that are sufficient for building a model simulation version.

• Once the Colab Pro version is enabled, the user should enable the TPU power by
changing the runtime option for executing the code files provided.

Figure 1: Change runtime to TPU

The next section will help in understanding the data collection, data loading and
required data pre-processing steps.

1https://colab.google/

1



3 Data Layer

This project has used the Python script for downloading the entire raw dataset after
getting permission to access the dataset from the FaceForensics team. To gain access to
the dataset, users can fill out the request form that is available on the FaceForensics2

github site. After downloading the raw videos, the balancing of the dataset is performed
using random sampling techniques using random-sample.py, and a total of 280 real and
280 fake videos were selected for this project. The compression of videos into the AV1
codec is executed with the help of the handbrake application. Below are the example
steps to be followed:

3.1 Compression of videos using handbrake

• Download and installing handbrake: By visiting the official site of handbrake3

application user can download latest version of the application.

• Load the videos folder: Open the application and load the dataset folder, as
seen in Figure 2 below.

Figure 2: Loading batch of videos on handbrake

• The below setting for high-bitrate AV1 video compressions has been used, similarly
for low can be achieved by setting bitrates to 250 kbps. Once all the real and fakes
are compressed and stored into two different folders. The further pre-processing
techniques can be applied (Refer Figure 3).

• Connect Google Drive: Mount the Google Drive so that you can access the
stored files as an alternative to cloud storage (Refer Figure 4).

2https://github.com/ondyari/FaceForensics
3https://handbrake.fr/downloads.php
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Figure 3: High-bitrate videos setting on handbrake

Figure 4: Mount google Drive

Once successfully mounted, open the Google Drive account and upload the provided
“code-files” folder. This folder contains three different (.ipynb) files—the raw, low-
bitrate, and high-bitrate videos along with the trained models—code files, pre-
processed videos, datasets (videos), and requirements.txt file.

• Install tools and libraries: Run the below code for installing all the prerequisites
libraries.

Figure 5: Intalling required libraries and tools

• Import libraries: After installing all the prerequisite libraries and tools, import
all the libraries by running the “Import Libraries” cell.

• Data loading and labelling: In this section, we load the data from two different
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directories, perform labelling on the videos, and export the labelling into a csv file
for further use in the model training section. Figure 6 represents the code snippet
used:

Figure 6: Data loading and labelling

• Extracting frames and face cropping: Figures 7 and 8 show the function that
stores the cropped face-only videos into the defined output folder path. Also checks
if the files already exist.

Figure 7: Extracting frames and face cropping

• Checking corrupted videos and resizing: It is important to filter out any
corrupted videos in advance so that it doesn’t affect model performance. This
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Figure 8: Store extracted frames

function in Figure 9 performs such investigations of corrupted videos, and once the
videos are validated, they’re resized and normalized to 224*224 size for EfficientNet-
B0.

Figure 9: Checking corrupted videos and resizing

4 Model building layer:

• Training and testing data: In this section, the pre-processed only face videos
are used as the input for the model, where, firstly, the videos are split into train
and test. Here, the data is split into an 80:20 ratio, i.e., 80 percent for training
the models and 20 percent for testing the models. Figure 10 shows the code for
splitting the data using a csv file that was exported after data labelling.

• Creating model function: After splitting the data into training and testing, the
model is defined in this step. Firstly, using the torchvision library, the pretrained
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Figure 10: Split into train and test data

model EfficientNet-B0 is loaded at the initial layer, and secondly, using sequential(),
a bidirectional LSTM model is connected to the EfficientNet-B0 model’s output
layer with a dropout layer of 0.5 percent. Lastly, with the help of the SoftMax
activation function, the probability of the prediction of the model is calculated.

Figure 11: Modeling

5 Evaluation and reporting layer

Once the model is trained based on parameters such as the number of epochs, delay
weight, batch size, early stopping, and learning rate, it is evaluated and fine-tuned ac-
cordingly. Once the fine-tuned model is achieved, it is exported into the defined path as
”efficientBiLSTM560 SOFTMAX high.pt.” By using the sklearn.metrics library, model
evaluation is carried out, where accuracy, confusion matrix, recall, F1-score, precision,
and cross-entropy loss are calculated. Figure 12 represents the code for training and
saving the trained model for testing new videos.
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Figure 12: Saving trained model

• Storing the model evaluation to csv: This project research question aims in
performing comparison studies of model performances at various bitrates of com-
pressed vidoes, So this step helps in storing the achieved results of ”Raw”, ”Low-
bitrate” and ”High-bitrate” into a single csv file. Figure is the code snippet used
for storing.

Figure 13: Load the trained model

All the above steps can be use for obtaining the model performance of low and high
bitrate compressed videos. Apart from this, for raw videos model performance can
be achieved by skipping the Section 3.1 of compression using handbrake application.

• Loading trained model and testing new videos: The trained model is then
loaded with the help of the Torch library to predict whether the new video is real or
fake. Figure 14 shows the model loading, and Figure 15 shows the final prediction
result.
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Figure 14: Load the trained model

Figure 15: Predicted results with the probability

• Report generation: After predicting the new test video, an additional report is
generated to show the traditional methods of predicting real or fake videos, which
consist of wrapping and unwrapping phases, noise level, entropy value, and blur
value.

Figure 16: Report generation

• IMPORTANT NOTE: The Google Drive links are provided along with
the code files which includes the pre-processed face-only videos of each
model and compressed videos. The pre-processing of videos requires
around 5-8 hours (which can differ based on the processing power used).
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