

Configuration Manual

MSc Research Project

Data Analytics

Yoshitha Ganji

Student ID: 23102268

School of Computing

National College of Ireland

Supervisor:Abubakr Siddig

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

………Yoshitha Ganji…………………………………………………………………………

Student ID:

………23102268………………………………………………………………………………………

Programme:

…… Ms Data Analytics ……………………

Year:

…2023-2024

Module:

……… Research paper ……………………………………………………………………………

Lecturer:

…………Abubhakar Siddig ………………………………………………………………………

Submission

Due Date:

…………12-08-2024…………………………………………………………………………………

Project Title:

A Hybrid Approach to NLP-Based Depression Detection: Integrating BERT and

Word2Vec……………………………………………………………………………………………………

Word Count:

……1934…………………… Page Count: …………………08……….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Yoshitha Ganji……………………………………………………………………

Date:

…10-08-2024……………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Yoshitha Ganji

Student ID:23102268

1.Introduction

This guide offers a structured approach for researchers aiming to analyze social media text

for depression detection through Natural Language Processing (NLP). Central to this

endeavor is the utilization of BERT for its deep semantic understanding and Word2Vec for

its adeptness at capturing context within text(Yadav and Vishwakarma, 2020) . By following

this manual, researchers will gain insights into setting up their project environment and

leveraging these advanced NLP techniques to effectively process and analyze text data,

unlocking valuable insights into mental health trends on social media platforms.(Asghar et

al., 2018)

2. System Specification

To ensure the project runs smoothly, proper hardware and software environments are

essential.

2.1 Hardware Requirements

• OS: Windows 11 Pro 64-bit

• Processor: 13th Gen Intel(R) Core(TM) i5-1335U 1.30 GHz. A modern multi-core

processor is crucial for computational tasks involving large datasets and complex

algorithms.

• RAM: 16GB

• Storage: 1 TB SSD

• Graphics: Intel(R)Iris(R)Xe Graphics

For network connectivity, an Ethernet connection facilitates robust and fast data transfer,

supporting remote communications effectively.

2.2 Software and Tools

For the software setup of the project, the chosen operating system is Windows 11, which

provides a stable and contemporary platform compatible with all necessary development

tools and libraries. Python, the programming language of choice, I used a version 3.12.4 to

ensure access to the latest features and library support. Some of the key Python libraries used

in this project are Pandas and NumPy for data manipulation, Matplotlib and Seaborn for data

visualization, TensorFlow and Keras for building and training machine learning models, and

NLTK, Gensim, and Transformers for natural language processing tasks. Jupyter Notebook

and Visual Studio Code provide flexible coding experiences from exploratory data analysis

inside notebooks to script development and debugging inside an Integrated Development

Environment.Visual Studio code is used for teamwork and coordinating the computation via

2

the cloud. Kaggle serves as a primary source for obtaining relevant datasets, featuring a vast

collection of resources for various data science and machine learning projects.

3. Software Installation Instructions

3.1 Development Environment

Visual Studio Code:

Visual Studio Code is a versatile IDE that not only supports Python development but much

more. Its rich ecosystem of extensions makes it a favourite for Python projects.

• Download and Installation: Visit the official Visual Studio Code website download

the OS installer, and install according to the OS installer. Open Visual Studio Code

upon the completion of the installation.

• Setting up Python Support: Open VS Code and go to the Extensions view on the

left sidebar represented as a square icon Search for "Python" extension by Microsoft

and click "Install." It includes advanced Python language support, IntelliSense,

linting, debugging, and testing. Now install the extension "Jupyter" by Microsoft.

This will allow support for Jupyter Notebooks in VS Code.

• Usage: I can create or open Python scripts and Jupyter notebooks right within VS

Code with the Python and Jupyter extensions.directly in VS Code. The IDE provides

tools for code writing, editing, running, and debugging, along with convenient

features for version control and extension management.

3.2 Libraries Installed

• pandas:Enables operation like pd.read_csv() for dataset

loading, DataFrame operations for data exploration and manipulation, and data

structuring for machine learning workflows.

• numpy: Facilitates array-based computation

tensorflow: Implements algorithms and models, from constructing neural network

layers (tf.keras.layers) to compiling (model.compile) and training models (model.fit).

• keras: Used for concise model definition and training, simplifying complex neural

network creation with functions like Sequential() for model stacking and Dense() for

fully connected layers.

• scikit-learn:Facilitates model selection (train_test_split), preprocessing

(StandardScaler), model instantiation and training (RandomForestClassifier().fit()),

and evaluation (accuracy_score()).

• nltk (Natural Language Toolkit): It's essential for text preprocessing tasks such as

tokenization, stemming, and stopwords removal.Tools for text analysis, including text

tokenization (word_tokenize) and stopwords filtering.

• transformers: Facilitates the implementation of pre-trained models (BertModel) to

encode text data into dense vectors encapsulating linguistic patterns.

• matplotlib and seaborn:Enable plotting of data distributions, trends, and model

evaluation metrics through various visual formats like histograms, scatter plots, and

heatmaps.

https://code.visualstudio.com/

3

• spaCy:whiile NLTK and Gensim are very effective, spaCy provides additional

functionalities for named entity recognition, dependency parsing, and part-of-speech

tagging.

4.Data Source:

Primary Data Acquisition: Data is primarily obtained from Kaggle, chosen for its extensive

repository of datasets pertinent to depression detection on social media. It's imperative to

consider the relevancy, currency, and quality of dataset annotations during the selection

process. Firstly, the search of the databases is done through the Kaggle website using relevant

keywords to the project requirements. The data is then transferred into the working

environment of the project which could be Visual Studio code and initially analysed and

cleansed using the Pandas.

Inspect Data:

Loaded my dataset from a specified path, adjusting the path to where your dataset is stored.

Employed methods like .info() and .isnull().sum() to inspect the dataset for understanding

structure and identifying missing values.Below Fig 1:Shows how the data set is loaded in a

dataframe and checked for missing values.

Fig 1 Code snippet of loading dataset and checking the missing values.

5. Preprocessing

5.1 Text Cleaning and Normalization

• Lowercasing: Converted text data to lowercase for uniformity by using text_hammer

• Removing Noise: Strip out URLs, hashtags, mentions, and special characters.

• Tokenization: Split texts into individual words or tokens by using nlkt.

• Stop Words Removal: Filter out common words that offer little value to the analysis.

4

• Stemming/Lemmatization (optional): Reduce words to their base or root

form.(Shrivastava, Soni and Rasool, 2020).

5.2 Combine Original and Preprocessed Texts:

Used pandas DataFrame to combine the original texts ('original_text'), their preprocessed

counterparts ('preprocessed_text'), and the text classifications or labels ('class').Fig 2.

Displays the combined original and pre-processed text for further modelling.

Fig 2. Displays the combined original and pre-processed text.

5.3 Sequence Padding and Visualisation of Text Data:

Sequences are standardized to a fixed length (150 tokens) using pad_sequences, ensuring

uniform input sizes for model training.

Two primary visualization strategies: plotting the distribution of token lengths to understand

text variability and generating word frequency graphs (before and after removing stopwords)

to identify predominant words.Below Fig 3 and 4 is a bar graph of showing word frequency

Before and After Removing Stopwords.

 Fig 3 word frequency Before Removing Stopwords. Fig4.wordfrequency After Removing Stopwords.

5

5.4 BERT and Word2Vec Embeddings:

Embedding Extraction:

The BERT model generates embeddings for each padded token sequence, capturing

contextual information. Extract the [CLS] token's embedding from each sequence as it

represents the aggregated information for classification purposes.Fig 5 gives the shape of

BERT embeddings.

Fig 5 shape of BERT embeddings.

Word2Vec Embeddings:

Using SpaCy's 'en_core_web_lg' model, extract Word2Vec embeddings by averaging the

vectors of all tokens in a text. This process supplements your feature set with embeddings

derived from a different methodology, offering a broader semantic understanding. Fig 6 gives

us shape of Word2Vec embeddings.

Fig 6 shape of Word2Vec embeddings.

Combined BERT and Word2Vec embeddings are used for the creating the Hybrid

Embeddings which can be used into training and Testing sets.

6. Model Implementation

BERT:Utilize TensorFlow's Sequential model to stack layers. Begin with a dense layer

having 512 units and 'relu' activation, appropriate for the size of BERT embeddings (768

dimensions)(Devlin et al., 2019). Incorporate dropout layers with a rate of 0.5 to prevent

overfitting. Compile the model with 'adam' optimizer and 'binary_crossentropy' loss,

indicating a binary classification task. Monitor 'accuracy' as the performance metric. Fit the

model on the BERT embeddings (X_train) and the corresponding labels (y_train_encoded),

processed through a LabelEncoder and converted to float32. Set aside 20% of the data as a

validation set during training.

Word2vec: Similar to the BERT model, but the input shape adjusts to the dimensionality of

the Word2Vec embeddings.(Mikolov et al., 2013) Train this model on the Word2Vec-derived

features (word2vec_X_train) with appropriately encoded labels.

Hybrid Model:Concatenate BERT and Word2Vec embeddings to form a comprehensive

feature set, merging the strengths of both embeddings. Model Framework: Assemble a neural

network with a configuration analogous to the individual BERT and Word2Vec models,

6

adjusting the input dimension to accommodate the combined feature set. give all this simple

bullet point.

Additional Models:

Convolutional Neural Network (CNN): Adopts Conv1D layers suited for temporal data like

text, with additional Dropout and dense layers for classification purposes.

Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) Models:

Incorporate LSTM layers for capturing long-term dependencies in text data, with Bi-LSTM

offering enhanced context awareness by processing data in both directions.

Hyper Parameter Tuning :The code employs GridSearchCV for an exhaustive evaluation

of all specified hyperparameter combinations, including batch_size, learning_rate,

and epochs, to meticulously identify the optimal settings that enhance the neural network

model's performance.

Efficient Optimization with RandomizedSearchCV: By using RandomizedSearchCV, the

code introduces a probabilistic approach, sampling a subset of the hyperparameter space

across specified distributions. This method significantly reduces computational demand while

effectively exploring potential hyperparameter configurations.

7.Evaluation

Model Training: Each model is trained on the corresponding embeddings (BERT,

Word2Vec, or combined embeddings for the Hybrid model), utilizing encoded labels.

Validation splits further support model tuning.

Performance Metrics: Post-training evaluation utilizes accuracy, precision, recall, and F1-

score to quantify model effectiveness.

Accuracy Evaluation: Post-training, evaluate each model on the test set

(X_test, y_test_encoded) to ascertain the accuracy and loss, offering insights into model

performance.Fig 7 Give us the model accuracy for all the models performed.

Fig 7:Model Accuracy for the models.

7

Confusion Matrix:

Figure 8: Confusion Matrix-BiLSTM model Figure 9: Confusion Matrix-LSTM model

The above Fig 8 and Fig 9 images show confusion matrices for LSTM and BiLSTM models

in depression detection. Both models show strong performance with high true positive and

true negative counts. Overall, the matrices suggest both models are effective, with slightly

different trade-offs in error types.

Performance metrics: In a comparative analysis of neural network models applied to text

classification, the Hybrid model, which integrates features from BERT and Word2Vec,

outperforms others with the highest accuracy (90.06%) and an impressive balance between

precision and recall, as evidenced by its F1-score (89.82%). While BERT and RoBERTa

models show commendable performance, with RoBERTa achieving an 88.23% accuracy,

CNN,LSTM and BiLSTM models lag in overall effectiveness, despite their advanced

sequence processing capabilities. The Word2Vec model notably surpasses traditional deep

learning models, securing an 89.59% accuracy. This analysis underscores the importance of

model selection tailored to specific project requirements and highlights the advantages of

feature fusion in achieving superior classification performance.

Fig 10:Comparison of Performance metrics for all models

8

Conclusion:

Drawing on advanced NLP techniques, this guide outlines a clear path for detecting

depression through social media text analysis, emphasizing the crucial role of a carefully

configured system. It navigates from setup to execution, spotlighting the importance of

selecting the right computational tools and models, such as BERT and Word2Vec, for

insightful data interpretation. The manual encourages meticulous model tuning and

evaluation, deploying practical metrics and visual tools for a nuanced understanding of model

strengths and weaknesses. This tailored approach not only enhances the precision of

depression detection but also enriches the broader field of NLP applications in mental health,

embodying a bridge between technology and impactful social research.

Refrences

Asghar, M.Z. et al. (2018) ‘T-SAF: Twitter sentiment analysis framework using a hybrid

classification scheme’, Expert Systems, 35(1), p. e12233. Available at:

https://doi.org/10.1111/EXSY.12233.

Devlin, J. et al. (2019) ‘BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding’, Proceedings of the 2019 Conference of the North, pp. 4171–4186.

Available at: https://doi.org/10.18653/V1/N19-1423.

Mikolov, T. et al. (2013) ‘Efficient Estimation of Word Representations in Vector Space’, 1st

International Conference on Learning Representations, ICLR 2013 - Workshop Track

Proceedings [Preprint]. Available at: https://arxiv.org/abs/1301.3781v3

Shrivastava, P., Soni, K.K. and Rasool, A. (2020) ‘Classical Equivalent Quantum

Unsupervised Learning Algorithms’, Procedia Computer Science, 167, pp. 1849–1860.

Available at: https://doi.org/10.1016/J.PROCS.2020.03.204.

Yadav, A. and Vishwakarma, D.K. (2020) ‘Sentiment analysis using deep learning

architectures: a review’, Artificial Intelligence Review, 53(6), pp. 4335–4385. Available at:

https://doi.org/10.1007/S10462-019-09794-5/METRICS.

https://doi.org/10.1111/EXSY.12233
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.1016/J.PROCS.2020.03.204

