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1.Introduction 

This guide offers a structured approach for researchers aiming to analyze social media text 

for depression detection through Natural Language Processing (NLP). Central to this 

endeavor is the utilization of BERT for its deep semantic understanding and Word2Vec for 

its adeptness at capturing context within text(Yadav and Vishwakarma, 2020) . By following 

this manual, researchers will gain insights into setting up their project environment and 

leveraging these advanced NLP techniques to effectively process and analyze text data, 

unlocking valuable insights into mental health trends on social media platforms.(Asghar et 

al., 2018) 

2. System Specification 

To ensure the project runs smoothly, proper hardware and software environments are 

essential. 

2.1 Hardware Requirements 

• OS: Windows 11 Pro 64-bit 

• Processor: 13th Gen Intel(R) Core(TM) i5-1335U   1.30 GHz. A modern multi-core 

processor is crucial for computational tasks involving large datasets and complex 

algorithms. 

• RAM: 16GB  

• Storage: 1 TB SSD 

• Graphics:  Intel(R)Iris(R)Xe Graphics 

For network connectivity, an Ethernet connection facilitates robust and fast data transfer, 

supporting remote communications effectively. 

2.2 Software and Tools 

For the software setup of the project, the chosen operating system is Windows 11, which 

provides a stable and contemporary platform compatible with all necessary development 

tools and libraries. Python, the programming language of choice, I used a version 3.12.4  to 

ensure access to the latest features and library support. Some of the key Python libraries used 

in this project are Pandas and NumPy for data manipulation, Matplotlib and Seaborn for data 

visualization, TensorFlow and Keras for building and training machine learning models, and 

NLTK, Gensim, and Transformers for natural language processing tasks. Jupyter Notebook 

and Visual Studio Code provide flexible coding experiences from exploratory data analysis 

inside notebooks to script development and debugging inside an Integrated Development 

Environment.Visual Studio code is used for teamwork and coordinating the computation via 
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the cloud. Kaggle serves as a primary source for obtaining relevant datasets, featuring a vast 

collection of resources for various data science and machine learning projects. 

3. Software Installation Instructions 

3.1 Development Environment 

Visual Studio Code: 

Visual Studio Code is a versatile IDE that not only supports Python development but much 

more. Its rich ecosystem of extensions makes it a favourite for Python projects. 

• Download and Installation: Visit the official Visual Studio Code website download 

the OS installer, and install according to the OS installer. Open Visual Studio Code 

upon the completion of the installation. 

• Setting up Python Support: Open VS Code and go to the Extensions view on the 

left sidebar represented as a square icon Search for "Python" extension by Microsoft 

and click "Install." It includes advanced Python language support, IntelliSense, 

linting, debugging, and testing. Now install the extension "Jupyter" by Microsoft. 

This will allow support for Jupyter Notebooks in VS Code. 

• Usage: I can create or open Python scripts and Jupyter notebooks right within VS 

Code with the Python and Jupyter extensions.directly in VS Code. The IDE provides 

tools for code writing, editing, running, and debugging, along with convenient 

features for version control and extension management. 

3.2 Libraries Installed  

• pandas:Enables operation like pd.read_csv() for dataset 

loading, DataFrame operations for data exploration and manipulation, and data 

structuring for machine learning workflows. 

• numpy: Facilitates array-based computation 

tensorflow: Implements algorithms and models, from constructing neural network 

layers (tf.keras.layers) to compiling (model.compile) and training models (model.fit).  

• keras: Used for concise model definition and training, simplifying complex neural 

network creation with functions like Sequential() for model stacking and Dense() for 

fully connected layers. 

• scikit-learn:Facilitates model selection (train_test_split), preprocessing 

(StandardScaler), model instantiation and training (RandomForestClassifier().fit()), 

and evaluation (accuracy_score()). 

• nltk (Natural Language Toolkit): It's essential for text preprocessing tasks such as 

tokenization, stemming, and stopwords removal.Tools for text analysis, including text 

tokenization (word_tokenize) and stopwords filtering. 

• transformers: Facilitates the implementation of pre-trained models (BertModel) to 

encode text data into dense vectors encapsulating linguistic patterns. 

• matplotlib and seaborn:Enable plotting of data distributions, trends, and model 

evaluation metrics through various visual formats like histograms, scatter plots, and 

heatmaps. 

https://code.visualstudio.com/
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• spaCy:whiile NLTK and Gensim are very effective, spaCy provides additional 

functionalities for named entity recognition, dependency parsing, and part-of-speech 

tagging. 

 

4.Data Source: 

Primary Data Acquisition: Data is primarily obtained from Kaggle, chosen for its extensive 

repository of datasets pertinent to depression detection on social media. It's imperative to 

consider the relevancy, currency, and quality of dataset annotations during the selection 

process. Firstly, the search of the databases is done through the Kaggle website using relevant 

keywords to the project requirements. The data is then transferred into the working 

environment of the project which could be Visual Studio code and initially analysed and 

cleansed using the Pandas. 

Inspect Data: 

Loaded my  dataset from a specified path, adjusting the path to where your dataset is stored. 

Employed methods like .info() and .isnull().sum() to inspect the dataset for understanding 

structure and identifying missing values.Below Fig 1:Shows how the data set is loaded in a 

dataframe and checked for missing values.  

 
Fig 1 Code snippet of loading dataset and checking the missing values. 

 

5. Preprocessing 

5.1 Text Cleaning and Normalization 

• Lowercasing: Converted text data to lowercase for uniformity  by using text_hammer 

• Removing Noise: Strip out URLs, hashtags, mentions, and special characters. 

• Tokenization: Split texts into individual words or tokens by using nlkt. 

• Stop Words Removal: Filter out common words that offer little value to the analysis. 
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• Stemming/Lemmatization (optional): Reduce words to their base or root 

form.(Shrivastava, Soni and Rasool, 2020). 

5.2 Combine Original and Preprocessed Texts: 

Used pandas DataFrame to combine the original texts ('original_text'), their preprocessed 

counterparts ('preprocessed_text'), and the text classifications or labels ('class').Fig 2. 

Displays the combined original and pre-processed text for further modelling. 

 
Fig 2. Displays the combined original and pre-processed text. 

 

5.3 Sequence Padding and Visualisation of Text Data: 

Sequences are standardized to a fixed length (150 tokens) using pad_sequences, ensuring 

uniform input sizes for model training. 

Two primary visualization strategies: plotting the distribution of token lengths to understand 

text variability and generating word frequency graphs (before and after removing stopwords) 

to identify predominant words.Below Fig 3 and 4 is a bar graph of showing word frequency 

Before and After Removing Stopwords. 

 

 
    Fig 3 word frequency Before Removing Stopwords.  Fig4.wordfrequency After Removing Stopwords. 
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5.4 BERT and Word2Vec Embeddings: 

Embedding Extraction: 

The BERT model generates embeddings for each padded token sequence, capturing 

contextual information. Extract the [CLS] token's embedding from each sequence as it 

represents the aggregated information for classification purposes.Fig 5 gives the shape of 

BERT embeddings. 

 
Fig 5 shape of BERT embeddings. 

Word2Vec Embeddings: 

Using SpaCy's 'en_core_web_lg' model, extract Word2Vec embeddings by averaging the 

vectors of all tokens in a text. This process supplements your feature set with embeddings 

derived from a different methodology, offering a broader semantic understanding. Fig 6 gives 

us shape of Word2Vec embeddings. 

  
Fig 6 shape of Word2Vec embeddings. 

 

Combined BERT and Word2Vec embeddings are used for the creating the Hybrid 

Embeddings which can be used into training and Testing sets. 

 

6. Model Implementation 

 

BERT:Utilize TensorFlow's Sequential model to stack layers. Begin with a dense layer 

having 512 units and 'relu' activation, appropriate for the size of BERT embeddings (768 

dimensions)(Devlin et al., 2019). Incorporate dropout layers with a rate of 0.5 to prevent 

overfitting. Compile the model with 'adam' optimizer and 'binary_crossentropy' loss, 

indicating a binary classification task. Monitor 'accuracy' as the performance metric. Fit the 

model on the BERT embeddings (X_train) and the corresponding labels (y_train_encoded), 

processed through a LabelEncoder and converted to float32. Set aside 20% of the data as a 

validation set during training. 

Word2vec: Similar to the BERT model, but the input shape adjusts to the dimensionality of 

the Word2Vec embeddings.(Mikolov et al., 2013) Train this model on the Word2Vec-derived 

features (word2vec_X_train) with appropriately encoded labels. 

Hybrid Model:Concatenate BERT and Word2Vec embeddings to form a comprehensive 

feature set, merging the strengths of both embeddings. Model Framework: Assemble a neural 

network with a configuration analogous to the individual BERT and Word2Vec models, 
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adjusting the input dimension to accommodate the combined feature set. give all this simple 

bullet point. 

Additional Models: 

Convolutional Neural Network (CNN): Adopts Conv1D layers suited for temporal data like 

text, with additional Dropout and dense layers for classification purposes. 

Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) Models: 

Incorporate LSTM layers for capturing long-term dependencies in text data, with Bi-LSTM 

offering enhanced context awareness by processing data in both directions. 

Hyper Parameter Tuning :The code employs GridSearchCV for an exhaustive evaluation 

of all specified hyperparameter combinations, including batch_size, learning_rate, 

and epochs, to meticulously identify the optimal settings that enhance the neural network 

model's performance. 

Efficient Optimization with RandomizedSearchCV: By using RandomizedSearchCV, the 

code introduces a probabilistic approach, sampling a subset of the hyperparameter space 

across specified distributions. This method significantly reduces computational demand while 

effectively exploring potential hyperparameter configurations. 

 

7.Evaluation 

Model Training: Each model is trained on the corresponding embeddings (BERT, 

Word2Vec, or combined embeddings for the Hybrid model), utilizing encoded labels. 

Validation splits further support model tuning. 

Performance Metrics: Post-training evaluation utilizes accuracy, precision, recall, and F1-

score to quantify model effectiveness.  

Accuracy Evaluation: Post-training, evaluate each model on the test set 

(X_test, y_test_encoded) to ascertain the accuracy and loss, offering insights into model 

performance.Fig 7 Give us the model accuracy for all the models performed. 

 
Fig 7:Model Accuracy for the models. 
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Confusion Matrix: 

 
 

 

Figure 8: Confusion Matrix-BiLSTM model                   Figure 9: Confusion Matrix-LSTM model                            

 

The above Fig 8 and Fig 9 images show confusion matrices for LSTM and BiLSTM models 

in depression detection. Both models show strong performance with high true positive and 

true negative counts. Overall, the matrices suggest both models are effective, with slightly 

different trade-offs in error types. 

 

Performance  metrics: In a comparative analysis of neural network models applied to text 

classification, the Hybrid model, which integrates features from BERT and Word2Vec, 

outperforms others with the highest accuracy (90.06%) and an impressive balance between 

precision and recall, as evidenced by its F1-score (89.82%). While BERT and RoBERTa 

models show commendable performance, with RoBERTa achieving an 88.23% accuracy, 

CNN,LSTM and BiLSTM models lag in overall effectiveness, despite their advanced 

sequence processing capabilities. The Word2Vec model notably surpasses traditional deep 

learning models, securing an 89.59% accuracy. This analysis underscores the importance of 

model selection tailored to specific project requirements and highlights the advantages of 

feature fusion in achieving superior classification performance. 

 

 
Fig 10:Comparison of Performance metrics for all models 
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Conclusion: 

Drawing on advanced NLP techniques, this guide outlines a clear path for detecting 

depression through social media text analysis, emphasizing the crucial role of a carefully 

configured system. It navigates from setup to execution, spotlighting the importance of 

selecting the right computational tools and models, such as BERT and Word2Vec, for 

insightful data interpretation. The manual encourages meticulous model tuning and 

evaluation, deploying practical metrics and visual tools for a nuanced understanding of model 

strengths and weaknesses. This tailored approach not only enhances the precision of 

depression detection but also enriches the broader field of NLP applications in mental health, 

embodying a bridge between technology and impactful social research. 
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