
Advanced Weapon Detection and
Classification Using

Fine-Tuned Transfer Learning Models

MSc Research Project
Data Analytics

Brandon Craig D’souza
Student ID: x23100125

School of Computing
National College of Ireland

Supervisor: Prof. Abdul Qayum



National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Brandon Craig D’souza

Student ID: x23100125

Programme: Msc Data Analytics Year: 2023-24

Module: Msc Research Project

Supervisor: Prof. Abdul Qayum
Submission Due
Date: 12/08/2024

Project Title: Advanced Weapon Detection and Classification Using Fine-Tuned
Transfer Learning Models

Word Count: 1643 Page Count 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Brandon Craig D’souza

Date: 12/08/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):



1

Advanced Weapon Detection and Classification Using
Fine-Tuned Transfer Learning Models

Brandon Craig D’souza
Student ID: x23100125

1 Environment requirements
The configuration manual discusses all the hardware and software requirements for the
research work. This will help anyone who needs to replicate the project making it easy to
follow the instructions.

2 System specifications

2.1 Hardware requirements
The hardware requirements necessary to run the project is below:
 Processor: Intel Core i7.
 System Memory: 256 GB SSD + 1 TB HDD
 RAM: 32 GB

2.2 Software requirements
The software requirements necessary to run the project are discussed below:
 Windows Version:Windows 11.
 Development Environment and software: Google colab, Visual Studio Code.

Figure 1: Google colab



2

Figure 2: Visual Studio code

 Programming/Scripting language: Python
 Cloud Storage: Google Drive

2.3 Setting up Google Golab
If a user doesnt have Google Colab setup on their Google drive then follow the steps

below:
 Go to https://www.google.com/drive/ and login.

 Click on new from the left pane.

 Click on More.

 Search for Google Colaboratory and select.

 If it isn’t available please search in more apps and then search for Google Colaboratory.

 Create a new folder named as ‘weapons_image_classification_system’

 Upload and place the ‘x23100125.ipynb’ in the above created folder.

 Press Run all to run the entire project seemlessly.

2.4 Setting up Visual Studio Code

 Go to https://code.visualstudio.com/download and download VScode for you Required

system.

 Install and open VSCode.

 Install latest Python from https://www.python.org/downloads/ .

 In VSCode, search for the python library extension and download it.

https://www.google.com/drive/
https://code.visualstudio.com/download
https://www.python.org/downloads/


3

3 Dataset Information
 The dataset is got from https://images.cv/dataset-categories/weapons for knife, pistol,

rifles and swords.

 For easier usage , the data is clubbed into one data file as ‘Data.zip’ which can be

downloaded from the following link

https://drive.google.com/file/d/178WKRPuIcDXGW-

YUsfburuWsgBTDEI83/view?usp=drive_link

 Download and place this zip in the drive folder created.

 Run the following code snippet to unzip the Data.zip file in google drive:

Figure 3: Unzip Dataset file

3.1 Libraries

Figure 4: Libraries

https://images.cv/dataset-categories/weapons
https://drive.google.com/file/d/178WKRPuIcDXGW-YUsfburuWsgBTDEI83/view?usp=drive_link
https://drive.google.com/file/d/178WKRPuIcDXGW-YUsfburuWsgBTDEI83/view?usp=drive_link


4

4 Project Implementation

4.1 Setting up essential parameters

Figure 5: Variable initialization

From the above Figure 5, image size and default images are resized to 128x128 pixels.

‘labels’ will list the contents of the directory . ‘directory_root’ will sets the root directory for

the dataset.’classes’ will be the number of classes used in the dataset by counting the number

of ‘labels’. the ‘batch_size’ is the number of samples that will be processed in each training

and that is set to 64.

4.2 Loading Dataset using OpenCV

Figure 6: Dataset Loading with OpenCV



5

This will load, pre-process and label images from a the specified directory in order to prepare
it for training the machine learning model that will be done later.

4.3 EDA or Data Visualization

Figure 7: Data Visualization

This will get a sample image from each category in the dataset. This will be plotted in a
3x2 grid using Matplotlib. The output is shown in Figure 8 below.

Figure 8: Data Visualization Output



6

4.4 Count Plot and balancing the data using SMOTE .

Figure 9: Visualizations of Count of Classes

As it can be seen from Figure 9 that the dataset doesn’t contain an equal number of
images for each class. Handling imbalances is crucial when training any Deep learning
model especially when there is a need for every class to be trained properly (Chawla et
al., 2002). Hence by applying SMOTE oversampling as seen in Figure 10, one can avoid
the issue of imbalance and increase the performance the model.

Figure 10: SMOTE oversampling

Figure 11: After Sampling/Data Balancing

By the use of SMOTE oversampling, all the 4 classes now have equal number of sample
images which can be seen in the Figure 11.



7

Figure 12: LabelBinarizer

The LabelBinarizer converts the categorical values of the labels like
‘knife’,’pistol’,’rifle’ and ‘sword’ into numerical values that will be suitable for the ML
model.

4.5 Splitting the data into Training, Validation and testing:

Figure 13: Data splitting

From the Figure 13 , we can see that the data will be split in the ratio of 80:10:10 respectively.

4.6 Deep Learning models used:
A) CNN Model:

Figure 14: CNN model
Figure 14 is the initialization and also for defining the architecture for the CNN model
by making the use of Keras library(He et al., 2016) .



8

Model Summary:

Figure 15: CNN model summary

This gives the layer by layer summary of the CNN model which shows the type , output
shape and number of parameters of each layer and which of them can be trained and
untrained.

Model Training:

Figure 14: Fitting the model

The CNN model will be trained over 10 epochs which displays the training as well as
validation datasets at each epoch.



9

Accuracy and loss Graph:

Figure 15: Plotting accuracy and loss Graphs

Two graphs are plotted to show the training and validation accuracy as well as model loss
over the epochs.

Confusion Matrix:

Figure 16: Confusion matrix for CNN model

Figure 16 shows the confusion matrix for the CNN model. The matrix shows the
information of the actual classes vs predicted classes.



10

Classification report, Specitivity and Sensitivity:

Figure 17: Model Output

Figure 17 shows the evaluation of the CNN model by various metrics such as sensitivity,
specificity, precision, recall, and F1-score

B) Xception Model:

Figure 18: Xception Model



11

In Figure 18, this code initializes the Xception model with pre-trained weights from
ImageNet (Chollet, 2017).

Model Training:

Figure 19: Fitting the Xception model

The Xception model will be trained over 10 epochs which displays the training as well as
validation datasets at each epoch.

Accuracy and loss Graph:

Figure 20: Accuracy and loss Graph for Xception Model

In Figure 20, the two graphs are plotted to show the training and validation accuracy as well
as model loss over the epochs.



12

Confusion Matrix:

Figure 22: Confusion matrix for Xception Model

FIgure 22 shows the confusion matrix of the Xception model on the actual classes versus the
predicted classes.

Classification report, Specitivity and Sensitivity:



13

Figure 23:Xception Model Output

Figure 23 shows the evaluation of the Xcception model by various metrics such as sensitivity,
specificity, precision, recall, and F1-score

C) EfficientNet B2 Model:

Figure 24:EfficientNet B2 Model

Figure 24 is the initialization and also for defining the architecture for the EfficientNet B2
model (Tan and Le, 2019).



14

Model Summary:

Figure 25:EfficientNet B2 Model Summary

This gives the layer by layer summary of the Efficientnet B2 model which shows the type ,
output shape and number of parameters of each layer and which of them can be trained and
untrained.

Model Training:

Figure 26: Fitting the EfficientNet B2 model

The EfficientNet B2 model will be trained over 10 epochs which displays the training as well
as validation datasets at each epoch as seen in Figure 26.



15

Accuracy and loss Graph:

Figure 27: Accuracy and Loss Graph for the EfficientNet B2 model

In Figure 27, the two graphs are plotted to show the training and validation accuracy as well
as model loss over the epoch.

Confusion Matrix:

Figure 28: Confusion matrix for the EfficientNet B2 model

FIgure 28 shows the confusion matrix of the EfficientNet B2 model on the actual classes
versus the predicted classes.



16

Classification report, Specitivity and Sensitivity:

Figure 29 : EfficientNet B2 Model Output

Figure 29 shows the evaluation of the EfficientNet B2 model by various metrics such as
sensitivity, specificity, precision, recall, and F1-score



17

D) EfficientNet B2 Model with Attention baseline:

Figure 30 : EfficientNet B2 Model with attention baseline Output

Model Summary:



18

Figure 31 : EfficientNet B2 with Attention baseline Model Summary

This gives the layer by layer summary of the Efficientnet B2 model with Attention baseline
which shows the type , output shape and number of parameters of each layer and which of
them can be trained and untrained.

Model Training:

Figure 32 :Fitting the EfficientNet B2 Model with Attention baseline

The EfficientNet B2 model with Attention baseline will be trained over 10 epochs which
displays the training as well as validation datasets at each epoch as seen in Figure 32.

Accuracy and loss Graph:

Figure 33 : EfficientNet B2 Model with Attention baseline Graphs

In Figure 33, the two graphs are plotted to show the training and validation accuracy as well
as model loss over the epoch.



19

Confusion Matrix:

Figure 34 : EfficientNet B2 Model with Attention baseline Confusion matrix

Figure 34 shows the confusion matrix of the EfficientNet B2 Model with Attention
baseline on the actual classes versus the predicted classes.

Classification report, Specitivity and Sensitivity:



20

Figure 35 : EfficientNet B2 Model with Attention baseline Model Output

Figure 35 shows the evaluation of the EfficientNet B2 model by various metrics such as
sensitivity, specificity, precision, recall, and F1-score.

5 Web Application GUI for testing.



21

Figure 36 : Flask Web App GUI

A web application is created to test images or videos. To run the Local Web Application
follow the below steps:
1) Unzip the Attached FlaskWebApp.zip
2) Open the file named app.py
3) Run the following python file and you can see a link of the hosted website in the command
prompt or you can visit http://127.0.0.1:5000/
4) The user can upload a file and then click detect weapon where the created EfficientNet
model will run on the file and an output will be generated by predicting the weapon as seen in
Figure 36.

6 Conculsion
Following all the above mentioned steps, the code for this research can be implemented by
replicating the steps to get the same results and understand the working of this project better.

References
He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1251-1258).

Tan, M. and Le, Q., 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning (pp. 6105-6114). PMLR.

Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P., 2002. SMOTE: synthetic minority over-
sampling technique. Journal of artificial intelligence research, 16, pp.321-357.

http://127.0.0.1:5000/

	1Environment requirements
	2System specifications
	2.1Hardware requirements
	2.2Software requirements
	2.3Setting up Google Golab
	2.4Setting up Visual Studio Code

	3Dataset Information
	3.1Libraries

	4Project Implementation
	4.1Setting up essential parameters
	4.2Loading Dataset using OpenCV
	4.3EDA or Data Visualization
	4.4Count Plot and balancing the data using SMOTE .
	4.5Splitting the data into Training, Validation and t
	4.6Deep Learning models used:

	5Web Application GUI for testing.
	6Conculsion
	References

