~

“—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Subramanyam Dhandapani
Student ID: x22245421

School of Computing
National College of Ireland

Supervisor: Anderson Simiscuka

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Subramanyam Dhandapani
Student ID: x22245421
Programme: MSc in Data Analytics
Year: 2023-2024
Module: MSc Research Project
Supervisor: Anderson Simiscuka
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 678
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Subramanyam Dhandapani

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Subramanyam Dhandapani
x22245421

1 Introduction

The introduction of configuration manual consists of system requirements, environmental
setup, tools and libraries used, machine learning algorithms used in predicting the mor-
tality of person in motor collision. In this research both the ensemble and stacking
approaches are used. Evaluation metrics such as precision, recall, accuracy and fl score
are used for assessing the model’s performance.

2 System Specification

This section contains all the system specifications

2.1 Hardware Specifications

e Processor: AMD Ryzen 7 5800HS 3.20 GHz

e Installed RAM: 16.0 GB (15.4 GB usable)

2.2 Software Specifications

e Operating System: Windows 11 64-bit

e Python: Python programming language of version 3.11.4 is used for data pre-
processing and model building.

3.11.4 | packaged by Anaconda, Inc. | (main, Jul 5 2023, 13:38:37) [MSC v.1916 64 bit (AMDG4)]

Figure 1: Python Version

e Jupyter Notebook: Jupyter notebook is an open source computing environment
used for developing codes and visualizations. The version 6.5.7 is used for carrying
out this research. The code runs on anaconda navigator (anaconda 2.4.3)

Server Information:

You are using Jupyter Notebook.

The version of the notebook server is: 6.56.7
The server is running on this version of Python:

Python 3.11.4 | packaged by Anaconda, Inc. | (main, Jul 5 2823, 13:38:37) [MSC v.1916 64
bit (AMDGA4)]

Figure 2: Jupyter Notebook Version

3 Data Source

The dataset is downloaded from new york government website. There are two datasets
crashes which contains the data crash and the other one is person which contains the
information about the person involved in the collision.

NUMBER NUMBER

OF CONTRBUTING ¢+ on TRIBUTING
BOROUGH PERSONS PERSONS VETIE}EE?} FACTOR VEHICLE 2 PERSON_INJURY PERSON_AGE EJECTION EMOTIONAL_STATUS BODILY_INJURY
INJURED KILLED
0 Driver i Not
BRONX 20 00 Unspecified Inattention/Distraction Injured 410 Ejected Shock Chest
' Driver . Not
BRONX 20 0.0 Unspecified nattention/Distracion Injured 200 Ejected Shock Head
Passing Too Driver R Not
MANHATTAN 0.0 0.0 Closely Inattention/Distraction Alive 20 Ejected Does Not Apply Back
QUEENS 00 00 Tuming Driver Alve %0 Not Does Not Apply Back
)) Improperly Inattention/Distraction) Ejected
Reaction fo]
: Driver . Not .
QUEENS 20 0.0 Umr{y:rll\‘f;g InattentionDistraction Injured 46.0 Ejected Conscious Face

Figure 3: Dataframe Overview

e Crashes Dataset: https://catalog.data.gov/dataset/motor-vehicle-collisions-crashes

e Person Dataset: https://catalog.data.gov/dataset /motor-vehicle-collisions-person

3.1 Data Cleaning and Analysis

Necessary libraries are imported in the jupyter notebook. The below figure shows the
necessary libraries imported.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from collections import Counter

from sklearn.metrics import roc_curve, auc, roc_auc_score

from sklearn.preprocessing import label binarize

from sklearn.metrics import precision recall curve, average precision score
from sklearn.metrics import RocCurveDisplay

Figure 4: Libraries Imported

fron sklearn.ensenble import VotingClassifier

fron sklearn.neighbors import KNeighbors(lassifier

fron sklearn.ensenole import RandonForestClassifier

fron sklearn, tree import DecisionTreeClassifier

fron sklearn.netrics import accuracy score, classification report, confusion matrix

Figure 5: Voting Classifier and other libraries for assessing the model

from sklearn.ensemble import StackingClassifier

Figure 6: Stacking Library

The below figure is the filtered dataframe after the process of data cleaning by re-
moving null values and outliers in the dataset.

merged df filtered.dtypes

CONTRIBUTING FACTOR VEHICLE 1 object
CONTRIBUTING FACTOR VEHICLE 2 object
PERSON_INJURY object
PERSON_AGE floate4
EJECTION object
EMOTIONAL STATUS object
BODILY INJURY object
POSITION_IN VEHICLE object
SAFETY_EQUIPMENT object

dtype: object

Figure 7: Filtered Columns

The outliers in the person age column is handled using the interquartile range. The
below figure shows the code for iterquartile range.

3.2 Exploratory Data Analysis

This section explains about the exploratory data analysis where a number of count plots
have been plotted against the independent and the target variables.

Q1 = merged df['PERSON_AGE'].quantile(0.25)
Q3 = merged df['PERSON AGE'].quantile(®.75)

Computing the IQR
I0R = Q3 - Q1

Determining the outliers
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

outliers = merged df[(merged df['PERSON AGE'] < lower bound) | (merged df['PERSON AGE'] > upper_bound)]
print("Outliers in the 'PERSON_AGE' column:")
print{outliers[['PERSON_AGE']])

merged_df cleaned = merged df[(merged df['PERSON AGE'] »= 1) & (merged df['PERSON_AGE'] <= upper_bound)]
print("\nDataFrame after removing outliers:")
print(merged df cleaned)

Figure 8: Removal of outliers from age column

plt.figure(figsize=(10, 6))

sns. countplot(data=merged df cleaned, x="BOROUGH', hue='PERSON INJURY')
plt.title('Count of Injuries by Borough')

plt.xlabel(Borough")
plt.ylabel("Count")
plt.xticks(rotation=45)
plt.legend(title="Person Injury')
plt.tight layout()

plt. show()

Figure 9: Count plot of collisions per borough

plt.figure(figsize=(10, 6))
sns.histplot(merged df cleaned['PERSON AGE'], kde=True)
plt.title('Distribution of Person Age')
plt.xlabel('Person Age')

plt.ylabel('Frequency")

plt.grid(True)

plt.show()

Figure 10: Distribution of the age column

plt.figure(figsize=(10, 12))

sns. countplot(data=merged df cleaned, y="BODILY INJURY')

plt.title(Number of Persons Injured/Killed by Contributing Factor')
plt.xlabel(Count")

plt.ylabel('Contributing Factor')

plt. show()

Figure 11: Bar plot of bodily injured column

4 Data Preprocessing

This section contains the steps involved in data preprocessing such as feature engineering
techniques, label encoding techniques and oversampling techniques (SMOTE).

#feature engineering derving a new feature from the date colum
merged df['CRASH DATE'] = pd.to datetime(merged df['CRASH DATE'])
merged df['CRASH TIME'] = pd.to datetime(merged df['CRASH TIME'],format="AH:HM")

merged df['Vear'] = merged df['CRASH DATE'].dt.year
merged df['Day'] = merged df['CRASH DATE'].dt.strtine(%A")

Figure 12: Extracting year using feature engineering

Label encoding is done to all the categorical columns of the dataset. The age column
is excluded since that is a numerical column.

df = pd.DataFrame(merged df filtered)
label encoders={}

Encode categorical variables
for colum in df:
if column 1= "PERSON AGE':
le = LabelEncoder ()
dfcolumn] = le.fit transform(dfcolumn])
1abel encoders[column] = le

Figure 13: Applying Label encoding

smote = SMOTE(sampling strategy=sampling strategy, random state=42)
X _resampled, y resampled = smote.fit resample(X_train, y train)

Figure 14: Applying SMOTE

5 Model Building

This has the overview of the models and machine learning approaches used in this re-
search. Before model building the dataset is split into X and y where X has the inde-
pendent variables and y contains target variable. The train and test is split with a ratio

of 70:30.

Split data into features and Labels
X = df,drop('PERSON TNIURY', aris=1)
y = df['PERSON INIURY']

Split data into training and test sets
X train, X test, y train, y test = train test split(x, y, test size=d.3, stratify=y,randon state=L?)

Figure 15: Splitting the data to train and test

The machine learning approaches used in this research are ensemble and stacking by
combination of shuffling the base models in it.

Defining individual classifiers

knn = KNeighborsClassifier(n_neighbors=5)

rf = RandomForestClassifier(n_estimators=100, random_ state=42)
dt = DecisionTreeClassifier(random_state=42)

Create the ensemble model

ensemble = VotingClassifier(estimators=[
('knn', knn),
(', rf),
('dt', dt)

1, voting="hard")

Train the ensemble model
ensemble.fit(X resampled, y resampled)

Make predictions
y_pred_ensemble = ensemble.predict(X test)

Calculate accuracy
accuracy_ensemble = accuracy_score(y_test, y_pred_ensemble)
print(f'Ensemble Accuracy: {accuracy_ensemble}")

Figure 16: Voting classifier using all the base models

ensemble 1 = VotingClassifier(estimators=[
("knn', knn),
('rf', rf)

], voting="hard")

Train the ensemble model
ensemble 1.fit(X resampled, y resampled)

Make predictions
y pred ensemble 1 = ensemble 1.predict(X test)

Calculate accuracy

accuracy ensemble 1 = accuracy score(y test, y pred ensemble 1)
print(f'Ensemble Accuracy: {accuracy ensemble 1}")

Figure 17: Voting classifier with KNN and random forest

ensemble 3 = VotingClassifier(estimators=[
('rf, rf),
('dt', dt)

], voting="hard")

Train the ensemble model
ensemble 3.fit(X resampled, y resampled)

Make predictions
y_pred ensenble 3 = ensemble 3.predict(X test)

Calculate accuracy

accuracy ensemble 3 = accuracy score(y test, y pred ensemble 3)
print(f'Ensemble Accuracy: {accuracy ensemble 3}")

Figure 18: Voting classifier with random forest and decision tree

base_models = [
('dt', DecisionTreeClassifier(random state=42))

1
Define the meta-learner as Decision Tree
meta_learner_combination4 = RandomForestClassifier(n_estimators=10@, random state=42)

stacking_clf_combination4 = StackingClassifier(estimators=base_models, final_estimator=meta_learner_combination4)
stacking_clf_combination4.fit(X_resampled, y_resampled)

|¢ Make predictions
y_pred_stacking_combination4 = stacking_clf_combination4.predict(X_test)

Calculate accuracy

accuracy stacking combination4 = accuracy score(y test, y pred stacking combination4)
print(f'Stacking Classifier with Decision Tree Meta-Learner Accuracy: {accuracy_stacking_combination4}')

Figure 19: Stacking with meta learner as random forest and base learner as decision tree

Defining the base models
base_models = [

('rf', RandomForestClassifier(n_estimators=100, random_state=42))
]

Defining the meta-learner
meta_learner_combination5 = KNeighborsClassifier(n_neighbors=16)

stacking_clf_combination5 = StackingClassifier(estimators=base_models, final_estimator=meta_learner_combinations)
stacking_clf combinations.fit(X_resampled, y resampled)

y_pred_stacking_combination5 = stacking_clf_combinations.predict(X_test)

Calculating accuracy

accuracy_stacking_combination5 = accuracy_score(y_test, y_pred_stacking_combination5)
print(f'stacking classifier Accuracy: {accuracy_stacking_combination5}")

Figure 20: Stacking with meta learner as KNN and base learner as random forest

base models = [
('dt", DecisionTreeClassifier(random_state=42))
1
meta_learner_combination2 = KNeighborscClassifier(n_neighbors=10)
stacking_clf_combination2 = StackingClassifier(estimators=base models, final_estimator=meta_learner_combination2)
stacking_clf combination2.fit(X_resampled, y resampled)

Make predictions
y_pred_stacking_combination2 = stacking_c1f_combination2.predict(X_test)

Calculating accuracy
accuracy stacking combination2 = accuracy score(y test, y pred stacking combination2)
print(f'Stacking Classifier with KNN Meta-Learner Accuracy: {accuracy_stacking_combination2}')

Figure 21: Stacking with meta learner as KNN and base learner as decision tree

6 Comparison of Evaluation Metrics

This section provides overview of the comparison of the evaluation metrics such as ac-
curacy, precision, recall, f1 score and confusion matrix between the machine learning
approaches used in this research.

cm = confusion matrix(y test, vy pred ensemble 1)
print{f’ 'Confusion Matrix:\n{cm}"')

#Display classification report
print{"\nClassification Report for Ensemble Combinationl Model:")
print(classification_reporft(y_test, y_pred_ensemble_ 1))

Classification Report for Ensemble Combinationl Model:

precision recall fi1-score support

%] 8.96 1.2 2.98 165878

1 ©.98 a.86 a.92 A3714

2 e.39 2.20 2.26 191

accuracy 2.97 209693
macro avg B8.78 2.68 a.72 209693
weighted avg .97 8.97 2.97 209693

Figure 22: Confusion matrix and classification report of ensemble with random forest
and KNN

cm = confusion matrix(y test, w pred ensemble =2)
print{f ' Confusion Matrix:\n{cm}")

#isplay classification report
print{"\nCclassification Report for Ensemble Ccombination3 Model:™)
print{classification_report(y_ test, vy pred_ensemble 3))

Classification Report for Ensemble Combination2 Model:

precision recall +Fl1-score support

o .99 2.99 2.99 165878

a1 0.97 2.98 2.97 A3714

2 B.76 2.68 2.72 181

accuracy 2.99 209693
macro avg ®.91 2.88 2.98 2809693
weighted avg 9.99 ©.99 .99 209693

Mapping values to descriptive Labels

label map = {@: 'Alive', 1: 'Injured', 2: 'Killed'}

mapped_y test 3 = [label map[val] for val in y test]
mapped_y_pred_ensemble_3 = [label map[val] for val in y_pred_ensemble 3]

Computing confusion matrix
cm = confusion_matrix(mapped y test 3, mapped_y pred_ensemble 3, labels=['Alive', 'Injured', "Killed'])

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, cmap='Blues’, fmt='d', annot_kws={"size": 12,"ha": ‘'center’, "va": ‘center'}, cbar=True)
plt.xlabel(Predicted")

plt.ylabel(Actual")

plt.xticks(ticks=np.arange(3) + 9.5, labels=['Alive’, 'Injured', 'Killed'])
plt.yticks(ticks=np.arange(3) + ©.5, labels=['Alive’, 'Injured', 'Killed'])

plt.title('Confusion Matrix Heatmap®)
plt.show()

Figure 23: Evaluation metrics of ensemble with decision tree and random forest

Generate the classification report
classification rep = classification report(y test, y pred stacking combination4)
print(f’'Classification Report:\n{classification rep}')

Classification Report:

precision recall f1-score support

4] 1.0 .99 9.99 165878

1 0.97 @.99 .98 43714

2 0.42 @.72 0.53 101

accuracy 0.99 209693
macro avg 0.80 .90 ©.83 209693
weighted avg .99 0.99 0.99 209693

Record the start time
start _ time = time.time()

stacking cl¥ combinationda.fit(X resampled, v resampled)
end time = time.time()

training time = end_ time - start_time
print{(f"Training time: {training time: .2t} seconds™)

Training time: 12.25 seconds

Defining the class Labels
class labels = ['Alive’, 'Injured’, 'Killed']

cm = confusion matrix(y test, y pred stacking combination4)

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, cmap="Greens', fmt="d', annot kws={"size": 12, "ha": ‘center', "va": 'center'}, cbar=True)
plt.xlabel('Predicted")

plt.ylabel("Actual")

plt.title('Confusion Matrix Heatmap')

plt.xticks(ticks=range(len(class labels)), labels=class labels)

plt.yticks(ticks=range(len(class labels)), labels=class labels, rotation=g)

plt.show()

Figure 24: Stacking evaluation metrics and training time with base learner as decision
tree and random forest as meta learner

10

Generate the classification report
classification_rep = classification_report(y test, y pred stacking combinations)
print(f’'Classification Report:\n{classification_rep}’)

Classification Report:

precision recall f1-score support

a 1.8 8.99 2.99 165878

1 8.97 8.99 8.98 43714

2 8.83 8.64 a.73 101

accuracy @.99 209693
macro avg 8.93 8.87 a.98 209693
weighted avg 9.99 .99 ®.99 209693

Plot feature importances

plt.figure(figsize=(10, 6))

plt.barh(importance df['Feature'], importance df['Importance’], color="green")
plt.xlabel('Importance")

plt.ylabel(Feature")

plt.title('Base Model Feature Random Forest Feature Importance')
plt.gca().invert yaxis()

plt.show()

Figure 25: Feature importance of random forest as base learner and classification report
with base learner as random forest and meta learner as KNN

11

	Introduction
	System Specification
	Hardware Specifications
	Software Specifications

	Data Source
	Data Cleaning and Analysis
	Exploratory Data Analysis

	Data Preprocessing
	Model Building
	Comparison of Evaluation Metrics

