

Configuration Manual

MSc Research Project

Data Analytics

Priscila Cristina da Silva de Oliveira

x23157003

School of Computing

National College of Ireland

Supervisor: Barry Haycock

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Priscila Cristina da Silva de Oliveira

Student ID:

x23157003

Programme:

MSc in Data Analytics

Year:

2024

Module:

Research Project

Lecturer:

Barry Haycock

Submission Due

Date:

16.09.2024

Project Title:

From LDA to BERTopic: Evaluating Topic Modelling Methods for

Aviation Safety Reports in Brazilian Portuguese

Word Count:

3149 Page Count: 17

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

16.09.2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Priscila Cristina da Silva de Oliveira

x23157003

1 System Specifications

This section details the hardware and operating system used in this study. The hardware

specifications are not minimum requirements. However, one should be aware that different

specifications could result on different performance.

1.1 Hardware Specifications

Processor 13th Gen Intel(R) Core(TM) i9-13980HX 2.20 GHz

RAM 64.0 GB

GPU NVIDIA GeForce RTX 4070 Laptop GPU

1.2 Software Environment

Operating System Windows 11 Pro, 64-bit

Integrated Development Environment PyCharm 2024.1.1

Jupyter Notebook 6.5.4

Python Version 3.11.7

1.2.1 Key libraries

Library / Package Version

adjustText 1.2.0

beautifulsoup4 4.12.2

bertopic 0.16.3

gensim 4.3.0

matplotlib 3.8.0

nltk 3.8.1

numpy 1.26.4

pandas 2.1.4

pyLDAvis 3.4.1

PyMuPDF 1.24.7

seaborn 0.12.2

scikit-learn 1.2.2

scipy 1.12.0

resquests 2.31.0

2

tqdm 4.65.0

umap-learn 0.5.6

wordcloud 1.9.3

2 Dataset Characteristics

The aviation safety reports used for the research project are publicly available on the website

https://sistema.cenipa.fab.mil.br/cenipa/paginas/relatorios/relatorios.php in the PDF format.

The documents are distributed over 31 tabs and most of the files are in Portuguese. Figure 1

shows a snippet of the webpage. The flags represent the language in which the report is

available.

Figure 1 Reports in CENIPA website

Some documents are available in English and Spanish. It was also observed that some of the

files, especially those reporting older events, are scanned documents which are not

machine-readable. In addition, during the download phase, it was noted that a small number

of documents cannot be accessed although the instance is shown in the reports table.

The download of the files was performed using web scraping leveraging BeautifulSoup4. The

first version of the code used did not consider the different existing tabs and, for this reason,

only the documents in the first tab were downloaded. The steps followed are described in

Algorithm 1. The code described in the algorithm is available in the file named

download_pdf_version_1.ipynb.

https://sistema.cenipa.fab.mil.br/cenipa/paginas/relatorios/relatorios.php

3

Algorithm 1 Download PDF files from CENIPA website – version 1

FUNCTION main():

SET URL to "https://sistema.cenipa.fab.mil.br/cenipa/paginas/relatorios/relatorios.php"

response = GET request to URL

IF response status is not successful THEN

PRINT error message

RETURN false

page = Parse HTML content of response

table = Find element in page with ID "lista"

links = Extract all <a> elements from table

FOR EACH link in links:

href = Get "href" attribute of link

IF "pdf" is not in href THEN

CONTINUE to next iteration

filename = Remove path from href, keeping only the file name

pdfUrl = Concatenate "https://sistema.cenipa.fab.mil.br/cenipa/paginas/relatorios/"

and href

pdfContent = GET request to pdfUrl

Write pdfContent to file named filename

PRINT "Getting {filename}..."

RETURN true

CALL main()

Given that not all the documents available are machine-readable and that this project focuses

on the reports written in the Portuguese language, the initial code was modified to:

• Classify the reports between “Portuguese” and “Other Languages”

• Subclassify the reports between “Scanned” and “Searchable”

• Access the 31 existing tabs to download all the files available.

The final code for the web scrapping process verifies whether the file exists before

proceeding with the download. If so, it skips to the next file. It also informs in cases when it

fails to download the document.

In order to verify whether a certain file is machine-readable, the function is_searchable() was

defined. The main() function defines the folder and subfolder names. It verifies if the main

folders exist, before creating them.

4

Next, it iterates over the 31 existing tabs using BeautifulSoup to parse the HTML content. If

the PDF link is valid, it categorises the file and save or skip the document. Algorithm 2

describes the steps used to download the files used in the study and the code can be found in

the file download_pdf_final_version.ipynb.

Algorithm 2 Download PDF files from CENIPA website – final version

FUNCTION is_searchable(pdf_path):

TRY:

Open PDF at pdf_path

IF PDF has no pages THEN

RETURN false

Get text from first page

RETURN true if text is not empty, false otherwise

CATCH IndexError:

PRINT error message

RETURN false

FUNCTION main():

SET portuguese_folder to 'PortugueseReports'

SET other_languages_folder to 'Other_Languages'

SET subfolders to ['Scanned', 'Searchable']

CREATE folders and subfolders if they don't exist

FOR page_number FROM 1 TO 31:

SET URL to

f"https://sistema.cenipa.fab.mil.br/cenipa/paginas/relatorios/relatorios?&&?&pag={p

age_number}"

Send GET request to URL

IF request failed THEN

PRINT error message

RETURN false

Parse HTML content of response

Find table with id "lista"

Extract all links from table

FOR EACH link in links:

IF link doesn't contain 'pdf' THEN

CONTINUE to next link

SET pdf_url to full URL of PDF

Download PDF file

IF download successful THEN

Save PDF to temporary file

IF link title is "Relatório Final em Português" THEN

SET language_folder to portuguese_folder

ELSE

SET language_folder to other_languages_folder

IF is_searchable(temporary_file) THEN

5

SET save_subfolder to 'Searchable'

ELSE

SET save_subfolder to 'Scanned'

SET save_path to language_folder/save_subfolder/pdf_filename

IF save_path doesn't exist THEN

Move temporary file to save_path

PRINT success message

ELSE

Delete temporary file

PRINT file already exists message

ELSE

PRINT download failure message

RETURN true

CALL main()

3 Extracting Metadata – Types of Occurrences

The types of occurrences were manually extracted from CENIPA’s website. The values were

copied and pasted on Microsoft Excel. The unique values are shown in Table 1. The code

ALTL was identifies among the types of occurrences. However, by analysing the report

classified in the category, it became clear that it was a typing error. The occurrence should

have been classified as LALT.

Table 1: Types of Occurrences

Type Description

ADRM aerodrome

AMAN abrupt maneuvre

ARC abnormal runway contact

ATM/CNS atm/cns

BIRD bird

CFIT controlled flight into/toward terrain

CTOL collision with obstacle(s) during take-off and landing

EXTL external load related occurrences

F-NI fire/smoke (non-impact)

F-POST fire/smoke (post-impact)

FUEL fuel related

GCOL ground collision

GTOW glider towing related events

ICE icing

LALT low altitude operations

LOC-G loss of control – ground

6

LOC-I loss of control – inflight

LOLI loss of lifting conditions en-route

MAC airprox/tcas alert/loss of separation/near midair collisions/midair collisions

MED medical

OTHR other

RAMP ground handling

RE runway excurision

RI runway incursion

SCF-NP system/component failure or malfunction (non-powerplant)

SCF-PP system/component failure or malfunction (powerplant)

TURB turbulence encounter

UIMC unintended flight in imc

UNK unknown or undetermined

USOS undershoot/overshoot

WILD collision with animals

WSTRW wind shear or thunderstorm

4 LDA

Algorithm 3 describes the steps taken for the LDA model. The respective code is available in

the file named LDA_final_version.ipynb.

Algorithm 3 Topic Modelling with LDA

SET seed to 23157003

INITIALIZE random number generators with seed

DOWNLOAD NLTK resources

SET pdf_folder_path to location of PDF files

DEFINE extra_stop_words

COMBINE extra_stop_words with Portuguese stopwords from NLTK

FUNCTION extract_text_from_pdf(pdf_path):

INITIALIZE empty text string

TRY:

OPEN pdf_file

FOR EACH page in pdf_file:

ADD page text to text string

CATCH any exceptions:

PRINT error message

RETURN text string

FUNCTION preprocess(text):

CONVERT text to lowercase

REMOVE numbers from text

REMOVE punctuation from text

TOKENIZE text

RETURN list of tokens not in stop_words

FUNCTION get_top_ngrams(processed_texts, n, top_k):

7

CREATE empty list for n-grams

FOR EACH text in processed_texts:

GENERATE n-grams from text

ADD n-grams to list

COUNT frequency of n-grams

RETURN top_k most common n-grams

FUNCTION compute_coherence_and_perplexity(dictionary, corpus, texts, start, limit, step):

INITIALIZE empty lists for coherence_values, perplexity_values, and model_list

FOR num_topics FROM start TO limit STEP step:

CREATE LdaModel with num_topics

COMPUTE coherence score

COMPUTE perplexity

ADD scores and model to respective lists

RETURN model_list, coherence_values, perplexity_values

FUNCTION evaluate_lda_model(corpus, dictionary, processed_texts, start, limit, step):

CALL compute_coherence_and_perplexity

NORMALIZE coherence and perplexity scores

COMPUTE composite scores

FIND best model based on highest composite score

PRINT best model details

PLOT evaluation metrics

RETURN best_model, best_num_topics, best_coherence, best_perplexity

FUNCTION plot_evaluation_metrics(start, limit, step, coherence_values, perplexity_values,

composite_scores):

CREATE plot with three y-axes

PLOT coherence scores

PLOT perplexity scores

PLOT composite scores

ADD labels and legend

DISPLAY plot

FUNCTION visualize_topics(lda_model, dictionary, corpus, num_topics, num_words):

GENERATE word clouds for all topics

GENERATE bar charts for all topics

CREATE intertopic distance map using t-SNE

DISPLAY visualizations

MAIN PROCESS:

INITIALIZE empty lists for processed_texts and raw_texts

FOR EACH PDF file in pdf_folder_path:

text = extract_text_from_pdf(file)

ADD text to raw_texts

processed_text = preprocess(text)

ADD processed_text to processed_texts

FOR n FROM 2 TO 5:

COMPUTE and PRINT top 10 n-grams

CREATE dictionary from processed_texts

CREATE corpus from processed_texts and dictionary

8

best_model, best_num_topics, best_coherence, best_perplexity = evaluate_lda_model(corpus,

dictionary, processed_texts)

CALL visualize_topics with best_model

PRINT best model's topics

SAVE best model to file

GENERATE and DISPLAY pyLDAvis visualization

5 LDA with Stemming

Algorithm 4 describes the pre-processing function for the LDA model with stemming. The

remainder of the steps is equivalent to Algorithm 3. The respective code is available in

LDA_stemming_final_version.ipynb.

Algorithm 4 Function preprocess(text) with Stemming

FUNCTION preprocess(text):

CONVERT text to lowercase

REMOVE numbers from text

REMOVE punctuation characters from text

TOKENIZE the lowercase text into individual words

INITIALIZE empty list for processed_tokens

FOR EACH word in tokens:

IF word consists only of alphabetic characters AND word is not in stop_words:

stem = APPLY stemming to word

ADD stem to processed_tokens

RETURN processed_tokens

6 LDA with Translation

Algorithm 5 details the cross-language model in which the reports were translated to English

before performing LDA. The respective code is available in the file

translation_lda_final_version.ipynb.

 The functions ensure_json_serializable, clean_vis_data_in_place and

remove_complex_numbers were created to solve the error TypeError: Object of type complex

is not JSON serializable that was that was observed when trying to plot pyLDAvis.

Algorithm 5 Topic Modelling with LDA and Translation

SET seed to 23157003

9

INITIALIZE random number generators with seed

DOWNLOAD NLTK resources (punkt, stopwords, wordnet, omw-1.4)

DEFINE custom_stopwords

COMBINE custom_stopwords with English stopwords from NLTK

SET pdf_directory to location of PDF files

SET translated_texts_file to "translated_texts.pkl"

FUNCTION extract_text_from_pdfs(pdf_directory):

INITIALIZE empty list text_data

FOR EACH PDF file in pdf_directory:

TRY:

OPEN PDF file

FOR EACH page in PDF:

EXTRACT text from page

ADD text to text_data

CATCH any exceptions:

PRINT error message

RETURN text_data

FUNCTION translate_text(text_data, src_lang="pt", tgt_lang="en"):

LOAD pre-trained translation model and tokenizer

INITIALIZE empty list translated_texts

FOR EACH text in text_data:

TRY:

TOKENIZE and ENCODE text

GENERATE translation

DECODE translated tokens

ADD translated text to translated_texts

CATCH any exceptions:

PRINT error message

ADD empty string to translated_texts

RETURN translated_texts

FUNCTION preprocess_text(text):

CONVERT text to lowercase

REMOVE numbers

REMOVE punctuation

TOKENIZE text

REMOVE stopwords and short words

RETURN processed tokens

FUNCTION process_texts(pickle_file_path):

LOAD texts from pickle file

INITIALIZE empty list processed_texts

FOR EACH text in texts:

processed_tokens = preprocess_text(text)

ADD processed_tokens to processed_texts

RETURN processed_texts

FUNCTION compute_coherence_and_perplexity(dictionary, corpus, texts, start, limit, step):

INITIALIZE empty lists for coherence_values, perplexity_values, and model_list

FOR num_topics FROM start TO limit STEP step:

10

CREATE LdaModel with num_topics

COMPUTE coherence score

COMPUTE perplexity

ADD scores and model to respective lists

RETURN model_list, coherence_values, perplexity_values

FUNCTION evaluate_lda_model(corpus, dictionary, processed_texts, start, limit, step):

CALL compute_coherence_and_perplexity

NORMALIZE coherence and perplexity scores

COMPUTE composite scores

FIND best model based on highest composite score

PRINT best model details

PLOT evaluation metrics

RETURN best_model, best_num_topics, best_coherence, best_perplexity

FUNCTION plot_evaluation_metrics(start, limit, step, coherence_values, perplexity_values,

composite_scores):

CREATE plot with three y-axes

PLOT coherence scores

PLOT perplexity scores

PLOT composite scores

ADD labels and legend

DISPLAY plot

FUNCTION print_lda_topics(lda_model, num_words):

FOR EACH topic in lda_model:

PRINT topic words and weights

FUNCTION ensure_json_serializable(data):

RECURSIVELY convert non-JSON-serializable data types to serializable types

RETURN JSON-serializable data

FUNCTION clean_vis_data_in_place(vis_data):

CLEAN 'Freq' column in vis_data.token_table using remove_complex_numbers

CLEAN 'Freq' column in vis_data.topic_info using remove_complex_numbers

CLEAN 'x' column in vis_data.topic_coordinates using remove_complex_numbers

CLEAN 'y' column in vis_data.topic_coordinates using remove_complex_numbers

FUNCTION remove_complex_numbers(data_column):

INITIALIZE empty cleaned_column

FOR EACH value IN data_column:

IF value IS complex number:

ADD real part of value to cleaned_column

ELSE:

ADD value to cleaned_column

RETURN cleaned_column

FUNCTION visualize_lda_model(lda_model, corpus, dictionary, notebook):

PREPARE LDA visualization data

IF in notebook environment:

DISPLAY visualization in notebook

ELSE:

SAVE visualization as HTML file

OPEN HTML file in web browser

11

FUNCTION get_top_ngrams(processed_texts, n, top_k):

GENERATE n-grams from processed texts

COUNT frequency of n-grams

RETURN top_k most common n-grams

FUNCTION save_translated_texts(texts, filename):

SAVE texts to pickle file

FUNCTION load_translated_texts(filename):

LOAD texts from pickle file

RETURN loaded texts

MAIN PROCESS:

IF translated_texts_file exists:

LOAD translated texts from file

ELSE:

text_data = extract_text_from_pdfs(pdf_directory)

translated_texts = translate_text(text_data)

SAVE translated_texts to file

texts = process_texts(translated_texts_file)

CREATE dictionary from texts

CREATE corpus from texts and dictionary

best_model, best_num_topics, best_coherence, best_perplexity = evaluate_lda_model(corpus,

dictionary, texts)

PRINT details of best model

VISUALIZE best LDA model

FOR n FROM 2 TO 5:

COMPUTE and PRINT top 5 n-grams

7 Word2Vec + K-means

The model which combined word2vec and k-means was based on the tutorial given by

Castillo (2018). The model is described in Algorithm 6 and its respective code can be found

in file word2vec_final_version.ipynb.

Algorithm 6 Topic Modelling with Word2Vec and K-means

SET seed to 23157003

INITIALIZE random number generators with seed

DOWNLOAD NLTK resources

SET pdf_folder_path to location of PDF files

DEFINE extra_stop_words

COMBINE extra_stop_words with Portuguese stopwords from NLTK

FUNCTION extract_text_from_pdf(pdf_path):

12

INITIALIZE empty text string

TRY:

OPEN pdf_file

FOR EACH page in pdf_file:

ADD page text to text string

CATCH any exceptions:

PRINT error message

RETURN text string

FUNCTION preprocess(text):

CONVERT text to lowercase

REMOVE numbers from text

REMOVE punctuation from text

TOKENIZE text

RETURN list of tokens not in stop_words and longer than 2 characters

FUNCTION evaluate_word2vec(model, words):

FOR EACH word in words:

TRY:

FIND most similar words using model

PRINT similar words and their scores

CATCH KeyError:

PRINT word not in vocabulary

FUNCTION vectorize(list_of_docs, model):

FOR EACH document in list_of_docs:

INITIALIZE zero vector

FOR EACH token in document:

IF token in model vocabulary:

ADD token vector to document vectors

IF document vectors not empty:

COMPUTE average of document vectors

ELSE:

USE zero vector

RETURN list of document vectors

FUNCTION mbkmeans_clusters(X, k, mb, print_silhouette_values):

PERFORM MiniBatchKMeans clustering

COMPUTE silhouette score

IF print_silhouette_values is True:

COMPUTE and PRINT silhouette values for each cluster

RETURN clustering model, cluster labels, and average silhouette score

FUNCTION find_best_num_topics(vectorized_docs, min_topics, max_topics, step, mb):

INITIALIZE best_k and best_silhouette

FOR k FROM min_topics TO max_topics STEP step:

PERFORM clustering with k clusters

IF silhouette score is better than best_silhouette:

UPDATE best_k and best_silhouette

PRINT best number of clusters and its silhouette score

PLOT silhouette scores vs number of clusters

RETURN best_k

FUNCTION plot_word_embeddings(model, words):

FILTER words in model vocabulary

13

GET word vectors

PERFORM t-SNE dimensionality reduction

PLOT words in 2D space

FUNCTION plot_clusters(vectorized_docs, cluster_labels):

PERFORM t-SNE dimensionality reduction on vectorized_docs

PLOT documents in 2D space, colored by cluster labels

MAIN PROCESS:

INITIALIZE empty list for processed_texts

FOR EACH PDF file in pdf_folder_path:

text = extract_text_from_pdf(file)

processed_text = preprocess(text)

ADD processed_text to processed_texts

TRAIN Word2Vec model on processed_texts

EVALUATE Word2Vec model with sample words

vectorized_docs = vectorize(processed_texts, word2vec_model)

best_num_topics = find_best_num_topics(vectorized_docs, min_topics=2, max_topics=51,

step=1, mb=100)

PERFORM clustering with best_num_topics

CREATE DataFrame with original texts, tokens, and cluster labels

PLOT word embeddings for sample words

PLOT clusters

PRINT top terms per cluster based on centroids

PRINT most frequent terms per cluster

ANALYZE and PRINT representative documents for a sample cluster

SAVE Word2Vec model

8 BERTopic

The BERTopic model is detailed in Algorithm 7. Its respective code can be found in the file

named bertopic_final_version.ipynb.

Algorithm 7 Topic Modelling with BERTopic

SET seed to 23157003

INITIALIZE random number generators with seed

DOWNLOAD NLTK resources (stopwords and punkt)

14

SET pdf_path to location of PDF files

FUNCTION extract_text_from_pdf(pdf_file):

INITIALIZE empty text string

TRY:

OPEN pdf_file

FOR EACH page in pdf_file:

ADD page text to text string

CATCH any exceptions:

PRINT error message

RETURN text string

FUNCTION preprocess_text(text):

CONVERT text to lowercase

REMOVE numbers from text

REMOVE punctuation from text

TOKENIZE text into words

REMOVE stopwords from tokens

RETURN joined tokens as string

FUNCTION compute_coherence_score(model, texts, topics, top_n_words):

EXTRACT top words for each topic

CREATE dictionary from texts

COMPUTE coherence score using c_v measure

RETURN coherence score

FUNCTION plot_all_topics(df, topic_model):

COMPUTE mean positions of each topic

GENERATE colors for topics

CREATE scatter plot of all topics

ANNOTATE top 50 topics

ADJUST text annotations to avoid overlap

DISPLAY plot

FUNCTION plot_top_10_topics(df, topic_model):

IDENTIFY 10 most frequent topics

FILTER DataFrame for top 10 topics

COMPUTE mean positions of each topic

GENERATE colors for topics

CREATE scatter plot of top 10 topics

ANNOTATE top 10 topics

ADJUST text annotations to avoid overlap

DISPLAY plot

FUNCTION visualize_hierarchy_custom(topic_model, topics, top_n_topics, width, height):
IF topics not provided:

GET all topics from model

IF top_n_topics specified:

CREATE labels for each topic

LIMIT topics to top_n_topics

EXTRACT topic embeddings

PERFORM hierarchical clustering

CREATE labels for topics

GENERATE dendrogram

15

DISPLAY plot

FUNCTION visualize_topics_barchart(topic_model, top_n_topics, n_words, width, height):

GET topic information from model

SORT topics by size (excluding outliers)

SELECT top N topics

CREATE labels for each topic

GENERATE horizontal bar chart

CUSTOMIZE plot appearance

ADD count labels to bars

DISPLAY plot

INITIALIZE empty list for texts

FOR EACH pdf_file in pdf_path:

extracted_text = extract_text_from_pdf(pdf_file)

IF extracted_text is not empty:

preprocessed_text = preprocess_text(extracted_text)

ADD preprocessed_text to texts list

DEFINE extra_stop_words

COMBINE extra_stop_words with Portuguese stopwords

CREATE CountVectorizer with combined stopwords

CREATE UMAP model for dimension reduction

INITIALIZE empty list for coherence_scores

SET topic_range to range from 2 to 50, step 2

FOR EACH num_topics in topic_range:

CREATE BERTopic model with num_topics

FIT model to texts

COMPUTE coherence score

ADD coherence score to coherence_scores list

PLOT coherence scores against number of topics

SET optimal_topics to number of topics with highest coherence score

CREATE final BERTopic model with optimal_topics

FIT final model to texts

SAVE final model

REDUCE dimensionality of embeddings to 2D using UMAP

ENSURE reduced_embeddings is 2D

CREATE DataFrame with reduced embeddings, topics, and text lengths

GENERATE visualizations:

 CALL plot_all_topics()

 CALL plot_top_10_topics()

 CALL visualize_hierarchy_custom()

 CALL visualize_topics_barchart()

16

9 Stop Words

The list of stop words used to customise the NLTK file is provided in Table 2. The model

which performed LDA to the translated documents used the NLTK file for the English

language. For this reason, the stop words list was customised using the translated version of

the words.

Table 2: Extra Stop Words

Portuguese Words English Words

acidentes accidents

acerca about

acidente accident

acordo agreement

aeronáutica aeronautics

aeronáuticas aeronautical

aeronáutico aeronautic

aeronáuticos aeronautical

aeronave aircraft

aeronaves aircraft

agência agency

ambos both

anac anac

and and

anexo attachment

após after

aspectos aspects

aviação aviation

avião airplane

brasileiro brazilian

cenipa cenipa

centro center

civil civil

conclusão conclusion

conduzidas conducted

conforme according

contribuintes taxpayers

contribuiu contributed

cuja whose

culpa blame

dados data

desconhecido unknown

deste this

determinar determine

Portuguese Words English Words

empresa enterprise

errôneas erroneous

exclusivamente exclusively

fabricante manufacturer

fatos facts

figura figure

final final

fins purposes

futuros future

geral general

glossário glossary

havia had

hipóteses hipothesis

incidente incident

induzir induce

informações information

internacional international

interpretações Interpretations

investigação research

investigações investigations

junto together

matrícula registration

modelo model

momento moment

nacional national

nada nothing

neste this

nº no

nota note

nsca nsca

objetivo objective

ocorrência occurrence

of of

organização organization

2

Portuguese Words English Words

organizacionais organizational

outras other

outro other

outros other

piloto pilot

pode can

poderá can

poderá can

possível possible

possuia had

prevenção prevention

propósito purpose

qualquer any

realizar accomplish

registros records

relatar tell

relatório report

segurança safety

seripa seripa

simplificado simplified

Portuguese Words English Words

sipaer sipaer

sobre upon

suma all

tampouco either

ter have

termos terms

the the

tipo kind

to to

totais total

trazer bring

últimas last

últimos last

uso use

utc utc

utilização use

voo flight

vôo flight

References

Castillo, D. (2018) How to Cluster Documents Using Word2Vec and K-Means. Available at:

https://dylancastillo.co/posts/nlp-snippets-cluster-documents-using-word2vec.html.

