Configuration Manual

MSc Research Project
Msc Data Analytics

Sabarinathan Chandramohan
Student I1D: x22213333

School of Computing
National College of Ireland

Supervisor: Teerath Kumar Menghwar

"N National

Collegeof
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sabarinathan Chandramohan
Student ID: x22213333
Programme: Msc Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Teerath Kumar Menghwar
Submission Due Date: 16/09/2024
Project Title: Configuration Manual
Word Count: 1327
Page Count: [14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sabarinathan Chandramohan

Date: 16th September 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). i

Attach a Moodle submission receipt of the online project submission, to | ¥
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | M
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sabarinathan Chandramohan
x22213333

1 Introduction

This configuration document provides a detail guide manual for setting up needed envir-
onment, tools and necessary machine learning libraries needed to re-run the implemented
codes of Optimization of wave power energy generation system and wave height forecast-
ing, this manual provides a detail step by step guide to install the prerequisites hardware
and software requirements and helps the users to configure it into their system and ex-
ecute the code to obtain the similar results, this research uses the main and primary tools
like Docker, PostgreSQL, ETL-Dagster, Python, and Jupyter Notebook.

2 Environment

Environment setup is needed and main process in executing the code, in this section
a detail steps guide is described for the Docker, ETL-Dagster, PostgreSQL, necessary
machine learning libraries and Juypter notebook installation and setup, follow all the
steps correctly and configure the tools as it’s a crucial for executing the code, by this it
can sure that the code runs without any lags and hitch and able to reproduce the research
findings.

2.1 Hardware Required
e Operating System-Windows 10 or Ubuntu Linux
e Processor-Multi-core processor with Intel i7 or higher and AMD equivalent

Graphics Card-GPU with CUDA support, NVIDIA GeForce RTX series for ac-
celerated model training speed

e RAM-Minimum of 16GB but 32GB recommended for large datasets

Storage-SSD with at least 1TB capacity for fast data access and efficient storage

3 Tools Required and setup

The detail step by step guide for installing the necessary tools for this research imple-
mentation are discussing below.

3.1 Docker setup

Docker is used as the container for maintain the Environments, this research is also
uses Docker instance to held the different environments, the Docker should be installed
correctly and configured with PostgreSQL, for installation of docker, download and install
from the official website, and follow the instruction given in the url and as per your
operating system needs install the Docker.ﬂ

3.2 Creating A PostgreSQL Docker Instance

L

: "postgres”
- "5432:5432"
- postgresgl.env

- dbdata: /var/lib/postgresql/data/

Figure 1: docker-compose yml file

POSTGRES _USER=dap
POSTGRES _PASSWORD=dap
POSTGRES DB=postgres

Figure 2: postgresqgl.env file

After the Docker is installed and configured before creating a instance with Postgr-
eSQL, you have to install the sqlalchemy, psycopg2 and seaborn modules as this is
the prerequisite, as this research uses the PostgreSQL as its Data warehousing and this
can be installed with the simple pip install command in the command prompt, open

'Docker installation: https://docs.docker.com/desktop/install/windows-install/

https://docs.docker.com/desktop/install/windows-install/

the command prompt either windows ‘cmd’ or ‘PowerShell’ and navigate to the direct-
ory where the python scripts are installed, then install these module with pip install
sqlalchemy ,pip install psycopg2 and pip install seaborn, this will install the latest
version of these models.

For creating a PostgreSQL Docker Instance, need to create a new folder and switch
new folder directory and create a two new files named docker-compse.yml and post-
gresql.env and add the contents into file as given in the image 1 and 2 respectively,
then open the command prompt and navigate into the newly created directory and run
the command given in figure 3, this will create a Docker instance, now open the Docket
desktop and check for the instance creation.

docker-compose up

Figure 3: Docker instance command

3.3 PostgreSQL setup

Docker PostgreSQL Pl
General Connection SSL SSH Tunnel Advanced
Name Docker PostgreSQL
Server group B Servers
Background
Foreground X
Comments
o e X Close | &) Reset

Figure 4: Server registrationl

To setup the PostgreSQL need to download and install latest version of PGAdmin
into the system EL once after the installation open the PGAdmin, now need to create a
new server for this right click on the Servers and click Create and Server group from
the pop-up menu, give the name of newly created server as Servers. now right click the
newly created server and click Register and Server and enter the details as shown in

2PGAdmin Download: https://www.pgadmin.org/download/

https://www.pgadmin.org/download/

Docker PostgreSQL « X

General Connection SSL SSH Tunnel Advanced
Host 127.0.0.1
name/address

Port 5432
Maintenance postgres
database

Username dap
Kerberos B
authentication?

Role

Service

o 0 X Close | &) Reset

Figure 5: Server registration2

the image 4 and image 5, after this configurations of the server in the PGAdmin, create
a schema, database and table in name test.

3.4 ETL-Dagster Environment

Dagster has been used in this research for the pipeline automating ETL process, here the
data are Extracted, Transformed and Loaded into PostgreSQL as it has been used as the
Data warehousing, for the detail and correct Dagster configuration follow these steps,

1. Install Dagster and Dagit using the pip install, as the Dagit is the web-based
interface for the Dagster ETL, for this follow this command in the Anaconda
command prompt — pip install dagster dagit.

2. For setting up the ETL pipeline, create a new Dagster project for Extract, Trans-
form and Load into PostgreSQL, by using this command dagit -f your_pipeline.py
can be able to run the Dagster pipeline.

3. After that access the Dagit through the browser to monitor and the manager the
ETL process.

3.5 Python and Jupyter Notebook Setup

This research was coded in the Python as it’s a main programming language and widely
used for the machine learning models as with the jupyter Notebook as the environment
development.

Ensure the Python 3.12 version is installed and configured, if not it can be downloaded

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics impeort mean_squared_error, mean_absolute_error, r2_score
from keras.models dimport Sequential

from keras.layers import LSTM, Dense, Dropout

import pandas as pd

import numpy as np

from sklearn.preprocessing import MinMaxScaler

import psycopg2

import tensorflow as tf

from tensorflow.keras.models import Seguential

from tensorflow.keras.layers import Dense, Dropout

from kerastuner.tuners import RandomSearch

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

from kerastuner.tuners impert RandomSearch

from tensorflow.keras.callbacks import EarlyStopping, ReducelROnPlateau

from sklearn.metrics impert mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings('ignore')

Figure 6: Necessary Libraries of Phase 1

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics impert mean_squared_error, mean_absolute_error, r2_score
import psycopg?2

from psycopg? import sgl

from statsmodels.tsa.statespace.sarimax import SARIMAX

from itertools import product

import warnings

warnings.filterwarnings(ignore")

Figure 7: Necessary Libraries of Phase 2

directly from the official website El and following the installation guide it can be easily
installed. For the accessing the juypter notebook use the Anaconda Navigator from
the official website E| and do the installation, after the installation open the Anaconda
Navigator and there in application list install the juypter notebook, after installing
open the juypter notebook it will open up in the default browser from there we can
open this research implementation code files, these are necessary libraries used in the
both phase of the research, since this proposed research was executed in two phases 1st
phase is Wave Energy Power Generation Optimization using MLP-Multilayer Perceptron
its used and needed libraries are given in the image 6 and 2nd phase is Wave Height
Forecasting and Predicting the Future Wave Height using ARIMA /SARIMA its libraries
are given in the image 7, install those using pip install commands in command prompt
or directly in the juypter notebook itself, after successful installation can able to proceed
with the implementation and run the code without any errors.

3python Download: https://www.python.org/downloads
4Anaconda Download: https://www.anaconda.com/download

https://www.python.org/downloads
https://www.anaconda.com/download

4 Implementations

After this initial setup is completed, check all the setup is done correctly, if not follow
all the steps again by re-installing again, once after this for the implementation open the
codes in two separate juypter note book, since this research is splits into two phases,
these are the two code notebooks Wave_power_energy_output_optimization.ipynb
and Waveheight Forecast_SligoArea.ipynb, after that put these two code file in a
separate folder my_etl_pipeline.py and repository.py, now open the docker desktop
and click run of the PostgreSQL instance shown in image, after that open PGAdmin and
click refresh and connect with the server.

4.1 Collecting the Data

The data are collected from the Ireland government websites like E], ﬁ and these data are
stored in the one drive for easy access into it and can able to download the data in csv

file from [l

4.2 ETL- Data Preprocessing

Now open the anaconda command prompt and give this command conda activate dag-
ster_env after that navigate to the folder where these are created my_etl_pipeline.py
and repository.py, then give this command dagit -f repository.py for initiate E'TL-
Dagster in pipeline and open this url Ff] for access Dagit, once after opening the Dagit
you can see the ETL architecture for this research show as in the image 8, after which

< galway_bay_test_site_extract_data < wave_buoy_sligo_extract_data

Any Any

data Any data Any

<~ galway_bay_test_site_clean_data -~ wave_buoy_sligo_clean_data

Any Any

data Any data Any

-o- galway_bay_test_site_transforn_data o wave_buoy_sligo_transform_data

Any Any

test_site_data Any
buoy_data Any

- join_datasets

Any

data_combined Any

< load_data

Any

Figure 8: ETL Architecture

®Dataset source: https://www.marine.ie

6Dataset source: https://data.gov.ie

"Dataset: https://studentncirl-my.sharepoint.com/:u:/g/personal/x22213333_student_
ncirl_ie/EdAWcHB1£G1Lm3SZ0dyDRZcBjhDORIAX4Ne1T2ePOGPItA?e=0sKaGh

®Dagit: http://localhost:3000

https://www.marine.ie
https://data.gov.ie
https://studentncirl-my.sharepoint.com/:u:/g/personal/x22213333_student_ncirl_ie/EdAWcHB1fGlLm3SZ0dyDRZcBjhD0RIAX4Ne1T2ePOGPItA?e=0sKaGh
https://studentncirl-my.sharepoint.com/:u:/g/personal/x22213333_student_ncirl_ie/EdAWcHB1fGlLm3SZ0dyDRZcBjhD0RIAX4Ne1T2ePOGPItA?e=0sKaGh
http://localhost:3000

navigate into Launch pad of the Dagit and click Launch run as show in the image 9, after

|
[LaunchRun |

Figure 9: Dagster-Launch Run

which you can able to see the pipeline ETL process and upon successful completion the
data will be loaded into PostgreSQL, in the PGAdmin now open and check the test table
where the columns are added as shown in the image 10.

File Object Tools Help
Object Explorer S BB Q>

» 1.3 Sequences
« [Tables (4)
» 9 new_test_site_sligo
» FH power_generation
» o predicted_waveheight
v [test
v [Columns (42)
g x1
g x2
g X3
0 X4
H X5
f X6
g X7
g X8
H X9
f X10
g X11
g x12
B x13

Figure 10: Data loaded into PostgreSQL

In the Data preprocessing the data are Transformed by eliminating the duplicate and
null values, data and time transformation with also column transformation, after this the
data are loaded into PostgreSQL as the Data Warehouse.

4.3 EDA & Data Preparation

Now once the data are downloaded and both juypter notebook files have been open
separately for the code implementation, as this research has splits into two phases.

4.3.1 Phase 1 Wave power generation optimization

In the Wave_power_energy_output_optimization.ipynb file run the EDA- Explorat-
ory Data Analysis cell as show in the image 11, where the data are cleaned and analysis
for modelling.

connection_string = "postgresql://dap:dap@l27.8.8.1:5432/Wave energy output”

conn = psycopg2.connect(connection_string)

query = """

SELEGT 15 s exas uos Seyst MEX6=. =Xzs Soxas exas Rrelom bex1iz, sxi oo s Eaas exas e e 6,
1= iievos eyt Sy i ys s (e yesl Sevzel Soyaoiis youlactaz eyl 1=h Sevisut e seiRayias iiavis = Sayt it
“Power_Output”, "wave_height”

FRONM test

df = pd.read_sql_query(query, con=conn)
conn. close()

df

Figure 11: EDA-Phasel

Then run the visualization cell as given in the image 12, this is as part of the EDA of
phase 1.

sns.set(style="whitegrid")

Plot the distribution of Power Output with custom color
plt.figure(figsize=(15, 8))

sns.histplot(df_clean['Power Output'], kde=True, color='dodgerblue’)
plt.title('Distribution of Power Output’, fontsize=16)

plt.xlabel('Power Qutput', fontsize=14)

plt.ylabel('Frequency’, fontsize=14)

plt.show()

Plot the distribution of Wave Height with custom color
plt.figure(figsize=(15, 8))

sns.histplot(df_clean| 'wave_height'], kde=True, color='darkorange')
plt.title('Distribution of Wave Height', fontsize=16)

plt.xlabel('Wave Height', fontsize=14)

plt.ylabel('Frequency’, fontsize=14)

plt.show()

Scatter plot of Power Output vs Wave Height with custom color
plt.figure(figsize=(15, 8))

sns.scatterplot(x=df_clean| 'wave_height'], y=df_clean[Power OQutput'], color='forestgreen’)
plt.title('Power Output vs Wave Height', fontsize=16)

plt.xlabel('Wave Height', fontsize=14)

plt.ylabel('Power Qutput', fontsize=14)

plt.show()

Figure 12: Phase 1 Visulization

Once after the EDA is done now run the cell Data preparation as shown in the image 13,
where the feature is selected with the correlated heat map analysis. By these steps now

Figure 13: Phase 1 Data preparation

the data are cleaned, and feature are selected for the model building.

4.3.2 Phase 2 Forecast the wave height and period

Now in the Waveheight_Forecast_SligoArea.ipynb file navigate to EDA- Exploratory
Data Analysis and Data preparation cell and run the code as given the image 14, this

will clear the data with analysing the dataset for the modelling by removing the outliers
the cleaned data is prepared.

FRON tes

daily_data.head(20)

Figure 14: Phase 2 EDA and Data prepration

After that execute the visualization cell as given in the image 15, this will plot the timeline
series of the data based upon the time.

plt.figure(figsize=(12, 6))

plt.plot(daily_data[*SignificantWaveHeight'], label='SignificantWaveHeight')
plt.title('significant Wave Height Over Time')

plt.xlabel('Time")

plt.ylabel('significant Wave Height')

plt.legend()

plt.show()

Figure 15: Phase 2 visulization

To the next cell which is Feature Engineering by running the code given in the image 16
will extract and select the feature for the model building.

daily_data["SWH_| = daily_data['SignificantWaveHeight'].rolling(window=7}).mean()
daily_data["' = daily_data['SignificanthaveHeight'].rolling(window=3@).mean()
daily_data["' = daily_data['SignificantWaveHeight'].rolling(window=7).std()
daily_data[" = daily_data["SignificantWaveHeight'].rolling(window=38).std()

daily_data.dropna(inplace=True)

Figure 16: Phase 2 Feature Engineering

4.4 Modelling Training and Evaluations

Once the data was cleaned, analysed and the feature was selected for the model building,
based on the research goal the model was build using MLP in phase 1 and SARIMAX

for phase 2.
4.4.1 Phase 1 Wave power generation optimization

In the Wave_power_energy_output_optimization.ipynb file navigate to the Model
Building — MLP cell and execute the code as given in the image 17, this will take much

def build_model(hp):

model = Sequential()

model.add(Dense(units=hp.Int(‘units 1', min_value=32, max_value=512, step=32), activation='relu’, input_shape=(X_train.shape[1],)})

model.add(Dropout (hp. Float(‘'dropout_1', min_value=8.®, max_value=8.5, step=8.1)})

for i in range(hp.Int('num_layers’, 1, 3)):
model.add(Dense(units=hp. Int(f 'units_{i+2}', min_value=32, max_value=512, step=32), activation='relu'))
model.add(Dropout (hp.Float(f'dropout_{i+2}", min_value=8.8, msx_value=8.5, step=8.1)))

model.add(Dense(1))

model.compile(optimizer="adam', loss='mse', metrics=['mae'])
return model

tuner = RandomSearch(
build_model,
objective="val_mac’,
max_trials=5,
executions_per_trial-3,
directory="hyperparameter_tuning’,
project_name="wave_energy_output’

)
tuner.search(X_train, y_train, epochs=209, validstion_split=0.2)
best_hps = tuner.get_best_hyperparameters(num_trials=1)[@]

model = tuner.hypermodel.build(best_hps)
history = model.fit(X_train, y_train, validation_split=8.2, epochs=208, batch_size-18)

Figure 17: Phase 1 Model building-MLP.

plt.plot({history.history['loss®], label='loss')
plt.plot{history.history['val loss'], label="wal_loss')
plt.xlabel(Epoch’)

plt.ylabel(Loss")

plt.legend()

plt.show()

Make predictions
predictions = model.predict(X test)

Evaluate the model

mae = mean_absolute error(y_test, predictions)
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)

print(f"Mean Absclute Error: {mae}")
print(f"Mean Squared Error: {mse}
print(f"R? Score: {r2}")

Plot actual vs predicted values

plt.figure(figsize=(10, &))

plt.scatter(y_test, predictions)

plt.xlabel('Actual Power Qutput')

plt.ylabel('Predicted Power Qutput')

plt.plot([y_test.min(), y test.max(}], [y _test.min(), ¥ test.max()], "k--")
plt.show()

Figure 18: Phase 1 predictions

10

longer time to execute since its build with 3 layers of neural networks, once the model is
trained will all the epoch, now execute the cell predictions as given in the image 18, this

def build_model(np)

for 1 in range(np.Im
mode11.add(Dense(
mode11.3dd(Dropout (hp.F1
model1. add(Dense (1))

modell. compile(optinizer-"adam’, loss-'mse’, metrics-[‘maz’])
return modell

tuner = Rand

arcn(

£arlystopping(monitor="
JceLRONPLateau(mor

PPl
reduce_Ir -

tuner.search(x_train, y_train, epochs=260, validation_split-e.2, callbacks=[early_stopping, reduce_lr])

best_hps - tuner.get_best_Nyperparameters(nun_trials-1)[e

model1 = tunerhypermodel. build(best_hps)
history = modeln. fit(x_train, y_train, validation_split-e.2, epochs=209, batch_size-1e, callbacks=[early_stopping, reduce 1r])

model

26 el

pred - model1.predict(x_test)

mse - mean_absolute_error(y_test, predictions1)

mse - mean_squared_error(y_test, predictions1)
2, (v , predictions1)

“Mean absolute Error: {nae}”)
ri (mse}”)

plt.figt 5 6))
plt.scat predictions1)
plt.xlabe sl Power Output')

v icted Fouer output’)

PLt.plot([y_test.min(), ¥_test.max()], [y_test.min(), y_test.max()], 'k--")

plt. shou()

Figure 19: Phase 1 Optimization-Hypertunning

will makes the predictions of the trained model with the test data, since this research
uses the hyperparameter tunning, execute the cell Optimization — Hypertunning referred

in (n.d.a)) given in the image 19, this will tune the model more for its efficiency,

Residuals Plot

residuals = y_test - predictionsi.flatten()
plt.figure(figsize=(1@, &))
plt.scatter({predictionsl, residuals)
plt.xlabel('Predicted values')
plt.ylabel('Residuals')

plt.title('Residuals Plot')
plt.axhline{y=e, color='r', linestyle="--'}
plt. show()

: (figsize=(1@, &))
sns.histplot{residuals, bins=38, kde=True)
plt.xlabel('Residuals')
plt.title('pistribution of Residuals')
plt. show(}

Predicted vs Actual pistribution

plt. ure(figsize=(1@, &))

sns.histplot(y test, color='blue', label-'Actual', kde=True)
sns.histplot{predictionsi.flatten(), color="orange', label="Predicted', kde=True)
plt.xlabel('Power Output')

plt.title('pistribution of Actual and Predicted values")

plt.legend()

plt. show()}

Figure 20: Phase 1 Predictions of Optimization

last this optimizations was predicted in the cell Predictions of Optimization given in the
image 20, this will gives the over all efficient of the model trained, the results like MSE,
MAE and R2 will give the model accuracy in optimization refered from (n.d.b)).

4.4.2 Phase 2 Forecast the wave height and period

In the file Waveheight_Forecast_SligoArea.ipynb run the cell Model Building 1 —
SARIMAX for the model building as given in the image 21, by this the SARIMAX

11

‘PeakDirection’, ‘Wmax’, ‘SeaTemperature’, ‘MeanCurSpeed’, 'MeancurDirTo', 'WaveFeriod’,
H_MA38', 'SWH_STD?', 'SKH_STD38']

exog_all = daily_data[['w:
=

Paramete uring foi
p=d=q-=range(, 3)
pdg = list(preduct(p, @, Q)
best_aic = float("inf")
best_order = none
best_model 1 = None

for order in pdg:
try:
model - SARTMAX(aily_data['Significantiaveseight'], order-order, exog-exog all)
model fit = model.fit(disp=False)
if model_fit.aic < best_aic:
best_aic - medel fit.aic
best_order = order
best_mocel 1 = model_fit
except:
continue

1: {best_order}')

print(f'sest ARIMA order for i1
est_aic}’)

PrINt(f'Best AIC for Model 1:
print(best_sodel 1. sumnary())

forecast_steps = 365
exog_forecast_all = exog_sll[-forecast_steps

arina_forecast_exog_all = best_model_1.forecast(skeps-forecast_steps, exog-excg_forecast_all)
y_test - datly_data[‘SignificantWavessignt’][-forecast_steps:]

mse_exog_all = mean_squared_error(y_test, arime_forecast_exog_all)

nse_exog_al1 = mean_sbsolute_error(y_test, srins_forecast_exog_s1l)

r2_exog all = r2_score(y_test, arima_forecast exog sll)

print(f'MSE (exogenous, Model 1): [mse_exog 211}')

print(f'MAE (exogenous, Model 1}: {mac_exog al1}')
print(f'R"2 (exogenous, Model 1}: {r2_exog_all}')

Figure 21: Phase 2 Model building 1-SARIMAX

results were generated and check for the p-value, the variable with the p-value more than
0.5 are eliminated in the model 2, now the cell Model Building 2 - SARIMAX as show in
the image 22, by this the final fit model is trained for the forecasting, now run the code

ection’, 'Hmax’, 'SeaTemperature’, ‘Waveferiod®,

& Iterote ouer pdg (ossusing it
for arder in pdq:

*]. ordersorder, excgeexog_reduced)

educed - oxog_reduced|-fo

s-forecast_stops, exogeswag_forccact_redured)

%
exog_reduced)

2): {msc_enog_reduced}')
1): {mac_exog_reduced}')
r2_cxpg_reduced

Figure 22: Phase 2 Model building 2- SARIMAX

in the cell Future wave height prediction as given in the image 23, this is a visualization
of the forecasting the wave height prediction, and for the final run the last cell Storing
the future predicted wave heights into the PostgreSQL as Data Warehousing given in the
image 24, this is aimed to store the predicted values into the database for the future use.

12

casted SignificanthaveHeight’)

Figure 23: Phase 2 Future wave height prediction

forecast_dates = pd.date_range(start=daily data.index[-1], periods=forecast steps + 1, inclusive='right')
forecast_df - pd.DataFrame({'time': forecast_dates, 'predicted_SignificantwaveHeight': future_forecast})

forecast_df_filtered = forecast_df[forecast_df['time'] >= '2024-01-01']

Connect to the SQL database

connection_string = tgresql://dap:dap@127.0.0.1:5432/uiave energy output”
conn = psycopg2. connect (connection_string)
cur = conn.cursor()
create_table_query = """
CREATE TABLE IF NOT EXISTS predicted_Waveheight (
time TIMESTAMP PRIMARY KEY,
predicted_SignificantWaveHeight FLOAT
)
cur.execute(create_table_query)
insert_query = sql.SQL("™""
INSERT INTO predicted Waveheight (time, predicted_SignificantWaveHeight)
VALUES (%s, ¥s)

e

for i, row in forecast_df_filtered.iterrows():
cur.execute(insert_query, (row['time'], row['predicted _SignificantaveHeight']))

conn. commit()
cur.close()
conn. close()

Figure 24: Phase 2 storing the predicted values into PostgreSQL

5 Conclusion

After executing these steps, the desirable results can be achieved as per the proposed
research, for the both phase of this proposed research, from the phase 1 for optimization
the wave power generation efficiency results are shown in the image 25 and the image
26 shows the results of the forecasted wave height as for the phase 2 is generated, by

Mean Absolute Error: 1285.3128387387615
Mean Squared Error: 2206328.8332932724
R? Score: @.9953388048847567

le6

154

152 4

150

148

Predicted Power Qutput

146

144

ot

142 1

142 144 146 148 1.50 152 154
Actual Power Output le6

Figure 25: Phase 1 Results
following these steps in this configuration manual, we can able to achieve the desirable

outputs,
As this manual provides a detail step by step procedure from setting the environment,

13

MSE (exogenous, Model 2): 9.972975546566152
MAE (exogenous, Model 2): 2.3@80420035287883
R"Z (exogenous, Model 2): ©.6103339171328364

Actual vs ARIMA Predicted Significant Wave Height for 2024

90 4

@
@

Significant Wave Height
@
S
—

| i W
Wl | 'i\I(hli,h

~
v

70

—— Actual SignificantWaveHeight (2024)
~—— ARIMA Predicted SignificantWaveHeight (2024)

65

2023-05 2023-07 2023-09 2023-11 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
Time

Figure 26: Phase 2 results

configuration the tools and executing the code for modelling of both wave power energy
output optimization and wave height forecasting, by following this manual steps will
provide a correct replica of the implementation code of this research, this research con-
cludes with this by providing a most accurate in optimizing the efficiency in wave power
generation system and forecasting the wave height and period.

References

keras, T. (n.d.a). Keras documentation of early stopping.
URAL: https://keras.io/api/callbacks/earlystopping/

keras, T. (n.d.b). Keras documentation of regression metrics.
URL: https://keras.io/api/metrics/regressionyetrics/

14

	Introduction
	Environment
	Hardware Required

	Tools Required and setup
	Docker setup
	Creating A PostgreSQL Docker Instance
	PostgreSQL setup
	ETL-Dagster Environment
	Python and Jupyter Notebook Setup

	Implementations
	Collecting the Data
	ETL- Data Preprocessing
	EDA & Data Preparation
	Phase 1 Wave power generation optimization
	Phase 2 Forecast the wave height and period

	Modelling Training and Evaluations
	Phase 1 Wave power generation optimization
	Phase 2 Forecast the wave height and period

	Conclusion

