~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Soma Sekhar Bogisam
Student [D: x23127627@student.ncirl.ie

School of Computing
National College of Ireland

Supervisor: Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Soma Sekhar Bogisam
Student ID: x23127627Qstudent.ncirl.ie
Programme: Data Analytics
Year: 2024
Module: MSc Research Project
Supervisor: Christian Horn
Submission Due Date: 12/08/2024
Project Title: Configuration Manual
Word Count: 387
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Soma Sekhar Bogisam

Date: 12th August 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Soma Sekhar Bogisam
x23127627@student.ncirl.ie

1 Overview

This configuration manual contains of step-by-step instructions, hardware configuration
and a list of essential software’s to successfully reproduce the research project "Underwater

Plastic Detection Using YOLO V8 AND V10’

2 System Specifications
This section lists out the the hardware and software setup on which research project was

carried out.

2.1 Hardware Specifications
e Processor: 12th Gen Intel(R) Core(TM) i7-1255U 1.70 GHz

e RAM: 32 GB
e Storage: 1TB SSD

2.2 Software Specifications

e Operating System: Windows 11 Home, Version - 23H2
e Environment: Anaconda3 2023.09-0
e Anaconda Navigator: 2.6.0

e Python: 3.12.4

3 Environmental Setup

The research project was executed on Jupyter notebook in Anaconda environment. lick
on start and select the Anaconda navigator and launch the Jupyter notebook.

O Anaconda Navigator
tile Help

{2 ANACONDA NAVIGATOR
A Home
All applications v on
WP Environments a
.
N Learning Jupyter
S
28 Community Notebook
654
Web-based, interactive computing notebook

environment. Edit and run human readable
docs while describing the data analysis.

Documentation

- ~
| Launch |
N J

Anaconda Bloa

base (ioot) v

© update Now
Channels

TR
&
Va,

N

Powershell Prompt

0.04

Run a Powershell terminal with your current
environment from Navigator activated

Y
 Launch |

Figure 1: Launch Jupyter Notebook

@ localhost:3888/tree/

= Jupyter

e SettingsHelp

Figure 2: Jupyter Notebook

4 Data Collection

Images containing small and medium-sized plastic debris were selected from roboflow
website, ensuring a diverse representation of underwater conditions, debris types, and

sizes.

B Plastic Detection Dataset

VERSIONS

2023-10-26 3:23pm Popular Download Formats
v3 - 10 months a

YOLOv9

YOLOv7

2023-10-12 5:25pm

v1 - 10 month:

Pascal VOC
XML

CreateML JSON

YOLOv8

COCO JSON

47 Try Pre-Trained Model

Download Dataset

YOLOVS

YOLO Darknet
TFRecord PaliGemma

Other Formats

Figure 3: Deep Sea Plastic Images Dataset

5 Data Splitting

1200 images were selected to reduce redundancy out of total images and split the data

into train(70%), test(10%) and valid(20%).

6 Installation of Libraries

The libraries necessary are installed using pip command and imported are utilized for
successful execution of code.

: Jupyter Train_Yolo_Models Last Checkpoint: 5 days ago ﬁ
File Edit View Run Kernel Settings Help Trusted
B+ XTO O » = C » Code v JupyterLab [Python 3 (ipykernel) O
I [10]: pip install ultralytics IRV |

Requirement already satisfied: ultralytics in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (8.1.34)

Requirement already satisfied: matplotlib>=3.3.8 in c:\users\dell\anaconda3\envs\yolo vi@\lib\site-packages (from ultralytics) (3.9.8)

Requirement already satisfied: opencv-python>=4.6.@ in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from ultralytics) (4.18.0.84)
Requirement already satisfied: pillow>=7.1.2 in c:\users\dell\anaconda3\envs\yolo v1@\lib\site-packages (from ultralytics) (10.3.0)

Requirement already satisfied: pyyaml>=5.3.1 in c:\users\dell\anaconda3\envs\yolo_v18\lib\site-packages (from ultralytics) (6.8.1)

Requirement already satisfied: requests»>=2.23.0@ in c:\users\dell\anaconda3\envs\yolo v1@\lib\site-packages (from ultralytics) (2.32.2)

Requirement already satisfied: scipy»=1.4.1 in c:\users\dell\anaconda3d\envs\yolo_v10\lib\site-packages (from ultralytics) (1.13.1)

Requirement already satisfied: torch»>=1.8.@ in c:\users\dell\anaconda3\envs\yolo v1@\lib\site-packages (from ultralytics) (2.3.1)

Requirement already satisfied: torchvision>=8.9.8 in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from ultralytics) (@.18.1)

Requirement already satisfied: tqdm>=4.64.@ in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from ultralytics) (4.66.4)

Requirement already satisfied: psutil in c:\users\dell\anaconda3\envs\yolo_v10\lib\site-packages (from ultralytics) (5.9.8)

Requirement already satisfied: py-cpuinfo in c:\users\dell\anaconda3\envs\yolo_vi@\lib\site-packages (from ultralytics) (9.6.0)

Requirement already satisfied: thop>=8.1.1 in c:\users\dell\anaconda3\envs\yolo_v10\lib\site-packages (from ultralytics) (@.1.1.post2209072238)
Requirement already satisfied: pandas>=1.1.4 in c:\users\dell\anaconda3\envs\yclo_v1@\lib\site-packages (from ultralytics) (2.2.2)

Requirement already satisfied: seaborn»=8.11.8 in c:\users\dell\anaconda3\envs\yolo_vie\lib\site-packages (from ultralytics) (9.13.2)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from matplotlib>=3.3.@->ultralytics) (1.2.1)
Requirement already satisfied: cycler>=6.1@ in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from matplotlib>=3.3.@->ultralytics) (8.12.1)
Requirement already satisfied: fonttools»=4.22.@ in c:\users\dell\anaconda3\envs\yolo_v16\lib\site-packages (from matplotlib>=3.3.8->ultralytics) (4.53
e)

Requirement already satisfied: kiwisolver»=1.3.1 in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from matplotlib>=3.3.0->ultralytics) (1.4.
5)

Requirement already satisfied: numpy»>=1.23 in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from matplotlib>=3.3.8->ultralytics) (1.26.4)
Requirement already satisfied: packaging>=20.8 in c:\users\dell\anaconda3\envs\yolo_vi@\lib\site-packages (from matplotlib>=3.3.@->ultralytics) (23.2)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\dell\anaconda3\envs\yclo_v10\lib\site-packages (from matplotlib>=3.3.8->ultralytics) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\dell\anaconda3\envs\yolo_v1@\lib\site-packages (from matplotlib>=3.3.0->ultralytics) (2
9.0.postd)

Requirement already satisfied: pytz»>=2020.1 in c:\users\dell\anaconda3\envs\yolo v1@\lib\site-packages (from pandas>=1.1.4->ultralytics) (2024.1)
Requirement already satisfied: tzdata»=2022.7 in c:\users\dell\anaconda3\envs\yolo_vi8\lib\site-packages (from pandas»=1.1.4->ultralytics) (2624.1)
Requirement already satisfied: charset-normalizerc<d,>=2 in c:\users\dell\anaconda3\envs\yolo_v1e\lib\site-packages (from requests>=2.23.0->ultralytics)
(2.0.4)

Figure 4: Installation Of Libraries

Importing Libraries

import os

from glob import glob

from ultralytics import YOLO

import cv2

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

import tensorflow as tf

from tensorboard.backend.event_processing.event_accumulator import EventAccumulator

Figure 5: Importing Libraries

7 Path Configuration

Configure the data.yaml file according to the train,test and valid paths. The below image
shows the configured yaml file and also the code to display the number of images,label
files and annotations in train, test and valid paths.

® localhost:8888/edit/Project/Data/data.yaml

: _]upyter data_yam| Last Checkpoint: 7 days ago

File Edit View Settings Help

|train: ../Data/train/images
val: ../Data/valid/images
test: ../Data/test/images

nc: 1
names: ['plastic']

Figure 6: Configuration of yaml file

import os
from glob import glob

def count_images_and_annotations(image_dir, label _dir)
image extensions = ['*.jpg"', "*.jpeg', '*.png', '*.bmp']
image_files = []
for ext in image_extensions:
image_files.extend(glob(os.path.join(image dir, "**', ext), recursive=True))

label files = glob(os.path.join(label dir, '**', "*.txt'), recursive=True)
annotation_count = @
for label file in label_ files:

with open(label_file, 'r') as f:

annotation_count += len(f.readlines())

return len(image_files), len(label files), annotation_count

Paths

base_path = "../Data/"

train_images = os.path.join(base_path, 'train/images"')
train_labels = os.path.join{base_path, 'train/labels")
test_images = os.path.join(base_path, 'test/images')
test_labels = os.path.join(base_path, 'test/labels")
valid_images = os.path.join{base_path, 'valid/images')
valid_labels = os.path.join(base_path, 'wvalid/labels')

Count for training set

train_images_count, train_labels_count, train_annotations_count = count_images_and_annotations(train_images, train_labels)

Count for test set
test_images_count, test_labels_count, test_annotations_count = count_images_and_annotations(test_images, test labels)

Count for valid set
valid_images_count, valid labels_count, valid_annotations_count = count_images_and_annotations(valid_images, wvalid_labels)

print(f"Training set: {train_images_count} images, {train_labels_count} label files, {train_annotations_count} annotations™)
print(f"Test set: {test_images_count} images, {test_labels_count} label files, {test_annotations_count} annotations™)
print(f"Valid set: {valid_images_count} images, {wvalid_labels count} label files, {valid_annotations_count} annotations™)

Training set: 843 images, 843 label files, 985 annotations
Test set: 118 images, 118 label files, 118 annotations
Valid set: 236 images, 236 label files, 271 annotations

Figure 7: Total Instances of data

8 Implementation

To train the Yolo models for both V8 (s,1) and V10 (s,1), the parameters given are batch

size

16, image size: 640*640 pixels, epochs = 75, Optimizer = Adam,

rate = 0.001 and device = "cpu’.

8.1 Training & Validation of Yolo Models

Initial learning

from ultralytics import YOLO
import os

def train_yolovB(model_size, data_yaml, epochs, imgsz, batch_size, save_dir):

Lead the model

model = YOLO(f 'yolov&{model size}.pt")
Train the model
results = model.train(
data=data_yaml,
epochs=epochs,
imgsz=imgsz,
batch=batch_size,
project=save_dir,
name=f'yolovB{model_size}_underwater_plastic’',
pretrained=True,
optimizer="adam’,
1r@=@.861,
patience=5a,
save=True,
save_period=18,
device="cpu' #lse '@" for GPU
)]
2

Validate the model

results = model.val()

print{f"Training and validation complete for YOLOv8{model size}"

Parameters

base_path = '../Data/’

data_yaml = os.path.join(base_path, “data.yaml')
epochs = 1 #75 for full evaluation

imgsz = 4@

batch_size = 16 #16

save_dir = '../Output/’

Train YOLOv8s

train_yolov8('s", data_yaml, epochs, imgsz, batch_size, save_dir)

Starting training for 1 epochs...

Figure 8: Training of Yolo Model

Figure 9: Validation of Yolo Model

8.2 Inference of Yolo Models

Inference performed for Yolo V8(s,l) and Yolo V10(s,l) variants on a single image for
comparing detecting capabilities and accuracies.

Specify the paths to your trained models

model _paths = [
'L/ Output/yolov8s_underwater_plastic/weights/best.pt”,
".o/Output/yolov8l _underwater_plastic/weights/best.pt’,
Y. /Output/yolovles underwster plastic/weights/best.pt”,
'L /Output/yelovlel _underwater_plastic2/weights/best.pt’

Specify the paths to the images you want to perform inference on

image_paths = [
‘../Data/test/images/objeoel_fram=02e0260_jpg.rf.lecfefed454c110212544579c@b2bbs. jpg’
; ../Data/test/images//objeee? frams@eeedle jpg.rf.lasb27d9cdéa7ch@e@7b3550df79FchbE. jpg’

inference_images_multiple models (model_paths, image_paths)

FAVLV)

400

600

800

1000

1200

Figure 10: Inference

8.3 Evaluation & Comparison of YOLO Models

The below bar graph depicts the comparison of precision, recall, map50 and map50_95
metrics for all Yolo variants.

YOLO MODELS PERFORMANCE COMPARISON

import matplotlib.pyplot as plt BT s FR
import numpy as np

Data for plotting

models = ['YOLOvE-s', "YOLOwE-1", "YOLOw1&-s", "YOLOw1e-1']
box_p = [8.941, @.891, @.931, B.896]

box_r = [B.E64, @.862, B.E53, B.838]

mapse = [B.750, @.733, B.7721, 8.725]

mapSe_U5 = [B.556, ©.526, 8,556, 0.529]

x = np.arange(len(models)) # the label Locations
width = 8.2 # the width of the bars

fig, ax = plt.subplots{figsize=(12, &))

rectsl = ax.bar(x - 1.5%width, box_p, width, labe
rects? = ax.barfx - @.5%width, box_r, width, label='Box(R]) '}
rects3 = ax.bar(x + @.5%width, map58, width, label="marse’')
rectsd = ax.bar(x + 1.5%width, map58_95, width, label='mAP58-95'"}

"Box(P)")

Add some text for lobels, title ond custom x-axis tick Labels, etc.
ax.set_xlabel(Models")

ax.set_ylabel({ Scores’)

ax.set_title('¥OLO Models Performance Comparison”)

ax.set_xticks(x)

ax.set_xticklabels(models)

ax.legend()

=

*

fig.tight_layout()

Display plot
plt.show()

YOLO Models Performance Comparison

- Box(P)
e Box(R)
N mAPSD
. mAPSD-95

0.8 1

0.6

Scores

0.4

0.2 4

0.0

YOLOW10-5

Models

Figure 11: Yolo Metrics Comparison

	Overview
	System Specifications
	Hardware Specifications
	Software Specifications

	Environmental Setup
	Data Collection
	Data Splitting
	Installation of Libraries
	Path Configuration
	Implementation
	Training & Validation of Yolo Models
	Inference of Yolo Models
	Evaluation & Comparison of YOLO Models

