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UNDERWATER PLASTIC DETECTION USING
YOLO V8 AND V10

Soma Sekhar Bogisam
x23127627@student.ncirl.ie

Abstract

This research focuses on a comparative study of the performance of two ver-
sions, YOLOv8 and YOLOv10, in detecting small and medium-sized plastic litter
underwater. The study experimented with 1,200 underwater images from the Deep-
sea Debris Database using four variants: YOLOv8-s, YOLOv8-l, YOLOv10-s, and
YOLOv10-l. Comparisons have been focused on detection accuracy and computa-
tional efficiency. Results demonstrate that the best performance is by YOLOv10-
s, which achieves the highest mean average precision, mAP50:0.772, at the least
computational resources of 24.4 GFLOPs. Generally, the YOLOv10 variants were
returns as performing better compared to the YOLOv8 ones in most of the exper-
iments; small models would be performatively better than their larger alternatives
under conditions of equal training epochs.

These results have important implications for underwater plastic detection systems,
providing very clear evidence of the need for task-specific optimization. The lim-
itations brought up by the authors concern the size of the dataset and real-world
testing diversity, and they outline some future directions for underwater plastic
detector development.
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1 Introduction

Marine plastic pollution has grown over the years to become a critical environmental
issue, involving serious harm to aquatic ecosystems and biodiversity worldwide. Accord-
ingly, detection and quantification of underwater plastic debris become very necessary
for addressing this global problem. Recent advances in computer vision and deep learn-
ing techniques have provided encouraging solutions for automating the identification of
submerged plastic wastes. (Tamin et al., 2022).

1.1 Background on YOLO (You Only Look Once)

YOLO is the very first family of real-time object detection algorithms; at the moment,
it has beaten every other computer vision algorithm from 2015 till now. Joseph Redmon
mainly worked on it, along with Ali Farhadi. This key innovation originally treated object
detection as a regression problem for the very first time to be processed at much faster
speeds compared to prior methods. From the very first model to the latest YOLOv10 in
2024, improvements so far made to YOLO have been oriented toward increasing speed,
making it versatile, and accurate. Most recently, improvements have made YOLO ap-
plicable in many fields, from self-driving and surveillance to environmental monitoring,
like detecting underwater debris.

The basic architecture of YOLO includes a backbone for extracting features from im-
ages, a neck to fuse features from different scales, and a head for actual detection. The
recent variants introduced anchor-free detection, greatly simplifying object localization,
and NMS-free training that reduces processing steps for faster performance. The system
has also overspilled into other tasks beyond mere object detection, such as instance seg-
mentation and pose estimation. Improvements to the YOLO design constantly acted to
raise the bar of what was believed possible in real-time object detection, becoming one
of the enabling technologies at the core of modern-day computer vision applications.

Architectural differences between YOLOv8 and YOLOv10 make for some interesting
trade-offs that apply to underwater plastic detection. While YOLOv8 is more versatile,
bearing many features that can be applied to many tasks very useful in comprehensive
environmental monitoring YOLOv10’s efficiency and NMS-free approach might give it
advantages in real-time processing and deployment on resource-constrained underwater
vehicles or edge devices.

Object detection algorithms have been outstanding recently in various domains, espe-
cially the YOLO family. However, the application of underwater plastic detection com-
prises varying water conditions, illumination, and small or even partly occluded nature
of the debris, which makes the task very unique compared to other applications (Hipolito
et al., 2021). This paper tries to fill up the literature gap by evaluating and comparing
the performance of using the real-world data different versions and model sizes of YOLO,
especially for underwater plastic trash detection.

2



The research question guiding this study is: ”How well do different versions of
YOLO (YOLOv8 and YOLOv10) work for finding small and medium-sized
plastic trash in underwater pictures? How do these different sizes of models
(YOLOv8-s, YOLOv8-l, and YOLOv10 -s and YOLOv10-l) compare in terms
of how accurately they can spot trash versus how fast they can run on a com-
puter when looking at underwater images?”

The primary objectives of this research are:

• To evaluate the detection accuracy of YOLOv8 and YOLOv10 for small and medium-
sized underwater plastic debris.

• To compare the computational efficiency of YOLOv8-s, YOLOv8-l, and YOLOv10-s
and YOLOv10-L in processing underwater images.

• To analyze the trade-offs between detection accuracy and processing speed for each
model.

These will be achieved through a series of experiments on a highly varied dataset of un-
derwater images, each including plastic litter. Standard metrics of object detection, such
as mean Average Precision, and inference time, will be used to evaluate the model’s per-
formance. Such methodology will consist of training and fine-tuning the chosen YOLO
models on a curated dataset of images containing underwater plastic debris. Afterwards,
the models will be tested on a separated test set, and performance will be analyzed across
different underwater conditions and sizes of objects.

This research contributes to the scientific literature by detailing, for this specific task
of underwater plastic detection, comparisons of state-of-the-art object detection mod-
els. Its findings are useful to an audience of researchers within academia in the fields of
computer vision, marine ecology, and people involved in developing automatic systems
related to monitoring and cleaning up marine pollution.

The structure of this report is as follows: Section 2 is a comprehensive literature re-
view regarding underwater object detection and YOLO applications. Section 3 describes
the methodology of the research, such as dataset preparation, model training, and evalu-
ation procedures. The models’ implementation and the experimental setup are presented
in Section 4. The results are reported in Section 5. Section 6 concludes the study by
discussing the implications of the findings and recommending areas for future research.

2 Related Work

2.1 Evolution of YOLO Models for Object Detection

The improvement in the YOLO family has been major since it was inception, with suc-
cessive versions bringing substantial improvement in accuracy and efficiency. Wang et
al. (2024) presented the new evolution in this family,YOLOv10. This further pushes the
bar on performance efficiency trade-offs by applying a series of new techniques, such as
consistent dual assignments for NMS-free training and holistic efficiency-accuracy-driven
model design. These improvements have upgraded the models to be significantly faster
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and more efficient compared to their previous versions. For instance, YOLOv10-S is 1.8
times faster than RT-DETR-R18 (Wang et al,,2024)with almost the same accuracy. The
authors, however, admit the limitations showing that there is a gap in the performance
of NMS-free training versus one-to-many training with NMS.

Application of YOLO variants in agriculture has been made from v1 to v10, eviden-
cing the versatility of the model across different tasks. Alif and Hussain(2024), provide
an overall view of these applications in agriculture, noting the strengths and limitations
that exist within YOLO models. The authors point out persistent challenges such as more
inclusive datasets and model optimization for resource-limited environments. These find-
ings become even more relevant when considering underwater plastic detection, where
similar challenges take place in the collection of data and variability of the environment.

2.2 YOLO Applications in Underwater Environments

Application of YOLO models in underwater plastic detection is a critical area of research
given the growing concern about marine pollution. Aldric Sio et al. (2022) demonstrated
that, with regard to plastic waste floating in rivers, YOLOv5 performs quite well in de-
tecting it at a precision rate of 79.14% and a recall rate of 57.37%. While these results
look quite promising, the relatively low recall rate indicates that there may be scope for
improvements, mostly regarding small or partially occluded objects. The focus on river
environments in this study also limits its direct applicability to a diversity of underwater
conditions.

Underwater detection of marine plastic waste is, however, beset with challenges like
varying light conditions and water clarity. In line with this, researchers have proposed
a solution using transfer learning and data augmentation. For instance, Hipolito et al.
(2021) achieved a good result in mAP of 98.15% with the use of YOLOv3. Nevertheless,
the problem of small sample size dataset dependency in the study questions the general-
ization of the model in different real-world underwater scenarios. Though the reported
mAP is very high, it needs cautious consideration. Intrinsic homogeneity might have
resulted in this small dataset, which raises concerns about overfitting and limited gen-
eralizability. Although their approach for transfer learning was absolutely original, the
freezing of some layers could have prevented the model from fully fitting to the unique
characteristics of underwater scenes.

An improved model of YOLOv5 with MobileNet as the backbone, together with an
attention mechanism, raised a great deal of progress in the detection of marine litter.
Liu and Zhou (2023) achieved detection precision of 79% with a recall rate of 63%.Their
use of MobileNet as a backbone offers improved efficiency, crucial for real-time applic-
ations. However, the introduced attention mechanism may not be optimal in detecting
small plastic particles since it was effective against bigger debris only. This study put
a more balanced view about model performance by focusing on detection precision and
recall rate in comparison to studies that reported only mAP. These metrics still admit
improvements, mainly related to challenging underwater conditions.
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2.3 YOLOv8 and YOLOv10: Advancements and Potential for
Underwater Plastic Detection

YOLOv8 by Hussain (2024) , is the most radical development in the history of YOLO
architecture: anchorless in the detection process, with advanced backbone networks, and
improved training strategies. How far this anchor-free approach works regarding gener-
alization on objects of very different sizes and shapes is fundamental to the detection of
various plastic debris underwater. Its performance underwater in turbidity changes and
illumination variation has, however, been scantily investigated up to now.

Improvements in YOLOv10 are likely to be better in detection accuracy and compu-
tational efficiency, which are critical in real-time underwater plastic detection. However,
the performance of YOLOv10 in these underwater scenarios associated with detection of
small and partially occluded objects has yet to be evaluated comprehensively. The work
of Wang et al. (2024) has impressive improvements in object detection efficiency and
accuracy.

Their evaluation, while complete on the COCO dataset, does not exactly transfer to
underwater plastic detection scenarios. Specifically, due to usually blurred conditions of
object boundaries in an underwater environment, this NMS-free training approach they
proposed would likely bring extremely huge benefits, again remaining theoretical without
specific testing in an aquatic setting.

2.4 Challenges in Underwater Object Detection

One of the major challenges to applying deep learning models for plastic waste detection
is data deficiency and poor quality of datasets. This problem is more critical in an un-
derwater environment where data collection is more challenging and costly. Tamin et al.
(2022) provided some solutions to these challenges by suggesting data augmentation and
capturing images of plastic wastes in different real scene environments. While this gives
some valuable approaches, they still need further validation in underwater contexts. The
authors’ insights underline the pressing need for improving methods of data collection
and quality assurance to improve deep learning models for the detection of plastic wastes,
especially in challenging situations underwater.

Most of the methods based on intelligent strategies in data selection and labeling over-
come the bottleneck of limited labeled object detection data in different domains. Their
approach improved at least 9.23% in detection performance, focusing on kitchen waste
scenarios; Qin et al. (2024) leaves open the question about applicability for underwater
plastic detection. The following study indicates that the techniques for selective learning
become very promising in the case of low amounts of data, yet it doesn’t account for any
problems related to the underwater environment. A reported gain is impressive, although
this work remains limited to land-based scenarios basically raising questions about how
good this technique is within the much more demanding underwater domain. These new
adaptive learning approaches for the detection of plastics in water are very promising to
close the data gap but require very special adaptation to cope with difficulties in aquatic
environments.
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2.5 Comparative Analysis of Object Detection Models

FCOS-Lite is an anchor-free network, as was pointed out previously, meaning that it
boasts better speed-to-accuracy trade-off instances against YOLOv3 over the MS COCO
dataset. Approaches that are anchor-free in nature can be beneficial in detection tasks.
The study by Liu et al. (2021) presents very exciting results but did not include tests for
underwater scenarios, hence a gap in how these advantages could turn around in challen-
ging aquatic scenarios. Anchor-free approaches hold unexplored potential for underwater
plastic detection. These techniques underline the possibility of fine-tuning and evaluating
anchor-free methods that effectively detect marine litter in real-world scenarios.

Comparison of several CNN-based object detectors for container detection in seaports
indicates that Faster RCNN has a strong preference for precision. In their study, Ban-
dong et al.,( 2021), give valuable insight into object detection in the maritime environ-
ment; however, their focus on seaport environments limits its applicability in underwater
plastic detection because of demanding variables offered by the underwater context, in-
cluding variation in visibility, great diversity of object size, and special environmental
factors. While it includes good comparisons for CNN-based detectors, the uniqueness of
the problem in underwater plastic detection does warrant further research in adapting
and evaluation of those models in submerged environments.

2.6 Data Augmentation and Transfer Learning in Underwater
Object Detection

Data augmentation and transfer learning techniques have a vital role in overcoming lim-
ited and poor datasets with respect to detecting underwater objects. Shin et al. (2022)
proposed a new data augmentation strategy simulating diverse water environment con-
ditions for improving the accuracy of detection. The tool creates synthetic maritime
images by editing background scenes related to the horizon line, lighting condition, and
weather. It achieves high diversity in training data by putting the foreground objects,
for example, ships at plausible positions with respect to the horizon, blending them in
naturally to the background. This augmentation increases the robustness and accuracy
of object detection models rightfully by exposing them to a wide variety of environmental
scenarios.

Transfer learning strategies, explored by Zhang et al. (2023), open up possibilities in
generalizing models pre-trained on terrestrial object detection tasks for underwater scen-
arios. Their study demonstrated improved performance in detecting marine life; however,
applicability to small and partially occluded plastic objects is a yet-to-be-exploited area.

2.7 Real-time Processing and Edge Computing for Underwater
Plastic Detection

Real-time processing in underwater plastic detection systems faces several challenges,
especially when considering resource-constrained environments. Li et al. proposed an
optimized version of edge devices of YOLOv5 in 2023 to reduce the inference times
while maintaining acceptable accuracy levels. Their study was focused on general object
detection tasks and did not talk about the complexities associated with underwater en-
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vironments.

Edge computing solutions thus open up avenues for the deployment of complex object de-
tection models on board autonomous underwater vehicles. Chen et al. (2024) examined
this avenue, which proved that compressed versions of YOLO models could run on low-
power devices. This study hence proves the possibilities of making real-time detections in
an underwater environment based on edge computing. Further examination is required,
however, on whether this has an effect on accuracy in detecting small plastic objects
under different water conditions. While the study has already returned some promising
results regarding edge deployment of object detection models, further research in detect-
ing plastics underwater is necessary. Being specific to fairly low variable visibility and
changeable object size, this work comes with unique challenges.

2.8 Implementation and Evaluation Insights for Underwater
Plastic Detection

Propose a new approach to tuning YOLOv8 for the underwater environment by adding a
pre-processing pipeline, which is customized according to the turbidity and colour distor-
tion of the water. Gao et al,(2023), showed that the efficiency of this method can bring
out an increase in detection accuracy of 15% compared to normal implementations of
YOLOv8. This work has been majorly advanced in terms of adjusting object detection
models to the unique challenges of underwater environments. However, significant com-
putational overhead is involved in their pre-processing steps, which may hinder real-time
application on resource-constrained devices; more efficient solutions are thus needed to
this end. This paper, therefore, points out the potential but also the continuous challenge
in developing an effective underwater object detection system for several applications in
marine debris identification.

In this line, an overall evaluation framework was developed explicitly for underwater
object detection models, including metrics beyond traditional mAP, turbidity resilience,
and scale invariance. Wang et al. (2022) , that is a method that would be important
in assessing performance in any dynamic underwater setting. Their work brings well-
explained insights on how underwater object detection is complex and therefore offers
nuanced evaluation. It was tested mainly on large marine objects, so maybe it needs
to be tuned for small plastic debris detection. On the one hand, the study underlines
that, when working in an underwater environment, specialized metrics of evaluation are
needed. On the other hand, it goes further to underline the need to make more finer
adjustments when dealing with the specific challenges that come with detecting smaller
plastic wastes in aquatic environments.

2.9 Summary and Research Gap

The current state of the literature reflects substantial improvements that have been made
to the YOLO models and their applications in various domains, although there has only
been partial progress in underwater environments. Several critical gaps remain:

• Evaluate the performance of the latest versions of the YOLO, namely YOLOv8 and
YOLOv10, on the problem of underwater plastic detection in general and small,
partially occluded object plastic.
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• There has been a general lack of comprehensive literature on how different YOLO
versions compare with changes in water conditions, such as turbidity and illumin-
ation.

• The crucial trade-off between detection accuracy and processing speed in underwa-
ter plastic detection contexts needs further investigation, especially considering the
different model sizes.

• This requires further investigation of an overly critical trade-off in underwater
plastic detection contexts: model size against accuracy and processing speed.

• Deep investigation is required regarding the efficiency of data augmentation and
transfer learning methods, which are specifically tailored for underwater detection
of plastic.

These gaps underscore the necessity of the proposed research question. This study,
therefore, has huge potential for value addition in the domain of underwater object detec-
tion and hence pushes forward efforts toward mitigating plastic pollution under conditions
of accuracy and computational efficiency related to different underwater conditions and
sizes of models. The focus of this research is on comparing performance across different
model sizes of both YOLOv8 and YOLOv10. It is expected to come out with important
information on how model complexity-performance trade-offs within such a very challen-
ging domain work.

3 Research Methodology

The methodology to be presented below will provide a step-by-step guide on how the
testing of different versions of YOLO for efficiency in detecting small and medium-sized
plastic trashes in underwater images was tested.

3.1 Data Collection and Preparation:

The data for this research project were sourced from the Deep-Sea Debris Database
provided by JAMSTEC (Japan Agency for Marine-Earth Science and Technology) .

However, to make pre-processing easier and faster, a curated subset of 1,200 images
with annotations was directly taken from Roboflow.

First, some images were downloaded directly from the JAMSTEC database. Later
on, it was found that there was a subcollection of images in Roboflow annotated. It
was thus decided to make use of it. This is because making use of Roboflow will save
research effort since already-annotated images in YOLO format were found available in
the dataset.

Indeed, both sources have the same underlying images from the original JAMSTEC
database. The priority difference being that the Roboflow dataset was annotated, while
in the case of the raw images from the JAMSTEC website, one would be required to

1Deep-Sea Debris Database: https://www.godac.jamstec.go.jp/dsdebris/e/index.html
2YoloV8YoloV10Comparison project: https://universe.roboflow.com/

yolov8yolov10comparision/underwaterplasticdetection-9ojxt
3Original Roboflow project: https://universe.roboflow.com/plastic-b0ep9/

plastic-detection-2kkwi/dataset/3
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execute the same manually. That allowed for better utilization of research time, as
this freed up ample time for model development and evaluation rather than performing
extensive manual annotations.

For this research, a specific Roboflow project titled “YoloV8YoloV10Comparison” was
utilized 2. A dedicated test account was created specifically for this research study.

To build the dataset, 1,200 images were chosen from an existing Roboflow project3and
directly imported to the research account. Additionally, some images were manually
annotated to complement the dataset.

Roboflow also provides built-in functionality for importing images and their annota-
tions from other projects within Roboflow. This feature was used to define, from the
dataset and its annotations, what has been required for this comparative study. In the
research account, full control of visual inspection to ensure high data quality and accuracy
was maintained for images and their annotation.

This approach demonstrates the ability to develop a dataset that meets the exact
requirements of this study without losing broad relevance to its source. The project
”YoloV8YoloV10Comparison” is a custom project designed for this comparative study
between YOLOv8 and YOLOv10 in detecting plastic underwater, whose sources of images
come from the JAMSTEC Deep-Sea Debris Database.

3.2 Data Preprocessing:

The images underwent minimal preprocessing to maintain the integrity of the original
underwater scenes:

1. Image Size: All images used were standardized to be 640x640 pixels, striking a
balance between the need for retaining relevant details in images and computational
efficiency.

2. The format consistency of formats: more than one picture format could be suppor-
ted, such as jpg, jpeg, png, and bmp, in order to be compatible with the source
data.

3. Normalization: This was done implicitly in the YOLO framework during training
with respect to pixel values.

3.3 Model Selection and Justification:

In this work, models of YOLO will be used more specifically, both small and large versions
of YOLOv8 and YOLOv10. According to earlier studies, the former have been very
efficient for real-time object detection, especially in the underwater environment. This
choice is going to permit evaluating different architectures and sizes of models against
one another. This is justified by the fact that, for any real-time applications underwater,
detection accuracy needs to be balanced with computational efficiency.

3.4 Training and Evaluation Process:

The training and evaluation process was conducted using the following setup:

1. Hardware: Intel Core i7 12th generation CPU, 32 GB RAM
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2. Framework: Ultralytics YOLO

3. Programming Language: Python

4. Key Libraries: os, glob, ultralytics

The process followed these steps:

• Model Initialization: Models were loaded using pre-trained weights.

• Configuration: Each model was configured with the following parameters:

1. Input image size: 640x640 pixels

2. Batch size: 16

3. Optimizer: Adam with an initial learning rate of 0.001

4. Patience: 50 epochs for early stopping

5. Epochs: 75

• Training: Models were trained on the above-mentioned configuration. Although in
the code provided, ’device’ was set to ’cpu’, it changed for the real experiments
so that, in this case, all of the available resources of the CPU are used with no
redundancy.

• Validation: After training, each model underwent a validation step using the ’val()’
method provided by the YOLO framework.

3.5 Evaluation Metrics:

The following metrics were used to evaluate and compare model performance:

• Mean Average Precision (mAP): Calculated at IoU thresholds of 0.5 and 0.5:0.95
to evaluate detection accuracy across various object sizes and occlusion levels.

• Precision and Recall: To assess the models’ ability to correctly identify plastic
debris while minimizing false positives and negatives.

• F1-Score: Used as a balanced measure of precision and recall.

• Inference Time: Measured on both CPU and GPU to evaluate the models’ real-time
processing capabilities.

• FPS (Frames Per Second): Calculated to assess the models’ suitability for real-time
video processing applications.

• Visualization techniques: This involves precision-recall curves, confusion matrices,
and box plots of which were used with Matplotlib and Seaborn libraries to underline
a holistic picture of model performance.
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Limitations and Challenges: Several limitations and challenges were encountered dur-
ing the research process:

• Dataset Bias: AAlthough voluminous in their extents, the Deep-sea Debris Data-
base might not account for every condition underwater and for all types of plastic
debris.

• Computational Resources:This setup was limited by available hardware (32 GB
RAM, 12th gen i7CPU) regarding batch size and probably also training speed com-
pared to GPU-accelerated setups.

• Model Versioning: With fast-developing YOLO models these days, the version may
change during the research, which may affect the comparability.

4 Design Specification

This design specification delineates the architecture, frameworks, and techniques under-
lying the implementation of the underwater plastic detection system using the YOLOv8
and YOLOv10 models. In particular, it is tailored to address the research question
comparing the performance of different YOLO versions and sizes in detecting small and
medium-sized plastic wastes in underwater images.

4.1 Architecture Overview:

YOLOv8 and YOLOv10 are variants of the YOLO architecture, one of the real-time
object detection frameworks. These architectures were built based on several key com-
ponents:

Figure 1: Yolo Architecture

Backbone:
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• Purpose: Extracts features from the input image.

• YOLOv8: Uses CSPDarknet, a network designed to efficiently learn complex fea-
tures from images.

• YOLOv10: Employs an improved version of CSPNet, focusing on better information
flow through the network.

Neck:

• Purpose: Combines features from different levels of the backbone.

• Both use a Feature Pyramid Network (FPN), which allows the model to detect
objects at various scales.

• YOLOv10 adds a Path Aggregation Network (PAN) for better feature combination
across scales.

Head:

• Purpose: Performs the actual object detection.

• YOLOv8: Uses an anchor-free approach, directly predicting object center without
pre-defined anchor boxes.

• YOLOv10: Introduces a dual-head system: a. One head for generating multiple
predictions during training. b. Another for producing a single, best prediction
during actual use.

Key Innovations:

• NMS-Free Training (YOLOv10): 1. NMS (Non-Maximum Suppression) is typically
used to filter out overlapping detections. 2. YOLOv10 is designed to avoid this
step, making the detection process faster and more efficient.

• Efficiency Improvements (YOLOv10): 1. Uses techniques to reduce computational
requirements while maintaining accuracy. 2. Includes a lightweight classification
head and improved methods for resizing features.

• Enhanced Feature Extraction: 1. YOLOv8: Uses advanced techniques in its back-
bone for better feature understanding. 2. YOLOv10: Introduces large-kernel con-
volutions and partial self-attention for improved context understanding.

Model Variants: Both YOLOv8 and YOLOv10 come in multiple sizes to cater to
different computational requirements:

Both YOLOv8 and YOLOv10 come in different sizes:

• Nano (n): Very small and fast, good for devices with limited resources.

• Small (s): Balances speed and accuracy for general use.

• Medium (m): More accurate but requires more computational power.

• Large (l): Very accurate but computationally intensive.

• Extra Large (x): Highest accuracy, requires significant computational resources.

12



5 Implementation

This underwater plastic detection system is constructed with the YOLOv8 and YOLOv10
versions of the Ultralytics YOLO framework. This section presents the reader/outlines all
steps towards the final implementation, its outputs generated, and tools/languages used
in the implementation of a deep learning-based detector for a generic object detection
use case. Outputs Produced:

• Trained Models:

1. YOLOv8-s, YOLOv8-l, YOLOv10-s, and YOLOv10-l.

2. Each model was saved in PyTorch format (.pt files), containing the trained
weights and architecture information.

• Inference Pipeline: A Python script for running inference on new underwater images
using any of the trained models.

Tools and Languages Used:

1. Data Processing: 1. NumPy and Pandas were employed for efficient data manipu-
lation and analysis. 2. OpenCV was used for image processing tasks.

2. Visualization: Matplotlib and Seaborn libraries were used to create performance
graphs and visualizations.

3. Development Environment: 1. Jupyter Notebooks were used for exploratory data
analysis and initial model testing. 2. PyCharm IDE was used for developing the
final training and inference scripts

Implementation Process:

• Data Preparation:

1. The images from the dataset were processed and placed in their required direct-
ory structure.

2, Developed an efficient data loader to streamline the process of feeding images
and their corresponding annotations to the models during the training phase

• Training Pipeline: Created a comprehensive training script compatible for YOLOv8
and YOLOv10 architectures. This script incorporates data augmentation tech-
niques, model initialization procedures, the main training loop, and validation pro-
cesses.

• Evaluation Framework: Implemented an assessment script that calculates and re-
cords performance metrics for all trained models. This script also produces visual
representations to facilitate the analysis of model performance.

• Inference Pipeline:
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1.Another inference script was designed to load trained models for running de-
tection on new images.

2.The script contains steps for the pre- and post-processing of results visualiza-
tion.

3. Created a separate script for inference that loads the trained models to make
detections on new images.

4. At the very beginning, it includes some steps to preprocess the script, and
at the end, a number of post-processing operations will allow visualizing the result.

This is a complete solution for training, testing, and deployment of a YOLO model
trained to detect plastics underwater. More importantly, the Ultralytics frame-
work guaranteed efficiency and naturally enabled smooth experiments with many
model architectures and sizes. The output is deep into what constitutes character-
istics of each variant of the model so that, by all means, it is able to guide proper
decision-making under a real deployment situation.

6 Evaluation

This section gives an in-depth analysis regarding the results of the evaluation conduc-
ted for models YOLOv8 and YOLOv10 in detecting underwater plastic objects, which
answers the research question

6.1 Performance Analysis:

To visualize the performance of each model, the following chart comparing the key met-
rics:

Figure 2: Models Performances

Results show that YOLOv10-s excels in performance in all metrics, having the highest
mAP50, 0.772, with an mAP50–95 of 0.556, precision of 0.931, and recall of 0.653. All
this excellent performance was attained with the fewest number of parameters 8,035,734
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and GFLOPs of 24.4, which is an indication of very good accuracy–efficiency balancing.

6.2 Efficiency vs Accuracy Trade-off

Figure 3: mAP50 vs GFlops

The above graph shows model accuracy against computational requirements. Among all
the models, however, YOLOv10-s is the most efficient because it has the highest accuracy
while being less computationally expensive.
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6.3 Inference on Yolo Models

Figure 4: Yolo models Inference

Figure 4 compares YOLOv8 and YOLOv10 models in detecting underwater garbage, spe-
cifically a plastic bottle. The top row shows two YOLOv8 variants: YOLOv8-s (small)
on the left with a red bounding box, and YOLOv8-l (large) on the right with a green
bounding box. The bottom row displays two YOLOv10 variants, similarly arranged. All
four models successfully detect the bottle under challenging underwater conditions char-
acterized by low visibility and complex background textures. The performance metrics
for each model are as follows:

Model Confidence IoU
YOLOv8s 0.9023 0.8639
YOLOv8l 0.8701 0.8802
YOLOv10s 0.7899 0.8703
YOLOv10l 0.8962 0.8603

Table 1: Performance Comparison of YOLO Models

The slight variations in the size or position of the bounding box across the models
can be attributed to differences in detection precision or confidence thresholds. Notably,
all models achieve high IoU (Intersection over Union) values, exceeding 0.86, which is
significantly higher than the 0.5 threshold typically used for mAP50 calculations.

This comparison demonstrates the evolution from YOLOv8 to YOLOv10 in marine lit-
ter detection capabilities. Both versions show strong performance, with YOLOv8l achiev-
ing the highest IoU (0.8802) and YOLOv8s the highest confidence (0.9023). YOLOv10
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variants show comparable performance, with YOLOv10l having the highest confidence
among YOLOv10 models (0.8962).

It’s important to note that while YOLOv10s has the lowest confidence (0.7899), its
IoU is still high (0.8703), indicating accurate localization. This aligns with our earlier
findings where YOLOv10-s showed the best overall performance in terms of mAP50.

These results underscore the potential of both YOLOv8 and YOLOv10 in addressing
environmental monitoring and conservation needs, particularly in challenging underwater
environments. The high IoU values across all models suggest that they are well-suited
for accurate detection and localization of underwater plastic debris, which is crucial for
potential clean-up operations and ecological studies.

6.4 Discussion

The experimental results reveal several key findings that provide insight into the per-
formance of YOLO models for underwater plastic detection:

1. Model Size Impact: More surprisingly, the larger models, YOLOv8-l and YOLOv10-
l, performed worse than their smaller peers. This finding defied the common as-
sumption that bigger is necessarily better. This may be interpreted to mean that
added complexity in larger models introduces overfitting or struggles with some
unique characteristics of underwater imagery for this particular task of underwater
plastic detection.

2. Version Improvements: In most cases, YOLOv10 performed better than their coun-
terparts in YOLOv8, more so in the small model categories. The study will therefore
support the findings of Wang et al. (2024), which revealed significant improvements
of YOLOv10 at high efficiency-accuracy trade-offs.

3. Task-Specific Optimization: Inferences from the superior performance of YOLOv10-
s suggest that model design is task-specific. Its success in balancing accuracy and ef-
ficiency for underwater plastic detection proves that architectural innovations within
YOLOv10 work very effectively in this application.

4. Computational Efficiency: Among them, the best performance at the lowest GFLOPs
a single YOLOv10-s is quite noteworthy. This efficiency will be critical to any pro-
spective real-world execution more so in a resource-constrained environment like
underwater vehicles or edge devices.

Comparison with Previous Research: The findings both align with and diverge from
previous studies in interesting ways:

1. According to Hipolito et al. (2021), the accuracy value reached 98.15% mAP when
detecting underwater marine litter using the YOLOv3 method. While very prom-
ising, current results display lower values of mAP. This could be because of differ-
ences in complexity in the dataset or even in evaluation methodologies.
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2. Liu and Zhou, 2023 obtained a detection precision of 79% using an improved model
of YOLOv5. The best model of this work, YOLOv10-s, has lower precision, like
51.6%, which might indicate that the specific dataset used is hard or further op-
timization..

3. The results of the efficiency gains for YOLOv10-s were in line with Wang et al.
(2024), who claimed that YOLOv10-S had a speed 1.8x faster than comparable
models with similar accuracy.

Limitations and Potential Improvements: Several limitations in the experimental design
should be acknowledged:

1. Dataset Size: Since this test set only contains 203 images, the evaluation will not
be very indicative of how models perform across all underwater scenarios. This can
be made more robust by expanding the dataset.

2. Hyperparameter Tuning: Although the model size increases, there is an unexpected
drop in performance, hence indicating that more hyperparameter tuning might be
required for YOLOv8-l and even more so for YOLOv10-l.

3. Environmental Variability: The current evaluation does not consider different un-
derwater conditions regarding turbidity or illumination. Further work will be done
on a more stratified analysis of the different environmental factors.

7 Conclusion and Future Work

The primary objectives were:

1. To evaluate the detection accuracy of YOLOv8 and YOLOv10 on small and medium-
sized underwater plastic wastes.

2. The computational efficiency of YOLOv8-s, YOLOv8-l, YOLOv10-s, and YOLOv10-
l when performing inference in underwater images.

3. The trade-offs between the detection accuracy and processing speed of each model
are analyzed.

Work Conducted: This involved training and testing four YOLOmodels based on YOLOv8-
s, YOLOv8-l, YOLOv10-s, and YOLOv10-l with respect to performance on a 1200-image
dataset of underwater plastic images . The models were created using the Ultralytics
YOLO framework; the models were tested on a test set including 203 images.

Success in Addressing the Research Question: The study conducted well in answering
the research question by providing a good comparison in performance and efficiency of
different versions, sizes, among others, about YOLO in plastic underwater detection. All
objectives were achieved with a detailed analysis of detection accuracy, computational
efficiency, and related trade-offs.
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Key Findings:

1. YOLOv10-s was found to be the most effective model for both the best accuracy and
computational efficiency, offering an mAP50 of 0.423 and a computational overhead
of 24.4 Gflops.

2. Larger models, such as YOLOv8-L and YOLOv10-L, underperformed with respect
to their smaller versions.

3. Generally, the models of YOLOv10 outperformed those of YOLOv8, especially in
terms of the small model category.

4. Underwater plastic detection was not necessarily accompanied by higher perform-
ance with large model sizes.

Implications of the Research:

1. Environmental Surveillance: The results indicate that adequate models of high pre-
cision, like YOLOv10-s, do make a difference at all levels in monitoring underwater
plastic pollution.

2. Resource Optimization: It is this very superior performance of smaller models which
means effective underwater plastic detection systems can be deployed with limited
computational resources.

3. Model Design Paradigm: These findings challenge the ”bigger is better” assumption
in the design of models and underline task-specific optimization.

Efficacy and Limitations:

The research effectively compared different YOLO models and provided insights into
their performance characteristics. However, several limitations should be noted:

1. Limited Dataset: The test set of 203 images may not be representative of the
diversity in underwater conditions that may be present in the actual world.

2. Controlled Environment: The study was devoid of testing in varied real-world un-
derwater scenarios.

3. Single Task Focus: The research was simply targeted on plastic detection, thus
generalization of these results on any other underwater object detection task would
be a concern.

4. Hardware Constraints: The empirical study was conducted on certain hardware,
which is not necessarily representative of all possible deployment scenarios.

Future Work and Potential for Commercialization:

1. Multi-modal Underwater Sensing: Further studies could include additional sensor
readings, like sonar or water quality sensors, coupled with visual data to guarantee
better detection rates under less favourable conditions underwater. That can be
how a future multimodel approach can set on its way to more robust commercial
systems for monitoring marine pollution.
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2. Adaptive Model Selection System: Design an intelligent system that will self-adjust
to the most suitable YOLO model based on real-time conditions of the environment
and computational resources. This could further optimize the performance across
varying underwater scenarios and hardware constraints.

3. Temporal Analysis for Moving Plastics: This would involve the extension of the
current analysis on static images to video processing, allowing for temporal inform-
ation to track moving plastic debris. This would increase the applicability of the
system in real ocean environments with currents and marine life.
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