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Predicting Exoplanet Habitability Using Machine
Learning

Debayan Biswas
x22242821

Abstract

The study of exoplanets is a vital area for understanding the presence of life beyond
the solar system. Despite having significant scientific achievements and findings in
this field, there remains a significant gap in the development of methodologies to
accurately predict and classify the habitability of exoplanets. The motivation of
this study comes from the limitations of the present methodologies due to the pres-
ence of imbalance class and data scarcity in the data recorded due to the vastness
of space. This project aims to overcome this problem by integrating data from
the Transiting Exoplanet Survey Satellite (TESS) and the Planetary Habitability
Laboratory (PHL) sources followed by the application of an extended Conditional
Generative Adversarial Networks (cGANs) algorithm. This extended algorithm will
lay forward the creation of a robust model to handle complex astronomical data
by using a custom classifier XGBoost. The GANs will aid in generating real-life
synthetic data thereby enhancing the existing dataset. The core findings of this
research is to show the effectiveness of the cGAN in generating synthetic data and
using custom classifier in predicting potentially habitable exoplanets. The result of
the project show the the prediction accuracy achieved is at 96% that determine the
accuracy and efficiency of the model. The contribution of this project can open a
new chapter in this astronomical research domain by enhancing exoplanet research
and thereby making way for future voyages toward our future destination.

1 Introduction

The journey to know the unknown and what lies beyond our solar system has been an im-
portant subject for mankind. The search for a new habitable planet has already begun to
support the ever-increasing demand for human settlement. To date, more than 3800 exo-
planetary systems have been discovered Rojas-Ayala (2023) out of which the majority are
invisible to the naked eye due to their distance from us. With the advancement in tech-
nology, the detection of distant world is now possible with the aid of scientific telescopes
and space exploration techniques. The space data collected from Transiting Exoplanet
Survey Satellite (TESS) have provided with an array of data on exoplanet transits while
data from Planetary Habitability Laboratory (PHL) have complied extensive dataset on
exoplanet characteristics. This study combines the data from these satellites and aims to
implement advanced machine learning technique of conditional Generative Adversarial
Networks (cGANs) and integrating it with gradient boosting algorithm XGBoost to ef-
fectively predict the habitability of exoplanets.
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1.1 Motivation

The vastness of space has put certain limitations to accurately classify the habitable
exoplanets. The present means of gathering data is limited to ground and space telescopes
only. The collection of data from distant object brings forward a lot of data scarcity and
class imbalance in the recorded data. Also, the interpretation of these gathered data
does not always foolproof the habitability of exoplanets. Hence comes a need to integrate
a more complex and advanced measure in dealing with the exoplanet prediction. This
motivation paved the way to combine dataset from different sources to enrich the dataset
and implement an extended cGAN algorithm with custom classifier XGBoost to solve the
prevalent issues.

1.2 Research question

The research question is as follows:

1. How can the integration of TESS and PHL datasets improve the efficiency of
predicting potential habitable exoplanets?

2. How can an extended cGANs algorithm be utilized to address class imbalance and
improve the classification of potential habitable exoplanets?

The solution to this research question will address the problems of class imbalance by
utilizing cGAN. By incorporating a gradient-boosting classifier XGBoost, and applying
hyperparameter tuning, this approach is expected to enhance the prediction accuracy.

1.3 Hypothesis

The research hypothesis states that the application of cGAN to handle class imbalance
by generating synthetic data similar to the actual data when combined with machine
learning technique like XGboost can significantly enhance and improve the accuracy of
exoplanet habitability predictions.
The null hypothesis states that the application of cGAN to generate synthetic data when
combined with machine learning technique like XGBoost does not improve the accuracy
of exoplanet habitability predictions when compared to the state of the art Jakka (2023)
which is having 92% to 95% accuracy.

1.4 Report outline

The research report is divided into several sections and sub-sections to enhance the flow
and readability of the research. A brief introduction of the research motivation, chal-
lenges, research question and hypothesis is presented in Section 1. Section 2 presents the
findings of the existing research work and the current state of the art. Section 3 discusses
about the flow of the project starting from data collection to final results. Section 4
discusses the pseudo code of this research project. The algorithm implementation, and
tools and hardware required for code implementation is discussed in Section 5. The res-
ults of exoplanet habitability prediction is presented in the Section 6. Section 7 discusses
research findings and elaborates the future scope for this project. Finally, References
consist of all cited literature papers and sources.
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2 Related Work

This section gives a detailed explanation of current research on exoplanets in a logical
order that can provide a direction for further research in the future.

2.1 Finding exoplanets

Detecting an exoplanet is the first step toward assessing its potential habitability. There
are several detection techniques present including primarily astronomical observation
and planet characterization. Dai et al. (2021) discussed about methods like Radial Ve-
locity (RV), Transit Photometry, Astrometry, and Microlensing. Newman et al. (2023)
discussed about generating simulations for exoplanets using RV Surveys. RV survey de-
pends on the frequency of Earth-like exoplanets around their host stars. The surveys
are used to identify the potential exoplanets that are hosting their stars by measuring
the reflex velocity of the stars. This paper mentioned that a properly designed survey
could achieve the necessary sensitivity to detect Earth-like exoplanets with similar mass.
Although the observational resource requirement for achieving this is high and requires
proper infrastructure. Qiao-Yang et al. (2023) discussed various detection methods such
as RV, Transit, Astrometry, and Direct Imaging. The paper highlighted that RV could
detect about 2% of Earth-like exoplanets around M stars with high precision, though
it’s limited by current technology. The Transit method is ideal for detecting Earth-like
planets, providing detailed orbital and size information, but requires the transiting orbit
to align with the observer. Astrometry offers high precision for planets around G stars,
yet is sensitive to stellar noise and requires high-precision measurements. Direct Ima-
ging is effective for exoplanets around bigger stars with significant planet-star separation.
Being image data, it offers insight into exoplanet composition, but challenges remain in
achieving the necessary resolution and contrast due to noise.

Singh and Singh (2023) analysed the Transit method and RV approach for the exo-
planet detection method. The transit method detected dips in the star’s brightness while
it transits its stellar host and has successfully discovered various exoplanets. This method
is limited to low-brightness dips whose orbital periods are long. The observing perspect-
ive is important for proper detection of exoplanets. The RV method measures stellar
motion by the gravitational pull of orbiting planets thereby predicting the mass and or-
bital parameters of exoplanets. This process requires the study of the Doppler effect
and Redshift on the observed data. Precise measurement is a challenge as RV cannot
directly estimate the planet’s orbit and can generate false positive signals that simulate
the presence of a planet and is unsuitable for lower-mass planets and those orbiting dis-
tant host stars. Prasad et al. (2023) focused on the transit method to detect exoplanets
by analysing the time series data of light curves. This method identified the brightness
dips that occurs when an exoplanet passes in front of their star. These dips called flux
can estimate the mass and radius of space objects thereby determining exoplanets. The
transit data generated high Sound-to-noise ratio (SNR) ensuring that there is minimal
loss of information in the light curve data, which reduced the chance of false negatives.
This method is not limited to detecting only brighter planets and will lead the path in
detecting further exoplanets with increased precision in calculating mass, radius, orbital
velocity, and other parameters.
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Although all the methods are effective in detecting exoplanets, the transit method can
better predict exoplanets due to high SNR, precise data of the mass, radius, and other
parameters, and is not limited to detecting larger planets. The TESS and PHL datasets
are generated using the transit method.

2.2 Class imbalance handling

The class imbalance present in data needs to be handled beforehand so that the data can
be useful for better classification. The study by Yi et al. (2021) discussed the classical
Over-sampling techniques of Synthetic minority over-sampling technique (SMOTE) and
a proposed Minority clustering SMOTE (MC-SMOTE) applied for a wind turbine blade
icing fault detection. SMOTE addressed issues of minority class by generating synthetic
samples through linear interpolation between neighboring minority samples. The dis-
tribution of the minority class is not often uniform due to the interpolation leading to
subpar performance. However, the proposed approach handled this issue by clustering
minority classes first into several samples. The synthetic data was generated using linear
interpolation between adjacent clusters rather than neighbor minority classes. This en-
sured a wider range of minority classes with a more even class distribution. However, the
proposed MC-SMOTE suffered in effectiveness as it only showed better results for uneven
class distribution. Also, it is susceptible to uncertainties like noise and outliers. A more
robust model is necessary to handle these uncertainties. Khoda et al. (2021) discussed
about addressing data imbalance issues in malware detection for edge devices in IoT net-
works. The proposed approach of Fuzzy set theory and Dynamic loss function with class
weighting addressed the information loss, over-fitting, and invalid samples that arise from
class imbalance in traditional methods. The proposed technique improved the synthetic
sample quality thereby enhancing model training. Both method focused on processing
uncertainty and offered higher priority or weights to the minority class. The proposed
approach showed 9% improvement in the F1 score in malware detection. However, the
fuzzy-based approach has limitations due to sensitivity towards user-chosen settings. The
paper mentioned about introduction of adversarial retraining techniques that may further
enhance stability and effectiveness.

Li et al. (2018) implemented an adversarial network in a novel way called Text-to-
text GAN (TT-GAN) in Natural Language Processing (NLP) that can generate realistic
text, summaries, and paraphrases. The model generated realistic texts that were similar
to the content of the source. The generative model successfully generated paraphrases
and semantic summaries showing the capabilities of GAN. However, the model faced
challenges related to the generation of discrete text due to the differentiability of GANs.
The study mentioned about scaling the capabilities of the GAN model and its further
development in this domain as a future scope. Douzas and Bacao (2018) introduced an
extended version of GAN called conditional Generative Adversarial Networks (cGAN)
as an oversampling method. cGAN unlike SMOTE, approximates the data distribution
of minority class. The quality of the synthetically generated data is of higher quality
and generated realistic data. The author evaluated the performance of cGAN across 71
datasets with class imbalance and cGAN outperformed other methods across different
classifiers like Decision Tree, Logistic regression (LR), Gradient boosting models, etc.
cGAN is efficient in handling complex structures, patterns and once trained generates
new minority class samples. The generator takes noise and minority class as inputs and
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the discriminator generates synthetic data out of it. However, adequate model training is
necessary to generate evenly distributed samples that lead to optimal results. The study
focused on binary classification but states the potential of cGAN in handling multi-class
imbalances. Another cGAN model utilized by Yang (2020) is applied to a flight engine
vibration dataset. The cGAN can be conditional as per problem requirement. The author
applied a combined approach along with a Support vector machine (SVM) to understand
the engine vibration data. The cGAN solved the problem of insufficient realistic flight
data by generating new data with the collaborative effect of generator and discriminator.
The evaluation depicted that these changes increase the F1 score by 25% along with pre-
cision and recall to gain 15.6% and 80% respectively. These collaborations are far better
than previous papers.

In summary, while SMOTE and Class Weighting have certain limitations, cGAN ap-
proach overcomes these limitations by generating high-quality realistic minority class
samples. cGAN being more complex and advanced, preserves the features while gen-
erating synthetic samples. The addition of a classifier to cGAN significantly improved
the model’s performance and hence selecting a suitable classifier is necessary to achieve
better results.

2.3 Machine Learning in Exoplanet Research

Bahel and Gaikwad (2022) talked about the use of light-intensity time series data col-
lected from NASA’s Kepler mission and using machine learning techniques for exoplanet
detection. The study applied a decision tree, LR, and k-Nearest Neighbor (KNN) on
rebalanced data using SMOTE. The study showed that KNN performed the best and
attained an Accuracy of 98.20% with an F1 score of 98%. KNN also performed well with
unbalanced original data attaining high accuracy of 99.1% using only 1% of the data.
Decision tree struggled with balanced data where its accuracy and F1 were lower than
the unbalanced dataset. LR performed the worst with very low accuracy. KNN showed
effectiveness for limited data. The study by Vishwarupe et al. (2022) focused on similar
Kepler data to be used for machine learning. The effectiveness of the various machine
learning algorithms are compared. Here, Random Forest (RF) classifier was the most effi-
cient with F1 score of 96.2% for handling complex multi-variate data with the presence of
minimum noise. The decision tree had a similar performance to the previous paper with
F1 score of 93.7% but now is susceptible to noise issues. KNN and LR were unsuitable
as they suffered from overfitting and outliers in the data. The study highlighted the need
for a more advanced approach for generating better-performing models.

Bhamare et al. (2021) used the Kepler data extracted from Kepler cumulative ob-
ject of interest (KCOI). Feature selection and preprocessing reduced the feature count
drastically to necessary features. Support Vector Machine (SVM), RF and Adaboost was
implemented for classification. RF performed well in general compared to previous study
with F1 score at 98%. SVM achieved a fair score at 97.72% and these results were due
to the carefully selected features. The gradient boosting algorithm Adaboost performed
slightly better than RF with F1 at 98.03%. RF and Adaboost were equally capable in
predicting exoplanets. Sharma et al. (2023) summarised a study comparing various ma-
chine learning algorithms for predicting and classifying space objects like quasars, galaxies
and stars. The transit data after preprocessing was passed through Principal Component
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Analysis (PCA) which is dimensional reduction technique that preserves variability. The
Multiclass LR and the Näıve Bias model being simple models performed well with F1
score at 95.33% and 96.6% on average for the 3 classes. Complex model like Decision
Tree performed better than previous study with F1 score at 97.3%. The highest perform-
ance was achieved by the gradient boosting model XGBoost with average F1 at 99% for
combined classes and 100% accuracy for confirmed class 2.

XGBoost’s high accuracy and efficiency make it suitable for real-time data analysis.
Both gradient boosting algorithms Adaboost and XGBoost are the best performing and
showed their robustness in predicting exoplanets. Extending cGAN with XGBoost clas-
sifier will make the model more efficient and effective in predicting and classifying the
exoplanet habitability.

2.4 Combined Approach for Prediction

The paper Chen et al. (2024) compared the result of cGAN with or without a classifier
in the GAN framework. The study revealed that Energy-based Conditional Generat-
ive Networks (ECGAN) that combines a classifier showed better results than cGANs
without classifiers. The classifier improved the accuracy of the cGAN leading to better
performance on challenging datasets. The downside is that they require more computa-
tional resources than normal cGAN on large datasets. The study by Ghaleb et al. (2023)
proposed a combination of ensemble learning and a Gan-based Ensemble Synthesized
Minority Oversampling Technique (ESMOTE-GAN) used for fraud detection. This ap-
proach addressed the presence of high-class imbalance by generating datasets with less
noise. The model is extended with a RF classifier that achieved improved performance
in detecting fraud with an increased detection and false alarm rate. However, overfitting
may arise that needs to be properly treated.

The GAN when extended with a classifier performers better than without classifiers.
Thus the proposed cGAN model extended with classifiers XGboost will be robust enough
to predict the habitability potential of exoplanets.

3 Methodology

This section provides detailed discussion of the research methodology. The steps from
initial data collection to model training is mentioned here in a systematic scientific way,
ensuring the validity of the findings. The methodology flow can be seen in Figure 1.

3.1 DATA COLLECTION

The two datasets used for this project are the Transiting Exoplanet Survey Satellite
(TESS) NASA Exoplanet Archive (2024) and Planetary Habitability Laboratory (PHL)
Planetary Habitability Laboratory (2024) which are sourced from the NASA Exoplanet
Archive and the University of Puerto Rico PHL website, respectively. Both the datasets
consist of necessary features for the habitability prediction purpose. However, TESS
only has features present in the dataset whereas PHL has both features and targets
necessary for prediction. Hence, the dataset if combined will enrich the dataset forming
a more informative dataset having both features and targets. There are several common
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Figure 1: Project methodology

columns present in both the datasets that will be inspected while merging. The process
of combining the datasets is mentioned in the next subsection.

3.2 DATA INTEGRATION

The two datasets in use share several common columns and also include additional
columns with different sets of information. This is because each dataset being derived
from different space telescope, resulting in a significant amount of data scarcity. Com-
bining the datasets will create a more enriched dataset, making it more impactful for
habitability predictions. Both datasets contain several redundant features that do not
have significant contribution for predictions and are therefore omitted. The TESS dataset
consists of only features with no target variable. Integrating TESS and PHL brings the
target variable in the dataset which will be used for prediction. The columns defining
the planet’s mass, radius, orbital period, and eccentricity, as well as the stellar object,
stellar radius, mass, metallicity, distance, degree, earth similarity index, and surface tem-
perature are crucial for habitability prediction and are the only factors considered. The
most vital factor of habitability which is the target variable, classifies the planets in three
categories: 0 for not habitable, 1 for potentially habitable, and 2 for confirmed habitable
planets. Class 0 is the majority class consisting of 5331 elements whereas the minority
classes 1 and 2 have 22 and 39 elements respectively. The class imbalance in this data-
set is significant, with class 0 comprising 98.87% of the data, while the minority classes
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occupy the remaining portion. This class imbalance is carefully handled, as discussed in
subsection 3.5. After data integration, the merged dataset was checked to ensure accur-
acy and the absence of discrepancies. However, the merged dataset contains a significant
number of missing values checked using msno matrix, as seen in Figure 2, which need to
be processed.

Figure 2: Matrix showing missing values

3.3 DATA PREPROCESSING

Data preprocessing is a vital step in preparing the dataset for imbalance class handling
and model training. The merged dataset has missing information which needs to be
addressed. The dataset is split into features and target label based on the presence of the
target variable P HABITABLE. The categorical and numerical columns are identified
from the features and preprocessing pipelines for both types of columns are created.
The numerical pipeline uses a KNN Imputer to fill in missing values by averaging the
values from the nearest rows with similar data. The categorical pipeline uses a Simple
Imputer approach to fill in the missing values with the most frequent category. Column
Transformer is used to effectively apply both the preprocessing techniques to ensure
each column is imputed properly. After preprocessing of the numerical and categorical
features, the features and target label are merged together. The dataset still has 172
missing rows in the target label which needs to be addressed. The dataset is now split
into two parts, one containing rows where P HABITABLE value is present (known) and
the other with P HABITABLE value missing (unknown). These split dataset will aid
in finding the missing target label using an RF classifier. The categorical features are
encoded using One-hot encoding to transform them into binary variables needed by the
classifier for predicting. The model is trained on the on the known data to predict the
missing data which fills the missing gaps in the original dataset. The classifier predicts
the missing values based on data patterns and relationship.
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3.4 DATA VISUALIZATION

The relationship between the features is explored in this section. The two datasets after
merging and preprocessing shows a class distribution which is depicted in Figure 3.

Figure 3: Class Distribution after merging and preprocessing

The plot for the features stellar temperature and mass in relation to habitability
depicts the effect of the host star’s features on habitability. Figure 4 depicts a linear
spread suggesting that the more the stellar mass, the greater the temperature of the
star. This suggests that the brighter dips in transit depict a larger host star. However,
habitability decreases with increase in these features.

Figure 4: Stellar Mass-Temperature relation with Habitability

The correlation matrix depicts the relationship between each numeric features which
can be seen in Figure 5. There are positive and negative correlations. A positive correl-
ation indicates if one variable increases, the other correlated variable tends to increase
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whereas a negative correlation occurs when one variable tends to decrease with increase
of the other variable. From the correlation figure, it can be inferred that the features
P ESI and P HABITABLE have a positive correlation (0.371), suggesting as the Earth
Similarity Index (P ESI) of a exoplanet increases, the likelihood of it being habitable
also increases. P ESI and P RADIUS have a strong negative correlation (-0.585) which
suggests larger planets tend to have a lower Earth similarity index which is true. Un-
derstanding these relationships can help improve model interpretability and refine the
dataset’s analysis.

Figure 5: Correlation Heatmap of numeric features

3.5 CLASS IMBALANCE HANDLING

The merging of the two datasets brings in significant class imbalance with majority
present under the majority class. The majority class belongs to non-habitable cases,
is the major issue to address as it will impact the prediction efficiency. The count of
classes 0, 1, and 2 are 5331, 22, and 39 respectively. To predict the habitability potential
of exoplanets, there should be a balance between the classes present as it is necessary for
the proper classification of the model. For this greater number of minority class samples
needs to be generated and for this Conditional generative adversarial network (cGAN) is
used. The cGAN block handles the dataset with the creation of two functions: Generator
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and Discriminator. The generator function generates synthetic samples for the minority
classes which are like the actual data samples. The discriminator class discriminates the
synthetic sample by evaluating the authenticity of the synthetic data with the real data.
The continuous training of the generator and discriminator creates a balanced dataset
with an increase in the number of data generated. The cGAN algorithm generates real-
istic data for both minority class 1 and class 2. The synthetic data generating balances
the dataset with each class having 5331 rows thereby increasing the dataset size to 15993
rows. The unnecessary categorical features are ignored because cGAN can only handle
the generation of synthetic data based on the actual numeric data present and dealing
with categorical features may lead to a misleading output. The P TYPE TEMP feature
being categorical is transformed using Label encoder to generate numeric data based on
cold, warm and hot categories. The features were scaled using Standard Scalar and the
target label is encoded using One Hot encoder to ensure the data are in numpy array
format as it is necessary for cGAN input.

3.6 MODEL TRAINING

The cGAN model output is evaluated based on the gradient boosting classifier XGBoost.
XGBoost is used here for its known performance which has been discussed in Section 2
of this report. The target and features are first separated from the dataset to generate
two unique tables. The features can be considered as the input to the machine learning
algorithm and the target is the output generated which is the column P HABITABLE.
Both the features and labels are split into train and test sets with train and test size of
80% and 20% respectively . The features are scaled using Standard Scalar. This method
standardizes the features by removing the mean ensuring all the features are equally
considered for classification purposes irrespective of their actual scales. XGBoost being
sensitive to the scale of input data makes this a necessary process. The target label is
encoded using Label Encoder as it is categorical and has 3 categories as class 0,1 and
2. The classifier XGBoost is initialized for later training. Before that, hyperparameter
tuning is applied to find the best optimal set of hyperparameters that can impact the
model’s performance. A grid search with cross-validation is implemented as hyperpara-
meter tuning. A param grid is defined with the maximum depth of the tree for XGBoost,
learning rate which controls overfitting, n estimator which defines the number of trees to
fit, subsamples, and features used for fitting each tree. After the parameters are defined,
Grid Search CV is applied. A cross-validation of 5 is applied that splits the training
data into 5 parts. The model is trained on the 4 parts and the remaining part is used
for validation. This process is repeated 5 times with the validation set changing each
time. This training gives the best hyperparameter as output to be used to evaluate the
classifier.

4 Design Specification

This section consists of the algorithm architecture that is associated with this project.
The algorithm proposed is a new combined approach that combines the power of cGAN
with a powerful gradient boosting algorithm XGBoost. The details of the pseudo is
discussed in this section.
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Algorithm 1 Handle Class Imbalance with cGAN and Predict Exoplanet Habitability
with XGBoost

Data Preparation:

1: Load TESS and PHL datasets
2: Preparing both datasets for merging
3: Merge both datasets on similar columns and specific columns
4: Pre-process the new dataset generated by handling numerical and catgeorical columns
5: Handling the missing values in habitable column using classifier
6: Dropping unnecessary categorical columns, and separate features and labels
7: Encode the P TYPE TEMP column into numeric values
8: Scaling features and encoding labels

Defining Generator Block:
9: generator noise dim, class dim, output dim
10: Add Dense layer with 256,512 and 256 units using ’relu’ activation
11: Add Dense layer with output dim units using’sigmoid’ activation
12: return model

Defining Discriminator Block:
13: discriminator input dim, class dim
14: Add Dense layer with 256, 128 and 64 units using ’relu’ activation with Dropouts
15: Add Dense layer with 1 unit, ’sigmoid’ activation
16: return model

Building cGAN model:
17: Defining input for noise dim and class dim
18: Generate data using generator with the inputs and set discriminator to False
19: Concat with class input and pass them through Discriminator for output
20: Define GAN model using output and inputs
21: Compile GAN using Adam Optimizer and loss function

Training cGAN:
22: steps in num epochs
23: Select a random batch of real data and generate fake data using generator
24: Adding noise to prevent overfitting and use label smoothing
25: Train the discriminator on real and fake data
26: Train the generator through cGAN with real labels

Generating new Balanced data:
27: Calculating required synthetic samples for minority classes
28: Generating synthetic data for minority classes using generator
29: Combine real and synthetic data to create a balanced dataset

Training XGBoost Classifier:
30: Split balanced data into features and target label
31: Scale the features and encode the target label
32: Define parameter grid for XGBoost and use GridSearchCV to find best parameters
33: Train XGBoost model with balanced dataset

Evaluation of XGBoost Model:
34: Evaluate model performance using Accuracy, Precision, Recall, Log loss, AUC-

ROC curve
35: Use XGBoost-specific KPIs like SHAP, Feature importance
36: Make habitability predictions using XGBoost model
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The algorithm starts by fetching the two datasets that are required for the project.
These datasets TESS and PHL, are then merged on similar columns and additional spe-
cific columns as these datasets consist of similar astronomical data. The merged dataset
consists of both features and target label necessary for prediction. The preprocessing is
done on the dataset to handle the missing values in the numerical and categorical columns.
The missing values in the target label is handled using a RF classifier that predicts based
on data patterns and relationship. The generator and discriminator blocks are defined as
there will be implementation of GAN architecture. The generator takes noise and class
label as input and generates fake data as output. The generator uses multiple dense layers
with various activation function like relu and sigmoid, that determines how the sum of
inputs is transformed into an output in neural network. The discriminator follows almost
similar techniques on multiple layers with addition of dropouts. The difference between
the two functions can be stated that the generator aims to generate realistic data, while
the discriminator aims to distinguish real data from generated data. The cGAN block
then combines the generator and discriminator as they are passed into the cGAN func-
tion. The cGAN model is compiled using loss function and Adam optimizer. The loss
function determines closeness of prediction with actual data, whereas Adam optimizer
adjusts the learning rate of model and loss function. The model training is done based
on the necessary hyperparameters. The training process simultaneously trains the dis-
criminator on real and fake data and trains the generator with real labels. The required
minority classes are calculated and are generated using the trained cGAN model. The
generated synthetic data from both classes 1 and 2 are combined with the real dataset to
create a balanced dataset. The balanced features and labels are split into training and
test set for the classifier. The features are scaled using Standard scalar and the target
label is encoded using Label encoder. The hyperparameter grids are defined for the clas-
sifier and Grid search is used to find the best parameters. The XGBoost model is trained
on the best found hyperparameters. The model’s performance is based on quantitative
metrics like accuracy, precision, recall, log loss and ROC-AUC curve. XGBoost specific
qualitative metrics like Shapley additive explanations (SHAP) and feature importance
are used to determine how each feature contributes to each prediction and identify the
most important features. The model is then validated by passing a new exoplanet data
that determines the class of the exoplanet accordingly.

5 Implementation

This section discusses the final implementation stages of the project that focuses on the
model implementation, output generation, and tools and techniques used.

5.1 MODELS

The algorithm devised for this project is cGAN and its capabilities are extended using
XGBoost classifier. The model is fine tuned to address the current problems of exoplanet
habitability. The cGAN model is used to handle the imbalance in class present in the
merged dataset. The generator block of the cGAN consists of a generator function that
creates synthetic data like real data and discriminator function evaluates the authenticity
of the generator data. The generator and the discriminator are trained simultaneously
allowing the generator to improve its generative ability with every iteration and thereby
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improving its ability to generate realistic synthetic data. The generator and discrimin-
ator are implemented using TensorFlow. The generator function takes random noise and
class labels as input and generates data samples resembling the minority class. The dis-
criminator on the other hand differentiates between the real and synthetic data samples.
The discriminator uses Spectral normalization that is used to stabilize the discriminator
training process ensuring smooth and reliable model training. Both the functions have
dense and batch normalization layers with specific neurons. The cGAN model is build
combining the generator and discriminator and is trained on the merged data using spe-
cific hyperparameters. Batch size, epochs, sample interval and noise dim are specified as
training parameters. The cGAN model generates synthetic samples for the two minority
classes: Potential Habitable and Confirmed Habitable Class thereby creating balanced
dataset. XGBoost is extended with the cGAN algorithm as a classifier. Its is a gradient
boosting algorithm chosen for is performance in terms of accuracy and evaluation. XG-
Boost is implemented to train on the balanced dataset generated by cGAN and it thereby
enhances the model’s ability to accurately classify the classes.

5.2 RESEARCH RESOURCES

The researcher resources were significant for the successful implementation of this project.

5.2.1 Literature Paper

Research papers on machine learning techniques provided an idea of the proper logical
approach to this project and helped in fine tuning the proposed approach. Articles and
papers on class imbalance in dataset were important for understanding class imbalance
handling and generation of synthetic data.

5.2.2 Documentation of libraries

The project needed the use of various libraries and packages for its successful implement-
ation. The documentation of the libraries gave a proper understanding of the approach
and helped in implementation of cGAN.

5.3 DATASET SOURCE

The datasets used for this project comes from two established sources: Transiting Exo-
planet Survey Satellite (TESS) and Planetary Habitability Laboratory (PHL). The TESS
and PHL both are available as open access and is free to use. TESS is available without
licencing restrictions and PHL aligns with Creative Commons licence. The TESS dataset
is maintained by the Mikulski Archive for Space Telescopes (MAST) funded by National
Aeronautics and Space Administration (NASA) and includes data from Hubble, Kepler,
TESS and other telescopes. The PHL dataset is maintained by the University of Puerto
Rico at Arecibo.

• TESS DATASET- EXOPLANET ARCHIVE NASA

• PHL DATASET-PHL EXOPLANET CATALOG
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5.4 TOOLS IMPLEMENTED

The implementation of the model involved the use of several libraries and software.

5.4.1 Jupyter Notebook

It is used as it provides and environment for testing the code. The notebook is also used
to document the implementation and visualization of the result.

5.4.2 Key libraries

• Pandas and NumPy: Pandas is used for data manipulation and data processing
for model training. NumPy is used for numerical computations and is needed for
implementing algorithms.

• Matplotlib, seaborn and missingno Matplotlib is used for creating static and
interactive visualizations. Seaborn is an extension of matplotlib used for creating
complex plot and consist of numerous default style settings. Missingno is used for
visualization of missing data in a dataset.

• Scikit-Learn: It is used for data preprocessing and also for evaluation of the
model’s performance.

• TensorFlow: It is used for creating, training and optimization of the cGAN model.

• XGBoost: It is used for implementing the XGBoost classifier which is important
for final model evaluation.

5.5 HARDWARE IMPLEMENTED

The hardware used for this project includes the use of an AMD-based 6 core 12 logical
core system with integrated Radeon Vega 7 graphics, 512 gigabytes of solid-state storage,
and 16 gigabytes of RAM.

6 Evaluation

This section provides a complete analysis of the result obtained. The model’s performance
is evaluated based on a combination of quantitative and qualitative analysis to provide a
complete assessment of the project.

6.1 Quantitative Analysis

6.1.1 F1 score and other metrics

The model evaluation gives an accuracy score of 0.95967 and this suggests the model
correctly predicted the habitability class of exoplanets in 96% of the cases. Figure 6
shows the weighted average of precision and recall for the classes 0, 1, and 2 is at 0.96.
The weighted F1 score of the model is 0.95968 as seen in Figure 7 suggests that the model
performs well across all classes, balancing precision and recall efficiently.

15



Figure 6: Performance metrics

6.1.2 Confusion matrix

The confusion matrix in Figure 7 defines class 0 for the non habitable exoplanet class
shows that 1064 instances are correctly classified with no misclassifications. The class 1 for
potentially habitable class shows 1031 instances are correctly classified, but 77 instances
are misclassified as class 2. The class 2 for confirmed habitable shows 975 instances are
correctly classified, with 52 instances misclassified as Class 1. The evaluation depicts that
the models has excellent precision for class 0 but experience small confusion for class 1
and 2.

6.1.3 Log Loss

Figure 7 shows the log loss obtained is 0.1010. Log loss measures the model’s performance
with a predicted output. A very low value of log loss indicates that the model suffered
less during prediction and its predictive probability is close to the actual target label.
The low value also indicates that the model can provide accurate probability estimates
for each class.

6.1.4 AUC-ROC

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) score is 0.9957
as seen in Figure 7. This is a performance metric for classification problems at various
thresholds. The score close to 1 depicts the model’s ability to differentiate between differ-
ent classes with a probability of 99.58%. This high score states strong model performance.

Figure 7: Quantitative metrics

The ROC curve in Figure 8 shows high AUC values for the 3 classes. Class 0 having
blue curve with AUC score of 1 indicates that the model can perfectly distinguish Class
0 from the other classes without errors. Class 1 and 2 both at 0.99 indicates robust
performance with only a 1% of misclassification.
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Figure 8: Receiver Operating Characteristic (ROC) Curve

6.2 Qualitative analysis

6.2.1 SHAP summary

The SHAP summary plot as seen in Figure 9 determines how different features aids the
model prediction. The plot suggest that P ESI, P TEMP SURF MAX, and P PERIOD
significantly impact the model’s prediction and also has significant interaction with the
other features which can be observed in the plot as high interaction is plotted in red while
low interaction in blue.

Figure 9: SHAP summary plot
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6.2.2 Feature Importance

Feature importance ranks the features based on their contribution in model’s prediction.
The Figure 10 shows that P PERIOD is the most significant feature with a score of
35.2072, indicating its crucial role in determining the habitability class of exoplanets.
Higher values of the features positively influence the likelihood of a planet being habitable
or potentially habitable.

Figure 10: Feature importance table

6.3 Validation check

New exoplanet data is passed as input into the model validation function to check its
class predicting capability. The input data belongs to confirmed habitable planets. The
output of the validation check function provided a result showing as confirmed habitable.
This suggests the model is capable in categorizing the habitability of exoplanets based
on input data.

6.4 Discussion

The model demonstrates strong performance with high accuracy and a weighted F1 score.
The imbalance class was handled effectively by cGAN. P PERIOD is the most influential
feature that drives the predictions. The confusion matrix confirm the model’s effectiveness
in accurately classifying exoplanet habitability. The evaluation depicts the robustness of
the model’s performance in predicting exoplanet habitability.

7 Conclusion and Future Work

The main goal of this project was to address the research question, achieved through a
process from data merging to model evaluation and validation. The major issue of class
imbalance for this multiclass classification was handled effectively by the cGAN model
generating very low D loss and G loss of 0.3855 and 1.5873 respectively. The model
shows strong performance with an accuracy of approximately 96% and a weighted F1
score of 0.95968. A high ROC-AUC score of 0.9957 confirms the model’s effectiveness in
differentiating habitability classes. The confusion matrix shows that the model provides
highly accurate predictions across all three classes. This suggests the project can aid
researchers in identifying potential habitable exoplanets.
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Future work could focus on various areas to improve model’s efficiency and performance.
Utilizing better quality dataset with more relevant features will likely improve the model’s
accuracy further. More efforts should be made to combine datasets from various sources
to create a more enriched dataset that includes all necessary and additional features.
Class imbalance handling with advanced and complex GAN algorithms and autoencoders
could eventually improve the model’s performance in predicting exoplanet habitability.
Application of different combinations of classifiers and ensemble methods may yield more
fruitful results. The knowledge obtained from this research could be used in predicting the
habitability of other celestial bodies like asteroids and planetoids, and could broaden the
scope and impact of this research. This project is not only limited to exoplanets detection
but also can be implemented in other fields due to the flexibility of the techniques. The
exoplanet research will donate a significant amount of knowledge into the understanding
of the void and could pave the way in searching for life forms.
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