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1 Introduction

The purpose of this configuration manual is to provide a detailed information about
the steps that were kept in mind to complete the research project titled ”Integrating
Deep Learning Algorithms into a Web Application for Accurate Melanoma Skin Cancer
Detection”. The information contains System Configuration, Software and Hardware
specifications, development and deployment process with the tasks which are required to
run the code.

2 System and Software Requirements

The Project was developed and implemented on the below configuration:

Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch No

Related links  Domain or workgroup ~ System protection ~ Advanced system settings

Windows specifications

Edition Ni 1 Home Single Lang
Version

Installed on

0S build

Experience Ni eature

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: System Configuration



Table 1: Hardware Configuration

Operating System Windows 11

RAM 56.9 GB (Google Colab)

Disk Space 201.23 GB (Google Colab)

Runtime Model Name | 12th Gen Intel(R) Core(TM) i7-12650H @ 2.30 GHz

2.1 Software Requirements:

1. Programming Language: Python 3.10.12
2. IDE: Jupyter Notebook

3. Tensorflow Version: 2.15.0

3 Python Libraries:

I used the following python libraries to conduct my research project of predicting melan-
oma skin cancer:

1. Pandas

2. Numpy

3. OS

4. CV2

5. Matplotlib
6. Seaborn
7. Plotly

8. Tensorflow
9. Keras

10. Sklearn

4 Dataset Description:

e The dataset which is used for this research project is publicly available on kaggle
hosted by user Hasnain Javed link:Melanoma Skin Cancer Dataset on Kaggle.


https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images/data

4.1 Description:

Dataset contain 10,000 dermatoscopic images which includes two classes: Malignant and
Benign which provides a balanced framework for training models.

Size and Structure:
e Total Images: 10,000.

e Training Set: 9,600 Images.

Evaluation Set: 1,000 Images.

Classes: Malignant, Benign.

Image format: JPEG.

5 Data Analysis and Visualisation:

5.1 Data Distribution:

Data Distribution between Train and Test

Figure 2: Data Distribution Figure 3: Train Data Distribution

Test Data Distribution

Figure 4: Test Data Distribution



5.2 Understanding Data:

Visualizing some random images from data from benign class and Malignant class
understand the data.
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Figure 5: Random sample images (benign Class)
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Figure 6: Random sample images (Malignant Class)



Creating Histograms to visualize the width, height and aspect ratio distribution of
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6 Image Processing

Figure 7: Histogram plots

Plotting 5 images and their RGB histograms from the train dataset.
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Figure 8:

RGB Histogram plots




Applying Image Sharping Method of Image Processing.
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Figure 9: sharpened images plots

7 Model Implementation:

The models used for this research are vgg-19, Mobilenet, DenseNet-121, custom CNN.



VGG19 Model:

tf .keras. backend. clear_session()
train_vgglo_model(train_generator, test,

vgg19 = VGG19(weights

layer in vgglo.layers:
layer.trainable

Flatten()(vgglo. output)
Dense(256, activatio
Dropout(0.2) (x)
Dense(64, activation

= Dropout(0.2) (x)
prediction = Dense(1, activatio

1) (%)
) (x)

model = Model(input

early_stop = EarlyStopping(monitor="1
learning_rate_redu

history = model.fit(train_generator,

epochs=epochs,

, input_

tion = ReduceLROnPlateau(monitol

generator, input_shap
32, early_stop_patience=5

2, Ir_reduction factor=e.1, min lr=le-8):

shape=input_shape, include_top=

)(x)

-vgg19.input, outputs=prediction)

, Recall

D

", patience=early_stop_patience)
patience=1r_reduction_patience,
factor=1r_reduction_factor,
min_lr=min_lr)

validation_data=test_generator,

callbacks

op, learning_rate_reduction])

Figure 10:

VGG-19 Model
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Figure 11: Training and Validation
Accuracy and Loss.
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MobileNet Model:

f.keras.backend.clear_session()
train_MobileNet model(train generator, test generator, input_shape=(64, 64,
epochs F , early stop_patience=s,

3)

1r_reduction_patience=2, 1r_reduction factor=e.1, min_lr=le-8):

mbnet = MobileNet(weight , input_shape=input_shape, include_toj

- layer in mbnet.layers:
layer.trainable =

Flatten() (mbnet.output)
Dense(256, activation=
Dropout (8. 2) (x)
Dense(64, activation=
Dropout(@.2) (x)
prediction = Dense(1, activation="sigmoid")(x)

model = Model(inputs=mbnet. input, outpu ediction)

, Recall()])

early stop = Earlystopping(monitor="1 , patience=early_stop_patience)
learning_rate_reduction = ReducelROnPlateau(monitor
patience=1r_reduction_patience,
factor eduction_factor,
nin_1r)

history = model.fit(train_generator,
epochs=epochs,
validation_data=test_generator,
callbacks=[early_stop, learning rate reduction])

Figure 13:

Classification Report
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Figure 14: Training and Validation
Accuracy and Loss. Figure 15: Confusion Matrix.



DenseNet Model:

tf.keras.backend.clear
train_densenet_mod

ession()

epoch

Ir

10,
du

dn121

DenseNet121 (weights="inag;

layer in dn121.layers:
layer. trainable

Flatten()(dn121.output)
X = Dense(256, activation="r

x = Dropout(®.2)(x)
prediction = Dense(1, activation='

(inputs=dn121.input, output

model. compile(l

early_stop
eduction

history = model.fit(

epochs=epochs,

valid

ion_patienc

el(train_generator, te

1, min_lr=le

2, 1r_reduction_fact

1et”, input_shape=input_shape, include top=

sigmoid')(x)

diction)

EarlyStopping(monitor=
educeLRONPlate

_reduction_patience,
factor=1r_reduction_factor,
min_lr=min lr)

nerator,

test_generator,
p, learning rate |

Figure 16:

DenseNet-121 Model
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Figure 17: Training and Validation
Accuracy and Loss.
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Figure 18: Confusion Matrix.



CNN Model:
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Figure 20: Training and Validation Accuracy
and Loss. Figure 21: Confusion Matrix.
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8 F1-Score Visualization:

F1 score Comparison

MobileNet

0.8473

0.8615
DenseNet121

CNN

Figure 22: F1 Score comparison between models
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Figure 23: Predicted images
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8.1 Interactive Web UI:

Melanoma Skin Cancer Detection

Choose file... Browse

Figure 24: Ul

Prediction Result

Prediction Result

Predicted Label: benign

.
|
Upload Another Image Predicted Label: malignant

Figure 25: Predicted Image Figure 26: Predicted Image
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